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Motivations

Motivations

New areas of physics, materials science and chemistry come in at the
nanoscale. At nanoscale dimensions different physical phenomena
start to dominate.

A central question in nanofluidics concerns the extent to which the
hydrodynamic equations hold at the nanoscale.

New techniques available: electrowetting, drop/bubble microfluidics,
soft-substrate actuation, electro-osmotic pumps, electrophoresis,
static mixing, flow focusing, etc.

Nanofluidic computing where basic computing elements such as logic
gates may be incorporated into very small scale devices. Enable
nanofluidic technology by directly incorporating computing functions.
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Motivations

Transport in a nanochannel
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Motivations

A fluid in a pipe
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Motivations

Properties at the nanoscale

When structures approach the size regime corresponding to molecular
scaling lengths, new physical constraints are placed on the behavior of
the fluid.

Fluids exhibit new properties not observed in bulk, e.g. vastly
increased viscosity near the pore wall; they may effect changes in
thermodynamic properties and may also alter the chemical reactivity
of species at the fluid-solid interface.

Large demand for studying transport in nanofluidic devices,
multiphase dynamics , interfacial phenomena

At small scales Navier-Stokes equation breaks down

Consider the discrete nature of fluids and hydrodynamics in a
workable scheme

Represent non ideal gas behavior via a bottom-up approach or coarse
graining procedure instead of fine graining methods.
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Outline

OUTLINE

Kinetic approach: evolution equation for the 1-particle phase space
distribution.

Balance equations for conserved quantities. Hydrodynamics

Transport coefficients.

Lattice Boltzmann Equation implementation.

Numerical test: Poiseuille flow of hard spheres in a narrow pore

Conclusions.
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Outline

Microscopic description of inhomogeneous fluids

Phenomenological Langevin equation:

drn
dt = vn

m dvn
dt =

F(rn)−
∑

m( 6=n)

∇rnU(|rn − rm|)

−mγvn + ξn(t)

〈ξi
n(t)ξ

j
m(s)〉 = 2γmkBT δmnδ

ijδ(t − s)

How do we contract description from phase-space (6N-DIM) → diffusion
ordinary 3d space?
Answ: At equilibrium via integral eqs. method or DFT.
Non-equilibrium...
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Outline

Evolution eq. 1-particle phase-space distribution

Kinetic equation

∂t f (r, v, t) + v · ∇f (r, v, t) +
Fext(r)

m
· ∂

∂v
f (r, v, t) = Q(r, v, t) + B(r, v, t)

Collision term

Q(r, v, t) =
1

m
∇v

∫
dr′

∫
dv′f2(r, v, r′, v′, t)∇rU(|r − r′|)

Heat bath term B(DDFT )(r, v, t) = γ[kBT
m

∂2

∂v2 + ∂
∂v · v]f (r, v, t)

Closure obtained from Decoupling (Molecular chaos)

f2(r, v, r′, v′, t) ≈ f (r, v, t)f (r′, v′, t)g2(r, r
′, t|n)
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Outline

Approaches: DDFT and Kinetic equation

When friction γ is large:

∂tn(r, t) = D∇
[
n(r, t)∇ δF

δn(r, t)
− F (r)n(r, t)

]
. (1)

F free energy functional of density.

Method works when colloidal particles due to the strong interaction
with the solvent reach rapidly a local equilibrium. Velocity distrib.
function is ≈ Maxwellian. Density evolves diffusively towards the
equilibrium solution. Smoluchovski description appropriate.

The Solvent acts as an HEAT BATH . Noise and friction are
intimately connected through Fluctuation-dissipation.
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Outline

Dynamics of molecular liquids vs. colloidal suspensions

Colloidal dynamics is overdamped. Relaxation occurs via diffusion.
(One conserved mode) No Galilei invariance.

Molecular liquids have inertial dynamics, 5 conserved modes

First 5 (hydrodynamic) moments of f (r, v, t) privileged status.

Hard modes (short lived) absorb energy from the soft modes and
restore global equilibrium.
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Outline

How to combine microscopic and hydrodynamic
description?

Eq. of state requires better description of structure. Revised
Enskog theory.
Simplifly transport equation by exactly treating contributions to
hydrodynamic modes while approximating non hydrodynamic terms
via an exponential relaxation ansatz.

∂t f (r, v, t) + v · ∇f (r, v, t) +
Fext(r)

m
· ∂

∂v
f (r, v, t) =

floc(r, v, t)

nkBT

(
(v − u) · C(1)(r, t) + (

m(v − u)2

3kBT
− 1)C (2)(r, t)

)
+Bbgk

Bbgk(r, v, t) ≡ −ν0[f (r, v, t)− floc(r, v, t)]

floc(r, v, t) = n(r, t)[ m
2πkBT (r,t) ]

3/2 exp
(
− m(v−u)2

2kBT (r,t)

)
.
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Outline

Hydrodynamic description
Continuity equation

∂tn(r, t) +∇ · (n(r, t)u(r, t)) = 0

the momentum balance equation

mn[∂tuj + ui∂iuj ] + ∂iP
(K)
ij − Fjn − C

(1)
j (r, t) = b

(1)
j (r, t)

and the kinetic energy balance equation

3

2
kBn[∂t + ui∂i ]T + P

(K)
ij ∂iuj + ∂iq

(K)
i − C (2)(r, t) = b(2)(r, t)

C are are determined by interactions (self-consistent fields) and are
gradients of the pressure tensor and heat flux.

C
(1)
i (r, t) = m

∫
dvQ(r, v, t)vi = −∇jP

(C)
ij (r, t) (2)

C (2)(r, t) = −∇iq
(C)
i (r, t)− P

(C)
ij (r, t)∇iuj(r, t) (3)
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Outline

Interactions determine pressure and transp. coefficients

Pbulk =
1

d

d∑
i=1

[
P

(K)
ii + P

(C)
ii

]
bulk

= kBT
[
nb +

2π

3
n2
bσ

3g2(σ)
]

Rewrite interaction as a sum of specific forces:

C(1)(r, t) = n(r, t)
(
Fmf (r, t) + Fdrag (r, t) + Fviscous(r, t)

)
. (4)

We identify the force, Fmf , acting on a particle at r with the gradient of
the so-called potential of mean force (attractive+repulsive):

Fmf (r, t) = −kBTσ2

∫
dkkg(r, r + σk, t)n(r + σk, t) + Gattr (r, t) (5)

For slowly varying densities

Fmf (r, t) = −∇µα
int(r, t). (6)
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Outline

Asakura and Oosawa Entropic between hard spheres

Spheres of radius R, separated a distance 2R + D, and immersed in fluid
of particles with radius r , F = −kBT lnV ′

V ′ = V − 8π

3
(R + r)3 + voverlap

F = −∂F
∂D

=
NkBT

V

∂voverlap

∂D
= −ρkBTπ(r − D/2)(2R + r + D/2)
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Outline

Fluids at substrates

Near a repulsive wall a dense fluid of hard spheres displays pronounced
oscillations on a nanoscale.
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Outline

Non equilibrium forces
The drag force is proportional to the velocity difference between impurity
and fluid:

F drag
i (r, t) = −γij(r)[u

impurity
j (r)− uj(r)] (7)

In the homogeneous case microscopic expression is

γ̂ij ≈
8

3
(πmkBT )1/2σ2gnδij

(8)

In the limit of small Reynolds numbers obtain mass concentration
advection-diffusion equation:

∂tc + u · ∇c =
KBT

γ
∇

[
(c(1− c)∇∆µ

]
(9)

with c = ρA/ρ and ∆µ ≡ 1
mA µA − 1

mB µB ,

D =
kBT

γ
(10)
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Outline

Diffusion current

∂tρ
A +∇ · (ρAu) +∇ · J = 0

J = −mAmB n2

ρ

(
DABdA + DT

1

T
∇T

)
Chemical force

dA =
ρAρB

ρnkBT

{ 1

mA
∇µA|T − 1

mB
∇µB |T −

(FA(r)

mA
− FB(r)

mB

)}
,

DAB =
3

8n

(kBT )1/2

(2πµAB)1/2(σAB)2gAB
.

DT = αDAB
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Outline

Viscous force force and shear viscosity
Viscous force of non local character:

F viscous
i (r, t) =

∫
dr′Hij(r, r

′)[uj(r
′)− uj(r)]. (11)
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√
πmkBTnσ4g
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)
(12)
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Outline

Inhomogeneous Diffusion in a slit
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Outline

Microscopic profiles and mobility tensor

Diffusion is normal, but non isotropic, parallel and normal mobility are
different
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Outline

Velocity profiles
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Figure: Velocity profiles of the two species for a channel of width H = 6σAA and
load F = 0.001. according to the toy model.
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Outline

Self-consistent Numerical solution of transport equation
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Outline

Lattice Boltzmann in a nutshell
Lattice Boltzmann strategy is applied as a numerical solver. Based
on discretization of velocities on a lattice. No hydrodynamic equations
need to be solved.

The distribution function is replaced by an array of 19 populations,
f (r, v, t) → fi (r, t). Minimal velocity set employed (D3Q19, D3Q27)

The propagation of the populations achieved via a time discretization
to first order and a forward Euler update:

∂t fi (r, t) + vi · ∂rfi (r, t)] '
fi (r + viδt, t + δt)− fi (r, t)

δt

Collisional stage

fi (r + ci , t + 1)− fi (r, t) = wi

K∑
l=0

1

v2l
T l!

C (l)
α (r, t)h(l)

α (ci ) +
f loc
i (r, t)− fi (r, t)

τ0
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Outline

For a practical scheme we need to

Evaluate integrals by Gauss quadratures in r-space

Have a good representation of the radial distribution function
Fischer-Methfessel (1980)

Boundary conditions simple (eg no-slip via bounce-back)

Disentanglement of spatial/velocity discretization (i.e. u∇u term in
NS eq.). No need to solve Poisson eqn for pressure.

Navier-Stokes is recovered for small gradients .
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Outline

Conclusions
Starting from a microscopic level we have obtained a governing eq.
for f (r, v, t) describing both equilibrium structural properties and
transport properties.
Hydrodynamic vs. non-hydrod. modes splitting proves a convenient
route.
Attractive potential tails: contribute to the energy of the fluid, but
less important for collisional dissipation.
Future work must include more general interactions and geometries.
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