Nanoscopic approach to dynamics of liquids

Umberto Marini B. Marconi

University of Camerino and INFN Perugia, Italy

September 24, 2010

3. 3

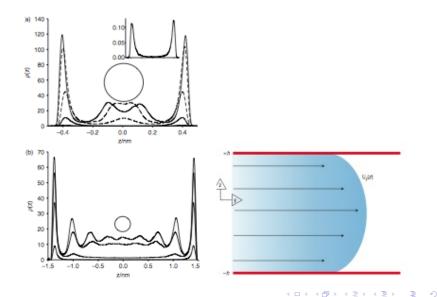
Motivations

- New areas of physics, materials science and chemistry come in at the nanoscale. At nanoscale dimensions different physical phenomena start to dominate.
- A central question in nanofluidics concerns the extent to which the hydrodynamic equations hold at the nanoscale.
- New techniques available: electrowetting, drop/bubble microfluidics, soft-substrate actuation, electro-osmotic pumps, electrophoresis, static mixing, flow focusing, etc.
- Nanofluidic computing where basic computing elements such as logic gates may be incorporated into very small scale devices. Enable nanofluidic technology by directly incorporating computing functions.

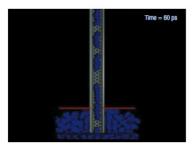
- 3

2 / 26

Transport in a nanochannel



A fluid in a pipe



- 2

イロン イヨン イヨン イヨン

Properties at the nanoscale

- When structures approach the size regime corresponding to molecular scaling lengths, new physical constraints are placed on the behavior of the fluid.
- Fluids exhibit new properties not observed in bulk, e.g. vastly increased viscosity near the pore wall; they may effect changes in thermodynamic properties and may also alter the chemical reactivity of species at the fluid-solid interface.
- Large demand for studying transport in nanofluidic devices, multiphase dynamics , interfacial phenomena
- At small scales Navier-Stokes equation breaks down
- Consider the discrete nature of fluids and hydrodynamics in a workable scheme
- Represent non ideal gas behavior via a bottom-up approach or coarse graining procedure instead of fine graining methods.

- 3

- 4 同 6 4 日 6 4 日 6

OUTLINE

- Kinetic approach: evolution equation for the 1-particle phase space distribution.
- Balance equations for conserved quantities. Hydrodynamics
- Transport coefficients.
- Lattice Boltzmann Equation implementation.
- Numerical test: Poiseuille flow of hard spheres in a narrow pore
- Conclusions.

Microscopic description of inhomogeneous fluids

Phenomenological Langevin equation:

$$\frac{d\mathbf{r}_n}{dt} = \mathbf{v}_n$$

$$m\frac{d\mathbf{v}_n}{dt} = \left[\mathbf{F}(\mathbf{r}_n) - \sum_{m(\neq n)} \nabla_{\mathbf{r}_n} U(|\mathbf{r}_n - \mathbf{r}_m|)\right] - m\gamma \mathbf{v}_n + \boldsymbol{\xi}_n(t)$$

$$\langle \boldsymbol{\xi}_n^i(t) \boldsymbol{\xi}_m^j(s) \rangle = 2\gamma m k_B T \delta_{mn} \delta^{ij} \delta(t-s)$$

How do we contract description from phase-space (6N-DIM) \rightarrow diffusion ordinary 3d space? Answ: At equilibrium via integral eqs. method or DFT. Non-equilibrium...

Evolution eq. 1-particle phase-space distribution

• Kinetic equation

$$\partial_t f(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, t) + \frac{\mathbf{F}^{ext}(\mathbf{r})}{m} \cdot \frac{\partial}{\partial \mathbf{v}} f(\mathbf{r}, \mathbf{v}, t) = \mathcal{Q}(\mathbf{r}, \mathbf{v}, t) + \mathcal{B}(\mathbf{r}, \mathbf{v}, t)$$

Collision term

$$\mathcal{Q}(\mathbf{r},\mathbf{v},t) = \frac{1}{m} \nabla_{\mathbf{v}} \int d\mathbf{r}' \int d\mathbf{v}' f_2(\mathbf{r},\mathbf{v},\mathbf{r}',\mathbf{v}',t) \nabla_{\mathbf{r}} U(|\mathbf{r}-\mathbf{r}'|)$$

- Heat bath term $\mathcal{B}^{(DDFT)}(\mathbf{r}, \mathbf{v}, t) = \gamma \left[\frac{k_B T}{m} \frac{\partial^2}{\partial \mathbf{v}^2} + \frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{v}\right] f(\mathbf{r}, \mathbf{v}, t)$
- Closure obtained from Decoupling (Molecular chaos)

$$f_2(\mathbf{r},\mathbf{v},\mathbf{r}',\mathbf{v}',t) \approx f(\mathbf{r},\mathbf{v},t)f(\mathbf{r}',\mathbf{v}',t)g_2(\mathbf{r},\mathbf{r}',t|n)$$

Approaches: DDFT and Kinetic equation

• When friction γ is large:

$$\partial_t n(\mathbf{r}, t) = D\nabla \Big[n(\mathbf{r}, t) \nabla \frac{\delta \mathcal{F}}{\delta n(\mathbf{r}, t)} - F(\mathbf{r}) n(\mathbf{r}, t) \Big].$$
(1)

- \mathcal{F} free energy functional of density.
- Method works when colloidal particles due to the strong interaction with the solvent reach rapidly a local equilibrium. Velocity distrib. function is ≈ Maxwellian. Density evolves diffusively towards the equilibrium solution. Smoluchovski description appropriate.
- The Solvent acts as an HEAT BATH . Noise and friction are intimately connected through Fluctuation-dissipation.

Dynamics of molecular liquids vs. colloidal suspensions

- Colloidal dynamics is overdamped. Relaxation occurs via diffusion. (One conserved mode) No Galilei invariance.
- Molecular liquids have inertial dynamics, 5 conserved modes
- First 5 (hydrodynamic) moments of $f(\mathbf{r}, \mathbf{v}, t)$ privileged status.
- Hard modes (short lived) absorb energy from the soft modes and restore global equilibrium.

How to combine microscopic and hydrodynamic description?

٠

- **Eq. of state** requires better description of structure. Revised Enskog theory.
- Simplifly transport equation by exactly treating contributions to hydrodynamic modes while approximating non hydrodynamic terms via an exponential relaxation ansatz.

$$\partial_t f(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, t) + \frac{\mathbf{F}^{ext}(\mathbf{r})}{m} \cdot \frac{\partial}{\partial \mathbf{v}} f(\mathbf{r}, \mathbf{v}, t) = \frac{f_{loc}(\mathbf{r}, \mathbf{v}, t)}{nk_B T} \Big((\mathbf{v} - \mathbf{u}) \cdot \mathbf{C}^{(1)}(\mathbf{r}, t) + (\frac{m(\mathbf{v} - \mathbf{u})^2}{3k_B T} - 1)C^{(2)}(\mathbf{r}, t) \Big) + \mathcal{B}_{bgk}$$

$$\mathcal{B}_{bgk}(\mathbf{r},\mathbf{v},t) \equiv -\nu_0[f(\mathbf{r},\mathbf{v},t) - f_{loc}(\mathbf{r},\mathbf{v},t)]$$

$$f_{loc}(\mathbf{r},\mathbf{v},t) = n(\mathbf{r},t)[\frac{m}{2\pi k_B T(\mathbf{r},t)}]^{3/2} \exp\left(-\frac{m(\mathbf{v}-\mathbf{u})^2}{2k_B T(\mathbf{r},t)}\right).$$

Hydrodynamic description

• Continuity equation

$$\partial_t n(\mathbf{r},t) + \nabla \cdot (n(\mathbf{r},t)\mathbf{u}(\mathbf{r},t)) = 0$$

• the momentum balance equation

$$mn[\partial_t u_j + u_i \partial_i u_j] + \partial_i P_{ij}^{(K)} - F_j n - C_j^{(1)}(\mathbf{r}, t) = b_j^{(1)}(\mathbf{r}, t)$$

• and the kinetic energy balance equation

$$\frac{3}{2}k_B n[\partial_t + u_i\partial_i]T + P_{ij}^{(K)}\partial_i u_j + \partial_i q_i^{(K)} - C^{(2)}(\mathbf{r},t) = b^{(2)}(\mathbf{r},t)$$

• C are are determined by interactions (self-consistent fields) and are gradients of the pressure tensor and heat flux.

$$C_i^{(1)}(\mathbf{r},t) = m \int d\mathbf{v} \mathcal{Q}(\mathbf{r},\mathbf{v},t) v_i = -\nabla_j P_{ij}^{(C)}(\mathbf{r},t)$$
(2)

$$C^{(2)}(\mathbf{r},t) = -\nabla_i q_i^{(C)}(\mathbf{r},t) - P_{ij}^{(C)}(\mathbf{r},t) \nabla_i u_j(\mathbf{r},t)$$
(3)

12 / 26

Interactions determine pressure and transp. coefficients

$$P_{bulk} = \frac{1}{d} \sum_{i=1}^{d} \left[P_{ii}^{(K)} + P_{ii}^{(C)} \right]_{bulk} = k_B T \left[n_b + \frac{2\pi}{3} n_b^2 \sigma^3 g_2(\sigma) \right]$$

Rewrite interaction as a sum of specific forces:

$$\mathbf{C}^{(1)}(\mathbf{r},t) = n(\mathbf{r},t) \Big(\mathbf{F}^{mf}(\mathbf{r},t) + \mathbf{F}^{drag}(\mathbf{r},t) + \mathbf{F}^{viscous}(\mathbf{r},t) \Big).$$
(4)

We identify the force, \mathbf{F}^{mf} , acting on a particle at \mathbf{r} with the gradient of the so-called potential of mean force (attractive+repulsive):

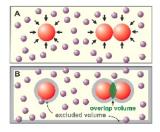
$$\mathbf{F}^{mf}(\mathbf{r},t) = -k_B T \sigma^2 \int dk kg(\mathbf{r},\mathbf{r}+\sigma k,t) n(\mathbf{r}+\sigma k,t) + \mathbf{G}_{attr}(\mathbf{r},t) \quad (5)$$

For slowly varying densities

$$\mathbf{F}^{mf}(\mathbf{r},t) = -\nabla \mu_{int}^{\alpha}(\mathbf{r},t).$$
(6)

Umberto Marini B. Marconi (2010)

Asakura and Oosawa Entropic between hard spheres

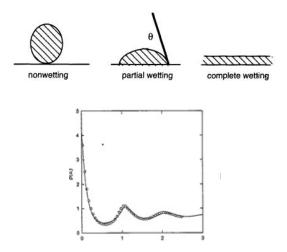


Spheres of radius R, separated a distance 2R + D, and immersed in fluid of particles with radius r, $\mathcal{F} = -k_B T \ln V'$

$$V' = V - \frac{8\pi}{3}(R+r)^3 + v_{overlap}$$

$$F = -\frac{\partial \mathcal{F}}{\partial D} = \frac{Nk_B T}{V} \frac{\partial v_{overlap}}{\partial D} = -\rho k_B T \pi (r - D/2)(2R + r + D/2)$$

Fluids at substrates



Near a repulsive wall a dense fluid of hard spheres displays pronounced oscillations on a nanoscale.

Umberto Marini B. Marconi (2010) Nanoscopic approach to dynamics of liquids Se

Non equilibrium forces

The drag force is proportional to the velocity difference between impurity and fluid:

$$F_{i}^{drag}(\mathbf{r},t) = -\gamma_{ij}(\mathbf{r})[u_{j}^{impurity}(\mathbf{r}) - u_{j}(\mathbf{r})]$$
(7)

In the homogeneous case microscopic expression is

$$\hat{\gamma}_{ij} pprox rac{8}{3} (\pi m k_B T)^{1/2} \sigma^2 g n \delta_{ij}$$

 $D = \frac{k_B T}{T}$

In the limit of small Reynolds numbers obtain mass concentration advection-diffusion equation:

$$\partial_t c + \mathbf{u} \cdot \nabla c = \frac{K_B T}{\gamma} \nabla \Big[(c(1-c) \nabla \Delta \mu \Big]$$
(9)

with $c =
ho^A /
ho$ and $\Delta \mu \equiv rac{1}{m^A} \mu^A - rac{1}{m^B} \mu^B$,

(8)

Diffusion current

$$\partial_t \rho^A + \nabla \cdot (\rho^A \mathbf{u}) + \nabla \cdot \mathbf{J} = 0$$
$$\mathbf{J} = -m^A m^B \frac{n^2}{\rho} \left(D^{AB} \mathbf{d}^A + D_T \frac{1}{T} \nabla T \right)$$

Chemical force

$$\mathbf{d}^{A} = \frac{\rho^{A}\rho^{B}}{\rho n k_{B} T} \Big\{ \frac{1}{m^{A}} \nabla \mu^{A} |_{T} - \frac{1}{m^{B}} \nabla \mu^{B} |_{T} - \Big(\frac{\mathbf{F}^{A}(\mathbf{r})}{m^{A}} - \frac{\mathbf{F}^{B}(\mathbf{r})}{m^{B}} \Big) \Big\},$$
$$D^{AB} = \frac{3}{8n} \frac{(k_{B} T)^{1/2}}{(2\pi\mu_{AB})^{1/2} (\sigma_{AB})^{2} g_{AB}}.$$
$$D_{T} = \alpha D^{AB}$$

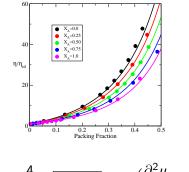
э

17 / 26

Viscous force force and shear viscosity

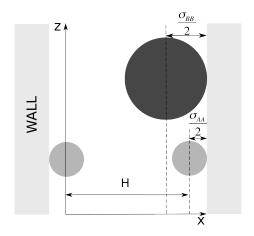
Viscous force of non local character:

$$F_i^{viscous}(\mathbf{r},t) = \int d\mathbf{r}' H_{ij}(\mathbf{r},\mathbf{r}') [u_j(\mathbf{r}') - u_j(\mathbf{r})].$$
(11)



anoscopic approach to dynamics of liquid

Inhomogeneous Diffusion in a slit



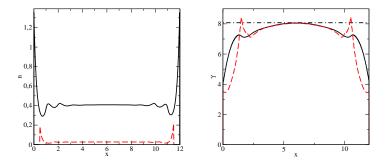
< A

- < ∃ →

3

Microscopic profiles and mobility tensor

Diffusion is normal, but non isotropic, parallel and normal mobility are different



Velocity profiles

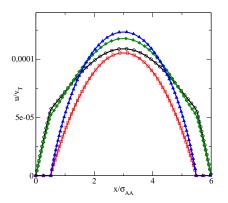
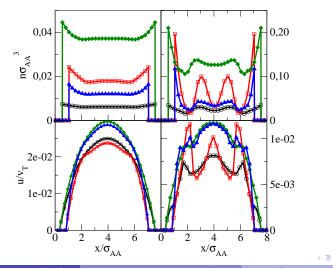


Figure: Velocity profiles of the two species for a channel of width $H = 6\sigma_{AA}$ and load F = 0.001. according to the toy model.

Self-consistent Numerical solution of transport equation



Lattice Boltzmann in a nutshell

Lattice Boltzmann strategy is applied as a numerical solver. Based on discretization of velocities on a lattice. No hydrodynamic equations need to be solved.

- The distribution function is replaced by an array of 19 populations, $f(\mathbf{r}, \mathbf{v}, t) \rightarrow f_i(\mathbf{r}, t)$. Minimal velocity set employed (D3Q19, D3Q27)
- The propagation of the populations achieved via a time discretization to first order and a forward Euler update:

$$\partial_t f_i(\mathbf{r},t) + \mathbf{v}_i \cdot \partial_{\mathbf{r}} f_i(\mathbf{r},t)] \simeq rac{f_i(\mathbf{r}+\mathbf{v}_i\delta t,t+\delta t) - f_i(\mathbf{r},t)}{\delta t}$$

Collisional stage

$$f_i(\mathbf{r} + \mathbf{c}_i, t+1) - f_i(\mathbf{r}, t) = w_i \sum_{l=0}^{K} \frac{1}{v_T^{2l} l!} C_{\underline{\alpha}}^{(l)}(\mathbf{r}, t) h_{\underline{\alpha}}^{(l)}(\mathbf{c}_i) + \frac{f_i^{loc}(\mathbf{r}, t) - f_i(\mathbf{r}, t)}{\tau_0}$$

For a practical scheme we need to

- Evaluate integrals by Gauss quadratures in r-space
- Have a good representation of the radial distribution function Fischer-Methfessel (1980)
- Boundary conditions simple (eg no-slip via bounce-back)
- Disentanglement of spatial/velocity discretization (i.e. u∇u term in NS eq.). No need to solve Poisson eqn for pressure.
- Navier-Stokes is recovered for small gradients .

Conclusions

- Starting from a microscopic level we have obtained a governing eq. for $f(\mathbf{r}, \mathbf{v}, t)$ describing both equilibrium structural properties and transport properties.
- Hydrodynamic vs. non-hydrod. modes splitting proves a convenient route.
- Attractive potential tails: contribute to the energy of the fluid, but less important for collisional dissipation.
- Future work must include more general interactions and geometries.

 $p_{i,1}$

 Schematic representation of transport through an object of complicated shape, with two openings.

.

25 / 26

Bibliography

UMBM and S. Melchionna, Lattice Boltzmann method for inhomogeneous fluids

Europhysics Letters, 81, 34001 (2008)

UMBM and S. Melchionna

Kinetic Theory of correlated fluids: From dynamic density functional to Lattice Boltzmann methods Journal of Chemical Physics, 131, 014105 (2009).

Phase-space approach to dynamical density functional theory

J. Chem. Phys. 126, 184109 (2007)

UMBM and P. Tarazona

Nonequilibrium inertial dynamics of colloidal systems J. Chem. Phys. 124, 164901 (2006).

Umberto Marini B. Marconi (2010) Nanoscopic approach to dynamics of liquids