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Two points of view

Fields transported by turbulent flows

Passive scalar fields
velocity is given and not

modified by the transported field

∂tc + v · ∇c = κ∆c + Fc

Yaglom relation (similar to 4/5-law)

〈δrv(δrc)2〉 = −4/3εcr

Phenomenology very similar to NS

• Cascade towards the small scales
• Finite energy dissipation

• Intermittency of the small scales

Goals: understanding dynamics and statistics as a function of the
properties of v, universality?

Active Scalar Turbulence – p.3/13

Euler

Lagrange
Aim: understanding properties of 
trajectories X(t) given u(x,t)

Aim: understanding properties of 
fields θ(x,t) given u(x,t)



The two descriptions are connected

tim
e

(x,t)

y(0;x,t|η) z

Studying particle trajectories is thus relevant also to 
understand the transport of fields

we will focus on particle motion



Two kind of particles
Tracers

(Inertial) Particles

Two kinds of particlesTwo kinds of particles
•• same density of the fluid same density of the fluid
•• point-like point-like
•• same velocity of the underlying same velocity of the underlying
  fluid velocity  fluid velocity

Tracers= same as fluid elementsTracers= same as fluid elements

•• density different from that of the fluid  density different from that of the fluid 
•• finite size finite size
•• friction (Stokes) and other forces should be included friction (Stokes) and other forces should be included
•• shape may be important (we assume spherical shape) shape may be important (we assume spherical shape)
•• velocity mismatch with that of the  velocity mismatch with that of the fluid fluid 

Simplified dynamics under Simplified dynamics under 
some assumptionssome assumptions

Inertial particles= mass impurities of finite sizeInertial particles= mass impurities of finite size

!same density of the fluid
!point-like
!move with the same velocity of the fluid
!essentially they move like fluid elements

!density different from the fluid
!finite size
!inertia & other forces are acting
   velocity different from the fluid one

We shall only consider passive particles: i.e. the velocity field is 
not modified by their presence



Outline
(I)  Single particle motion (absolute dispersion) 

conditions for standard & anomalous diffusion,  examples in 
simple laminar flows 

(II) Two particle motion (relative dispersion)    
focus on relative dispersion in laminar & turbulent flows, 
relative dispersion at changing the scale & characterization of 
non-asymptotic regimes

(III) Clustering of inertial particles in turbulence 
characterization of clustering & preferential concentration for 
particles which do not follow fluid motion

(I) & (II) focus on tracers



Single particle dynamics
thermal noise prescribed fluid velocity

Lagrangian velocity

We are interested in the long time behavior of 
and how it depends on the properties of

* Typically we expect standard diffusive behaviors
* DE effective diffusion coefficient, DE[u]>>D0  

*Which properties must be present to have non-standard behaviors?
*effective macroscopic description of transport?



Green-Kubo-Taylor relation

Lagrangian velocity 
correlation function

|||

Everything is written in the Lagrangian velocity correlation function



Green-Kubo-Taylor formula
conditions for standard & anomalous diffusione

To understand absolute dispersion we just need to 
know the velocity autocorrelation function

 Standard diffusion

 anomalous diffusion
 superdiffusion

 subdiffusion



Standard diffusion
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Standard Diffusion
if diffusive behavior 
at large t & ΔX 

Effective macroscopic description

DE>>D0 will depend non trivially on u and D0

Various techniques to derive DE in periodic or random velocity fields 
based on perturbative expansions -Multiscale methods- 

Idea: slow (XM,TM) & fast (x,t) variables

It comes an effective equation for 
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Bensoussan, Lions & Papanicolaou, Asymptotic Analysis for Periodic Structures (1978)
Biferale, Crisanti, Vergassola & Vulpiani PoF 7, 2725 (1995)
Majda & Kramer Phys. Rep. 314, 237 (1999)

(1)



Non-Standard diffusion
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anomalous superdiffusion anomalous subdiffusion

long negative tailslong positive tails

if D0=0 impossible in 
incompressible flows



Physical origin of long correlations?

  Long spatial correlations of the velocity field    

We will see these two mechanisms with some example

diffusive
superdiffusive

 The velocity field has finite correlation length but particle dynamics 
generate very long Lagrangian velocity correlations    

time independent flows:Avellaneda & Majda, Commun. Math. Phys. 138,  339 (1991)
time dependent flows:   Avellaneda  &Vergassola, Phys. Rev. E 52, 3249 (1995)



 Random shear flows
(strong spatial correlations)

V=const U(y) random & gaussian Power spectrum

V=0 D0>0   G. Matheron & G. de Marsily, Wat. Resour. Res. 16, 901 (1980)
V!0 D0=0  F.W. Elliott, D.J. Horntrop & A. Majda, Chaos 7, 39 (1997) 

Absolute dispersion in the x-direction?

spatial correlation function



Random shear: D0=0 V!0
to simplify

At large times

temporal correlation spatial correlation

ϒ <(ΔY(t))2> behavior

ϒ ≥1 t0 trapping

0< ϒ <1 t1-ϒ subdiffusion

ϒ =0 t diffusion

ϒ <0 t1-ϒ superdiffusion

Elliott, Horntrop & Majda, Chaos 7, 39 (1997) 
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Analytically solvable

Random shear: D0=0 V!0

Elliott, Horntrop & Majda, Chaos 7, 39 (1997) 

in incompressible flows trapping & subdiffusion
do not happen when D0!0



Random shear: D0!0 V=0

Matheron &  de Marsily, Wat. Resour. Res. 16, 901 (1980)

temporal correlation spatial correlation

 ϒ>1     standard
-1< ϒ<1 anomalous



Time dependent Cellular flows
(Lagrangian persistency)

December 14, 2009 11:7 World Scientific Book - 9.75in x 6.5in MAINBOOK

52 Chaos: from simple models to complex systems

Fig. B4.1 Two-dimensional sketch of the steady Raleigh-Bénard convection state.

density is denoted by ρ0 and α is the thermal dilatation coefficient, relating the density at

temperatures T and T0 by ρ(T ) = ρ(T0)[1−α(T −T0)], which is the linear approximation

valid for not too high temperature differences.

Experiments and analytical computations show that if Ra ≤ Rac conduction solution

(B.4.1) is stable. For Ra > Rac the steady convection state (Fig. B4.1) becomes stable.

However, if Ra exceeds Rac by a sufficiently large amount the steady convection state

becomes also unstable and the fluid is characterized by a rather irregular and apparently

unpredictable convective motion. Being crucial for many phenomena taking place in the

atmosphere, in stars or Earth magmatic mantle, since Lord Rayleigh, many efforts were

done to understand the origin of such convective irregular motions.

If the temperature difference |TB − TU | is not too large the PDEs for the temperature

and the velocity can be written within the Boussinesq approximation giving rise to the

following equations [Monin and Yaglom (1975)]

∂tu + u · ∇u = −∇p

ρ0
+ ν∆u + gαΘ (B.4.3)

∂tΘ + u · ∇Θ = κ∆Θ +
TU − TB

H
uz , (B.4.4)

supplemented by the incompressibility condition ∇ · u = 0, which is still making sense

if the density variations are small; ∆ = ∇ · ∇ denotes the Laplacian. The first is the

Navier-Stokes equation where p is the pressure and the last term is the buoyancy force.

The second is the advection diffusion equation for the deviation Θ of the temperature

from the conduction state (B.4.1), i.e. denoting the position with r = (x, y, z), Θ(r, t) =

T (r, t)− TB + (TB − TU )z/H. The Rayleigh number (B.4.2) measures the ratio between

the nonlinear and Boussinesq terms, which tend to destabilize the thermal gradient, and

the viscous/dissipative ones, which would like to maintain it. Such equations are far too

complicated to allow an easy identification of the mechanism at the basis of the irregular

behaviors observed in experiments.

A first simplification is to consider the two-dimensional problem, i.e. on the (x, z)-plane

as in Fig. B4.1. In such a conditions the fluid motion is described by the so-called stream-

function ψ(r, t) = ψ(x, z, t) (now we call r = (x, z)) defined by

ux =
∂ψ
∂z

and uz = −∂ψ
∂x

.

The above equations ensure fluid incompressibility. Equations (B.4.3)-(B.4.4) can thus

be rewritten in two-dimensions in terms of ψ. Already Lord Rayleigh found solutions of

convection->

2d model (Solomon & Gollub PRA 38, 6280 (1988))

u has a single mode no spatial persistency 

vorticity



Lagrangian chaos
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Lagrangian motion is 
regular

time periodic flow: Lagrangian chaos induces motion along x even if D0=0
Lagrangian velocity is irregular even if eulerian velocity is regular
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Resonances (synchronization) between particle 
circulation time (Tc) & cell oscillation can cause 
persistence of the motion in the same direction 
(ballistic channel) for long time causing long tail 
in the velocity correlation responsible for 
anomalous diffusion when D0=0 

Long tails due to non-trivial Lagrangian 
motion

For D0!0 synchronization is imperfect and 
asymptotically diffusion is standard but DE 
depends as a power law on D0

 

Castiglione et al J.Phys. A 31, 7197 (1998); 
Castiglione et al. Physica D 134, 75 (1999)
Solomon et al. Physica D 157, 40 (2001)



“Strong” anomalous diffusion
diffusion
superdiffusion

What about higher moments?

for pure diffusion 
or superdiffusion

when “strong”
anomalous diffusion

the core 
rescale
with <Δ2(t)> 

the tails 
not rescale
with <Δ2(t)> 

signature of
persistent 
ballistic motion

Castiglione et al. Physica D 134, 75 (1999)
Andersen et al Europ. Phys. J. B 18, 447 (2000)



Anomalous diffusion in experiments
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Figure 1: A sketch of the rotating annulus; the rotation rate is about 1Hz. Flow is
forced by pumping water in through the ring of holes marked by I and withdrawing
the same volume through the other ring marked O. As a consequence of the strong
Coriolis forced acting on the radial flow between these concentric rings there is an
azimuthal flow around the annulus. The experiment is viewed from above using a
video camera. Figure courtesy of Eric Weeks.
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Fig. 10. (a) Sticking-time and (b) flight-time probability 
distribution functions for particles in the time-periodic flow. 
The distribution functions are described by power laws with 
decay exponents v = 1.6 --- 0.3 a n d / . t  = 2.3 +- 0.2,  respective- 
ly. 

power law: PL ~ 0 -n ,  with , / =  2.05 +- 0.30; see 
Fig. 11. The exponents for the flight length and 
time PDFs are the same (within experimental 
uncertainty) because the flight lengths A0 and 
times At are linearly related, as shown in Fig. 12. 
There is a slight curvature for small At, caused 
by decreases in the azimuthal velocity when 
tracers pass near hyperbolic points. Since flights 
begin and end with tracers near hyperbolic 
points, this effect is most prominent for short 
flights. 

6.3. Chaotic flow 

One 7-hour experimental run was performed 
in the chaotic regime. Plots of O(t) for particles in 
the chaotic velocity field still reveal well-defined 
sticking events and flights, as illustrated in Fig. 
13. A scatter plot of AO(t) for an ensemble of 
particles (Fig. 14) is similar to that for the time- 
periodic case (Fig. 8), although the flights and 
sticking events do not dominate the transport as 
much (i.e. the concentrations along the horizon- 

10 ° 
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10 2 " • 

10-3 . . . . . . . .  I , , , 

l 0 ° 10 I 

A0 (rad) 
Fig. 11. Flight length probability distribution in the time- 
periodic flow, showing a power law decay with exponent 
~7 = 2.05 -+ 0.30. 

tal axis and diagonals are not as high). The slope 
3' does not form a plateau at 1.65 (see Fig. 15); 
rather, it continues to drop, forming what might 
be the beginning of a plateau 3' = 1.55 + 0.25 for 
t > 80 s. We do not have enough long trajectories 
to extend the graph beyond t ~ 500 s, so it cannot 
be determined if the asymptotic behavior is 
superdiffusive. 
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a p p r o x i m a t e l y  l i n e a r  r e l a t i o n s h i p  s h o w s  that  f l ights  h a v e  
r o u g h l y  c o n s t a n t  v e l o c i t y .  T h e  h o r i z o n t a l  b a n d s  d i f fer  in  
s p a c i n g  b y  ~ r / 3 ,  w h i c h  is t h e  a n g u l a r  s p a c i n g  b e t w e e n  
v o r t i c e s .  

Rotating tank
(water+glycerol)
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Figure 3: Trajectories of three tracer particles in the flow shown in figure 2. The
beginning of each trajectory is indicated by a triangle and the end by with a circle.
In (b) the particle spends most of its life trapped in a single vortex. However, this
vortex wobbles erratically because the flow is chaotic. In parts (a) and (c) the
particles experience several episodes of trapping within a vortex and flight around
the tank in the jet. Figure courtesy of Eric Weeks.
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Figure 4: Angular displacement, θ(t) for the trajectories in figure 3. There is an
obvious distinction between the flights and the sticking events. The small oscil-
lations during the sticking events correspond to particle motion within a vortex.
Figure courtesy of Eric Weeks.
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typical trajectories 
(trapping+ballistic flights)

superdiffusion

Probability duration
trapping & flights

Solomon, Weeks & Swinney, PRL 71, 3975 (1993)

The simple experiment of the rotating annulus, shown in Fig. 2, allows to illus-
trate the differences between normal and anomalous diffusion (Solomon, Weeks & Swinney,
1994; Weeks, Urbach & Swinney, 1996). Water is pumped into the annulus
through a ring of holes marked with I and pumped out through a second
ring of holes marked with O. The annulus is completely filled with water and
rotates as a rigid body (the inner and outer walls rotate together). The pump-
ing of the fluid generates a turbulent flow in the annulus. A camera on top of
the annulus records the formation of the turbulent eddies inside the rotating
annulus and allows to track seeds of different tracer particles injected into the
fluid and to monitor their orbits (see Fig. 3).

Fig. 3. (a) The formation of eddies inside the rotating annulus, as recorded by the
camera (left panel), and (b) typical orbits of tracer particles inside the annulus
(right panel).

In the case of normal diffusion, which occurs mainly in fluids close to equilib-
rium, the particle trajectories are characterized by irregular, but small steps,
which makes trajectories look irregular but still homogeneous (see Fig. 1). The
trajectories shown in Fig. 3 for the highly turbulent rotating annulus, which
is far away from equilibrium, show different types of orbits, with two basic
new characteristic, there is “trapping” of particles inside the eddies, where
particles stay for ’unusually’ long times in a relatively small spatial area, and
there are ”long flights” of particles, where particles are carried in one step
over large distances, in some cases almost through the entire system.

4.2 The Scaling of ”Anomalous” Trajectories

Normal diffusion has as basic characteristic the linear scaling of the mean
square displacement of the particles with time, 〈r2〉 ∼ Dt. Many different
experiments though, including the one shown in the previous section, reveal
deviations from normal diffusion, in that diffusion is either faster or slower,
and which is termed anomalous diffusion. A useful characterization of the
diffusion process is again through the scaling of the mean square displacement

15



Modelization of anomalous diffusion

Long correlations can be modeled with  Levy Walks 
motion in the same direction for long times 

T has Levy distribution

Radons, Klages, Sokolov “Anomalous transport & applications (2008)
Schlesinger, West & Klafter, PRL 58, 1100 (1987).

V has Levy distribution

can be modeled as a Levy Flights
 arbitrarily large velocities (physically unrealistic)



Macroscopic description

Time/Space scale separation
diffusion                          macroscopic description 

NO Time/Space scale separation
anomalous diffusion               macroscopic description 

fractional diffusion equation?

“strong” anomalous diffusion      macroscopic description 
???still unclear???



Conclusions
In the presence of time scale separation motion in 
incompressible fluids is diffusive, effective macroscopic 
description in terms of Fokker-Planck equation with 
renormalized coefficients

Anomalous diffusion is due to long (power law) tails of the  
Lagrangian velocity correlation function due to:

Strong/persistent spatial correlations 

Persistent Lagrangian correlations

Models of anomalous behaviors can be obtained in terms 
of Levy Walks which are more appropriate than Levy 
Flights

Effective macroscopic description of anomalous 
diffusion is an open issue, especially in the presence of 
“strong” anomalous behaviors
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