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Framework

Usually one assumes that the macroscopic irreversible behaviour
emerges from deterministic reversible microscopic dynamics,
which appears stochastic at the mesoscopic level of observation,
thanks to some form of microscopic chaos.

At the mesoscopic level of observation, irregular microscopic
motions are perceived as noise (Onsager-Machlup), if mesoscopic
scales are well sperated from microscopic and macroscopic ones.

Mesoscopic behaviour is characterized by irreversibility and
fluctuations.

Which form of microscopic chaos is required?
It depends on property of interest.
It depends on kind of interactions.
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Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim generalize
Onsager-Machlup to fluctuations of nonequilibrium steady states of
Markov processes in Local Equilibrium (JSP 107, 635 (2002)).
Claims of wide applicability.

Consider stochastic particle systems with hydrodyamic
description for vector of macroscopic observables

∂t% = ∇ · [D (%)∇%] ≡ D (%)

% = %(x , t)

whose evolution tends to unique steady state %̄.

Theory asserts that spontaneous fluctuations are governed by
adjoint hydrodynamic equation:

−∂t% = D∗ (%)
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Then, provided D decomposes as

D(%) =
1

2
∇ ·
(
χ(%)∇δS

δ%

)
+A

where S is the entropy, χ Onsager’s matrix, and A a non-dissipative
(⊥ thermodynamic force) term, one has

D∗ (%) = D (%)− 2A

Question: can nonequilibrium deterministic reversible dynamics
lead to D∗ 6= D, for the fluctuations of certain observabels?
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Consider % = n-dimensional vector with
deterministic, reversible, dissipative dynamics:

%̇ = D(%) ,

where D = is a vector field with one attracting fixed point %̂
(and one repelling fixed point), and
%i (t) = observable in position i
%̂ = steady state.

Add Gaussian noise: %̇ = D(%) + ξ

〈ξ(t)〉 = 0,
〈ξi (t) ξj (t ′)〉 = Kijδ (t − t ′); K symmetric, positive definite.

As in O-M, most likely path yields hydrodynamics, in n→∞ limit.
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Decompose deterministic part, D, in two contributions:

time-odd, contributing to transport;

time-even, not contributing to transport.

D (%) = −1

2
K∇%V (%) +A (%) , 〈K∇%V ,A〉 = 0

∇% = differentiation w.r.t. components of %.

∇%V = thermodynamic force.
%̂ minimizes V

K = Onsager matrix (with derivatives).
〈x , y〉 = xTK−1y ;
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Probability of path γ from %i to %f : P(γ) ∝ exp
{
−J[ti ,tf ] (%)

}
J[ti ,tf ] (%) =

1

2

∫ tf

ti

〈
%̇+

1

2
K∇%V −A, %̇+

1

2
K∇%V −A

〉
dt

=
1

2

∫ tf

ti

〈
%̇− 1

2
K∇%V −A , %̇−

1

2
K∇%V −A

〉
dt+

[
V f − V i

]
Minimization leads to laws for relaxation and for fluctuation paths:

%̇ = D (%) = −1

2
K∇%V +A (%)

−%̇ = D∗ (%) = −1

2
K∇%V −A (%)

Asymmetry (not present in O-M) due to
time reversal parity of non-dissipative term A.
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Nonequilibrium Lorentz Gas
ẋ = p ; ṗ = εx̂− αp α = εpx

Dissipative, TRI;
for small ε: hyperbolic, ergodic measure weighs differently
trajectories with opposite currents:
temporal symmetry broken on statistical level.
Phase space graining ⇒ conjugation with Markov process.
No results on symmetry of generator of Markov chain, which, in
any case,
concerns phase space, not real space.
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Current fluctuations

No asymmetry of most likely path
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J(t) =
N∑
i=1

pi ,x
N

, pi = (pi ,x , pi ,y ) , p2
i ,x + p2

i ,y = 1

Between collisions ṗi ,x = ε
(

1− p2
i ,x

)
and

J̇ = ε
(
1− NJ2

)
+
ε

N

N∑
i,j=1
i 6=j

pi ,xpj ,x

If collisions only produce noise, randomizing the p’s, large N
deterministic part of dynamics is (correlation term vanishes):

J̇≈ε
(
1− NJ2

)
with attractor Ĵ = 1/

√
N, repeller J̃ = −1/

√
N =⇒ A = 0

Peculiar situation for symmetric paths.
Chaos not sufficient; correlations, hence interactions, needed.
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Nonequilibrium FPU chain of Lepri, Livi, Politi (Phys. D 1998);
chaos and correlations due to interactions:

q0 = qN+1 = 0; q̈l = fl − fl+1, l = 2, ...N

fl = −V ′(ql − ql−1); V (x) =
x2

2
+ β

x4

4

q̈1 = −ζLq̇1 + f1 − f2; q̈N = −ζR q̇N + fN − fN+1

ζL, ζR Nosé-Hoover at different T and equal response time.

High frequency modes like stochastic perturbation.
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Local heat flux
N = 66
TR = 20
TL = 70
J on 10 sites
threshold: 3σ

Average, maximum and minimum envelope of crests of
39, 59, 79 and 99 histograms.
Each histogram from ≈ 2.5 · 104 paths.

Clear asymmetry; it suffices to consider mean fluctuation.

Lamberto Rondoni – Politecnico di Torino Behaviour of 1-d systems



Determinisitc-stochastic equivalence
Temporal asymmetries, role of chaos

Temperature profiles, role of chaos
Discussion

What about other interactions? E.g. hard instead of x4 potential:

Average fluctuations of density in center of chains, for N = 100,
N = 200, N = 400, and different values of elastic constant, k2.

Fluctuations temporally asymmetric and not sensibly affected by
the value of k2.
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Harmonic chain temperature profile in nonequilibrium steady state.
Strong particle-thermostat coupling for small relaxation time θ.

Local virial property holds.
Decreasing θ settles profile much closer to T` than Tr .
Discontinuity between θ = 0.5 and θ = 0.3.
θ = 0.3 leads to bulk profile at (T` + Tr )/2 as in RLL.
With θ` = 1 and decreasing θr , system equilibrates with hot
thermostat independently of θr .
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Pure harmonic chains without thermostats are hamiltonian,
integrable, Lyapunov exponents vanish. With Tr = 20 and T`:

T` λ1 〈χ〉
420 .00771± 0.5(−4) 2.7988

370 .00769 ±0.6(−4) 2.5737

320 .00779 ±0.7(−4) 2.3382

220 .00792 ±0.5(−4) 1.7644

120 .00928±0.1(−3) 1.0726

80 .01101 ±0.1(−3) 0.7194

50 .01338 ±0.2(−3) 0.3775

20 .01328 ±0.1(−3) 6.5453e-005

N = 100, k2 = 1, largest Lyapunov exponent is positive and
decreases, average phase space contraction rate grows with T`.
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λ1 and 〈χ〉 for hard particles with k2 = 0, N = 100 and Tr = 20.
Integrable case without thermostats.

T` λ1 〈χ〉
320 .01641 8.41388

220 .01931 4.93916

120 .01978 2.05788

80 .02441 1.02030

50 .02983 0.33846

20 .03157 0.04161

Chaotic like in purely harmonic cases, but here a nonequilibrium
temperature profile sets in.

Chaos (and virial property) insufficient for local equilibrium.
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LTE? Fourier law? Peculiarities of 1-d systems: definitions based
on small fluctuations about equilibrium positions frustrated by
O(N) fluctuations. Also temperature gradients yield large mean
displacements from equilibrium positions.

Nonequilibrium induces asymmetry: particles shift towards cold
side: density gradient, hence pressure gradient.
Inverse mass density, may be correlated to kinetic temperature.
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In steady state:

d

dx

[
κ(x)

dT

dx

]
= 0 , i.e.

dT

dx
=

C1

κ(x)

As 〈qi 〉 approximated by parabola, try q`, qr small > 0 in

κ(x) ∝ [(x − q`)(N + qr − x)]α

E.g. α = 1:

T (x) = C1 log
x − q`

N + qr − x
+ C2

In general:

κ =
1

N

∫ N

0
κ(x) dx ∼ N2α
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Discussion

1. Chaos not fundamental in 1-d. In NESS, hard collisions occur
practically randomly; break correlations favouring standard
behaviour more efficiently than generic chaos.

2. Temperature gradients alter bulk behaviour, even when it
resembles noninteracting particles. Robust nonlocality in NESS.

3. Asymmetric fluctuation paths ubiquitous in deterministic TRI
dynamics with proper interactions. Microscopic theory?
Attempt in terms of correlation functions in PSR 2008.

4. Assuming Fourier’s law, thermal conductivity divergence
related to deviations of positions from equilibrium.

5. Strong dependence on microscopic dynamics: no genuine LTE
(as in stochastic systems). May be typical of 1-d.

6. Experimental consquences.

GaR Phys.A 04; GiRV Phys.A 06, Phys.D 07; PSR JCP 06, 08
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