From normal to anomalous deterministic diffusion
Part 3: Anomalous diffusion

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Sperlonga, 20-24 September 2010
yesterday:

2 From normal to anomalous deterministic diffusion:
 normal diffusion in particle billiards and anomalous diffusion in intermittent maps

note: work by T.Akimoto
yesterday:

- From normal to anomalous deterministic diffusion: normal diffusion in particle billiards and anomalous diffusion in intermittent maps

 note: work by T.Akimoto

today:

- Anomalous diffusion: generalized diffusion and Langevin equations, biological cell migration and fluctuation relations
Reminder: Intermittent map and CTRW theory

subdiffusion coefficient calculated from CTRW theory

key: solve Montroll-Weiss equation in Fourier-Laplace space,

\[
\hat{\varrho}(k, s) = \frac{1 - \tilde{w}(s)}{s} \frac{1}{1 - \hat{\lambda}(k)\tilde{w}(s)}
\]
Time-fractional equation for subdiffusion

For the lifted **PM map** $M(x) = x + ax^z \mod 1$, the MW equation in long-time and large-space asymptotic form reads

$$s^\gamma \hat{\varnothing} - s^{\gamma^{-1}} = -\frac{p\ell^2 a^\gamma}{2\Gamma(1-\gamma)\gamma^\gamma} k^2 \hat{\varnothing}, \quad \gamma := 1/(z-1)$$
Time-fractional equation for subdiffusion

For the lifted PM map \(M(x) = x + ax^z \mod 1 \), the MW equation in long-time and large-space asymptotic form reads

\[
\hat{s} \gamma \hat{\rho} - \hat{s}^{\gamma-1} = -\frac{p \ell^2 a^\gamma}{2 \Gamma(1 - \gamma) \gamma} k^2 \hat{\rho}, \quad \gamma := 1/(z - 1)
\]

LHS is the Laplace transform of the Caputo fractional derivative

\[
\frac{\partial^\gamma \rho}{\partial t^\gamma} := \begin{cases} \frac{\partial \rho}{\partial t} & \gamma = 1 \\ \frac{1}{\Gamma(1-\gamma)} \int_0^t dt' (t - t')^{-\gamma} \frac{\partial \rho}{\partial t'} & 0 < \gamma < 1 \end{cases}
\]
For the lifted PM map \(M(x) = x + ax^2 \mod 1 \), the MW equation in long-time and large-space asymptotic form reads

\[
s^\gamma \hat{\rho} - s^{\gamma-1} = -\frac{p \ell^2 a^\gamma}{2 \Gamma(1-\gamma) \gamma} k^2 \hat{\rho}, \quad \gamma := 1/(z-1)
\]

LHS is the Laplace transform of the Caputo fractional derivative

\[
\frac{\partial^\gamma \rho}{\partial t^\gamma} := \begin{cases} \frac{\partial \rho}{\partial t} & \gamma = 1 \\ \frac{1}{\Gamma(1-\gamma)} \int_0^t dt' (t - t')^{-\gamma} \frac{\partial \rho}{\partial t'} & 0 < \gamma < 1 \end{cases}
\]

transforming the Montroll-Weiss eq. back to real space yields the time-fractional (sub)diffusion equation

\[
\frac{\partial^\gamma \rho(x, t)}{\partial t^\gamma} = K \frac{\Gamma(1+\alpha)}{2} \frac{\partial^2 \rho(x, t)}{\partial x^2}
\]
Interlude: What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): \(\frac{d^{1/2}}{dx^{1/2}} = ? \)

one way to proceed: we know that for integer \(m, n \)

\[
\frac{d^m}{dx^m} x^n = \frac{n!}{(n-m)!} x^{n-m} = \frac{\Gamma(n+1)}{\Gamma(n-m+1)} x^{n-m};
\]

assume that this also holds for \(m = 1/2, n = 1 \)

\[\Rightarrow \frac{d^{1/2}}{dx^{1/2}} x = \frac{2}{\sqrt{\pi}} x^{1/2} \]
Interlude: What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): \(\frac{d^{1/2}}{dx^{1/2}} = ?\)

one way to proceed: we know that for integer \(m, n\)

\[
\frac{d^m}{dx^m}x^n = \frac{n!}{(n-m)!}x^{n-m} = \frac{\Gamma(n+1)}{\Gamma(n-m+1)}x^{n-m};
\]

assume that this also holds for \(m = 1/2, n = 1\)

\[
\Rightarrow \frac{d^{1/2}}{dx^{1/2}}x = \frac{2}{\sqrt{\pi}}x^{1/2}
\]

fractional derivatives are defined via power law memory kernels, which yield power laws in Fourier (Laplace) space:

\[
\frac{d^\gamma}{dx^\gamma}F(x) \leftrightarrow (ik)^\gamma \tilde{F}(k)
\]

\(\exists\) well-developed mathematical theory of \textbf{fractional calculus};

see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro
Deterministic vs. stochastic density

Initial value problem for fractional diffusion equation can be solved exactly; compare with simulation results for $P = \rho_n(x)$:

- Gaussian and non-Gaussian envelopes (blue) reflect intermittency
- Fine structure due to density on the unit interval $r = \rho_n(x) (n \gg 1)$ (see inset)
recall the escape rate theory of Lecture 1 expressing the (normal) diffusion coefficient in terms of chaos quantities:

$$D = \lim_{L \to \infty} \left(\frac{L}{\pi} \right)^2 \left[\lambda(\mathcal{R}_L) - h_{KS}(\mathcal{R}_L) \right]$$

Q: Can this also be worked out for the subdiffusive PM map?
recall the escape rate theory of Lecture 1 expressing the (normal) diffusion coefficient in terms of chaos quantities:

\[D = \lim_{L \to \infty} \left(\frac{L}{\pi} \right)^2 \left[\lambda(R_L) - h_{KS}(R_L) \right] \]

Q: Can this also be worked out for the subdiffusive PM map?

1. solve the previous fractional subdiffusion equation for absorbing boundaries: can be done
2. solve the Frobenius-Perron equation of the subdiffusive PM map: ?? (∃ methods by Tasaki, Gaspard (2004))
3. even if step 2 possible and modes can be matched: ∃ an anomalous escape rate formula ???

two big open questions...
Motivation: biological cell migration

Brownian motion

3 colloidal particles of radius 0.53 μm; positions every 30 seconds, joined by straight lines (Perrin, 1913)
Motivation: biological cell migration

Brownian motion

3 colloidal particles of radius $0.53\mu m$; positions every 30 seconds, joined by straight lines (Perrin, 1913)

single biological cell crawling on a substrate (Dieterich, R.K. et al., PNAS, 2008)

Brownian motion?
Our cell types and how they migrate

MDCK-F (Madin-Darby canine kidney) cells

two types: wildtype (NHE^+) and NHE-deficient (NHE^-)

movie: NHE+: $t=210$ min, $dt=3$ min
Our cell types and how they migrate

MDCK-F (Madin-Darby canine kidney) cells

two types: wildtype \((NHE^+)\) and NHE-deficient \((NHE^-)\)

movie: \(NHE^+: t=210\text{min, } dt=3\text{min}\)

note: the \textit{microscopic origin} of cell migration is a \textbf{highly complex process} involving a huge number of proteins and signaling mechanisms in the \textit{cytoskeleton}, which is a complicated \textit{biopolymer gel} – we do not consider this here!
Sequences of microscopic phase contrast images are segmented to obtain the cell boundaries.

1. Image processing
 (~ 100-1000 MB)
3. Cell outlines (own JAVA programs)
4. Cell trajectory
4’. Perimeter, area, structure index
Theoretical modeling: the Langevin equation

Newton’s law for a particle of mass m and velocity v immersed in a fluid

$$m\ddot{v} = F_d(t) + F_r(t)$$

with total force of surrounding particles decomposed into *viscous damping* $F_d(t)$ and *random kicks* $F_r(t)$
Theoretical modeling: the Langevin equation

Newton’s law for a particle of mass m and velocity \dot{v} immersed in a fluid

$$m\ddot{v} = F_d(t) + F_r(t)$$

with total force of surrounding particles decomposed into *viscous damping* $F_d(t)$ and *random kicks* $F_r(t)$

Suppose $F_d(t)/m = -\kappa \dot{v}$ and $F_r(t)/m = \sqrt{\zeta} \xi(t)$ as Gaussian white noise of strength $\sqrt{\zeta}$:

$$\dot{v} + \kappa v = \sqrt{\zeta} \xi(t)$$

Langevin equation (1908)

‘Newton’s law of stochastic physics’: apply to cell migration?

Note: Brownian particles *passively* driven, whereas cells move *actively* by themselves!
Solving Langevin dynamics

calculate two important quantities (in one dimension):

1. the diffusion coefficient $D := \lim_{t \to \infty} \frac{msd(t)}{2t}$

with $msd(t) := \langle [x(t) - x(0)]^2 \rangle$; for Langevin eq. one obtains $msd(t) = 2 v_{th}^2 \left(t - \kappa^{-1}(1 - \exp(-\kappa t))\right)/\kappa$ with $v_{th}^2 = kT/m$

note that $msd(t) \sim t^2 \ (t \to 0)$ and $msd(t) \sim t \ (t \to \infty) \Rightarrow \exists D$
calculate two important quantities (in one dimension):

1. the **diffusion coefficient**

\[
D := \lim_{t \to \infty} \frac{msd(t)}{2t}
\]

with \(msd(t) := \langle [x(t) - x(0)]^2 \rangle\); for Langevin eq. one obtains \(msd(t) = 2v_{th}^2(t - \kappa^{-1}(1 - \exp(-\kappa t))) / \kappa\) with \(v_{th}^2 = kT / m\)

note that \(msd(t) \sim t^2 (t \to 0)\) and \(msd(t) \sim t (t \to \infty) \Rightarrow \exists D\)

2. the **probability distribution function** \(P(x, v, t):\)

- Langevin dynamics obeys (for \(\kappa \gg 1\)) the **diffusion equation**

\[
\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}
\]

solution for initial condition \(P(x, 0) = \delta(x)\) yields **position distribution** \(P(x, t) = \exp(-\frac{x^2}{4Dt}) / \sqrt{4\pi Dt}\)
Fokker-Planck equations

- for velocity distribution $P(v, t)$ of Langevin dynamics one can derive the Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

stationary solution is $P(v) = \exp\left(-\frac{v^2}{2v_{th}^2}\right)/\sqrt{2\pi v_{th}}$
Fokker-Planck equations

- for velocity distribution $P(v, t)$ of Langevin dynamics one can derive the Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

stationary solution is $P(v) = \exp\left(-\frac{v^2}{2v_{th}^2}\right)/\sqrt{2\pi v_{th}}$

- Fokker-Planck equation for position and velocity distribution $P(x, v, t)$ of Langevin dynamics is the Klein-Kramers equation

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} [vP] + \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

the above two eqns. can be derived from it as special cases.
Experimental results I: mean square displacement

- $msd(t) := < [x(t) - x(0)]^2 > \sim t^\beta$ with $\beta \to 2$ ($t \to 0$) and $\beta \to 1$ ($t \to \infty$) for Brownian motion; $\beta(t) = d \ln msd(t)/d \ln t$

- **solid lines**: (Bayes) fits from our model

\[\begin{array}{c|c|c|c|c}
\text{msd}(t) & \text{data:NHE}^+ & \text{data:NHE}^- & \text{FKK model:NHE}^+ & \text{FKK model:NHE}^- \\
\hline
\text{I} & \text{data:NHE}^+ & \text{data:NHE}^- & \text{FKK model:NHE}^+ & \text{FKK model:NHE}^- \\
\text{II} & \text{data:NHE}^+ & \text{data:NHE}^- & \text{FKK model:NHE}^+ & \text{FKK model:NHE}^- \\
\text{III} & \text{data:NHE}^+ & \text{data:NHE}^- & \text{FKK model:NHE}^+ & \text{FKK model:NHE}^- \\
\end{array} \]

anomalous diffusion if $\beta \neq 1$ ($t \to \infty$): here superdiffusion
Experimental results II: position distribution function

- $P(x, t) \rightarrow \text{Gaussian } (t \rightarrow \infty)$ and kurtosis
- $\kappa(t) := \frac{\langle x^4(t) \rangle}{\langle x^2(t) \rangle^2} \rightarrow 3 \ (t \rightarrow \infty)$ for Brownian motion (green lines, in 1d)
- other solid lines: fits from our model; parameter values as before

⇒ crossover from peaked to broad non-Gaussian distributions
The generalized model

- Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

\[
\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} [vP] + \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P
\]

with probability distribution \(P = P(x, v, t) \), damping term \(\kappa \), thermal velocity \(v_{th}^2 = kT / m \) and Riemann-Liouville fractional derivative of order \(1 - \alpha \)

for \(\alpha = 1 \) Langevin’s theory of Brownian motion recovered
The generalized model

- **Fractional Klein-Kramers equation** (Barkai, Silbey, 2000):

\[
\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x}[vP] + \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P
\]

with probability distribution \(P = P(x, v, t) \), damping term \(\kappa \), thermal velocity \(v_{th}^2 = kT/m \) and Riemann-Liouville fractional derivative of order \(1 - \alpha \) for \(\alpha = 1 \) Langevin’s theory of Brownian motion recovered

- **analytical solutions** for \(msd(t) \) and \(P(x, t) \) can be obtained in terms of special functions (Barkai, Silbey, 2000; Schneider, Wyss, 1989)

- **4 fit parameters** \(v_{th}, \alpha, \kappa \) (plus another one for short-time dynamics)
Possible physical interpretation

- physical meaning of the fractional derivative?

A fractional Klein-Kramers equation can *approximately* be related to a generalized Langevin equation of the type

\[
\dot{v} + \int_0^t dt' \kappa(t - t') v(t') = \sqrt{\zeta} \xi(t)
\]

e.g., Mori, Kubo, 1965/66

with time-dependent friction coefficient \(\kappa(t) \sim t^{-\alpha} \)

cell anomalies might originate from soft glassy behavior of the cytoskeleton gel, where power law exponents are conjectured to be universal (Fabry et al., 2003; Kroy et al., 2008)
Possible biological interpretation

- biological meaning of anomalous cell migration?

Experimental data and theoretical modeling suggest *slower diffusion for small times* while *long-time motion is faster*

Compare with *intermittent optimal search strategies* of foraging animals (Bénichou et al., 2006)

Note: There is current controversy about *Lévy hypothesis* for optimal foraging of organisms (albatross, fruitflies, bumblebees,...)
Fluctuation relations

system evolving from an initial state into a nonequilibrium state; measure pdf $\rho(W_t)$ of entropy production W_t during time t:

$$\ln \frac{\rho(W_t)}{\rho(-W_t)} = W_t$$

 transient fluctuation relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

1. generalizes the Second Law to small noneq. systems
2. yields nonlinear response relations
3. connection with fluctuation dissipation relations (FDR)
Fluctuation relations

system evolving from an initial state into a nonequilibrium state; measure pdf $\rho(W_t)$ of entropy production W_t during time t

$$\ln \frac{\rho(W_t)}{\rho(-W_t)} = W_t$$ \textbf{transient fluctuation relation (TFR)}

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

1. generalizes the \textbf{Second Law} to small noneq. systems
2. yields \textbf{nonlinear response relations}
3. connection with \textbf{fluctuation dissipation relations (FDR)}

\textbf{example:} check the above TFR for Langevin dynamics with constant field F; $W_t = Fx(t)$, $\rho(W_t) \sim \rho(x, t)$ is Gaussian

TFR holds if $<W_t> = <\sigma^2_{W_t} > / 2$ (FDR1)

for Gaussian stochastic process: $\text{FDR2} \Rightarrow \text{FDR1} \Rightarrow \text{TFR}$
An anomalous fluctuation relation

check TFR for the **overdamped generalized Langevin equation**

\[
\dot{x} = F + \xi(t)
\]

with \(< \xi(t)\xi(t') > \sim |t - t'|^{-\beta} \), \(0 < \beta < 1 \): no FDT2

\(\rho(W_t) \) is Gaussian with \(< W_t > \sim t \), \(< \sigma^2_{W_t} > \sim t^{2-\beta} \): no FDT1 and superdiffusion

\[
\ln \frac{\rho(W_t)}{\rho(-W_t)} = C_{\beta} t^{\beta-1} W_t
\]

\(0 < \beta < 1 \)

anomalous TFR

An anomalous fluctuation relation

check TFR for the **overdamped generalized Langevin equation**

\[\dot{x} = F + \xi(t) \]

with \(< \xi(t)\xi(t') > \sim |t - t'|^{-\beta} \), \(0 < \beta < 1 \): **no FDT2**

\(\rho(W_t) \) is Gaussian with \(< W_t > \sim t \), \(< \sigma^2_{W_t} > \sim t^{2-\beta} \): **no FDT1** and superdiffusion

\[
\ln \frac{\rho(W_t)}{\rho(-W_t)} = C_\beta t^{\beta - 1} W_t
\]

\(0 < \beta < 1 \)

anomalous TFR

note: we see this aTFR in experiments on cell migration

Hayashi, Takagi (2007)

experiments on slime mold:

Hayashi, Takagi (2007)

note: we see this aTFR in experiments on cell migration

Dieterich, Chechkin, Schwab, R.K., tbp
Summary

- **Microscopic**
 - Dynamical systems
 - Statistical mechanics

- **Macroscopic**
 - Thermodynamics

- **General theory of nonequilibrium statistical physics**
 - Deterministic transport
 - Thermodynamic properties
 - Fractal SRB measures
 - Infinite measures

- **Microscopic chaos**
 - Ergodic hypothesis
 - Strong
 - Weak

- **Complexity**
 - Normal
 - Anomalous

- **Nonequilibrium conditions**
 - Equilibrium
 - Nonequilibrium steady states
 - Nonequilibrium non-steady states

- Weakly chaotic map
- Anomalous cell migration
- Fluctuation relations
- Conclusions

From normal to anomalous diffusion 3
work performed with:
C.Dellago, A.V.Chechkin, P.Dieterich, P.Gaspard, T.Harayama, P.Howard, G.Knight, N.Korabel, A.Schüring

background information to:
Part 1,2

and for cell migration: Dieterich et al., PNAS 105, 459 (2008)