Transport of tracers \& particles in fluid flows

Massimo Cencini
Istituto dei Sistemi Complessi CNR, Rome
MASSIMO.CENCINI@CNR.IT

Conference/School on
Anomalous Transport: from Billiards to Nanosystems
Sperlonga Sept. 2010

transport in fluids flows

Biology \& environment

Pollution

transport in fluids flows

transport in fluids flows

Enhanced Mixing

design efficient mixers in microfluids

Two points of view

$$
\frac{d \boldsymbol{X}}{d t}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)
$$

Aim: understanding properties of

Lagrange

 trajectories $\mathbf{X}(t)$ given $\mathbf{u}(\mathbf{x}, \boldsymbol{t})$$$
\partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta=D_{0} \Delta \theta
$$

Aim: understanding properties of fields $\theta(\mathbf{x}, \mathrm{t})$ given $\mathbf{u}(\mathbf{x}, \mathrm{t})$

The two descriptions are connected

$$
\begin{aligned}
& \partial_{t} \theta+\boldsymbol{u} \cdot \nabla \theta=D_{0} \Delta \theta \\
& \frac{d \theta}{d t}=0 \\
& \begin{array}{l}
\frac{d \theta}{d t}=0 \\
\frac{d \boldsymbol{y}}{d t}=\boldsymbol{u}(\boldsymbol{y}, t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& p(\boldsymbol{z}, 0 \mid \boldsymbol{x}, t)=\langle\delta(\boldsymbol{z}-\boldsymbol{y}(0 ; \boldsymbol{x}, t \mid \boldsymbol{\eta}))\rangle_{\eta} \\
& \theta(\boldsymbol{x}, t)=\int d \boldsymbol{z} \theta(\boldsymbol{z}, 0) p(\boldsymbol{z}, 0 \mid \boldsymbol{x}, t)
\end{aligned}
$$

Studying particle trajectories is thus relevant also to understand the transport of fields

Two kind of particles

Tracers

* same density of the fluid $\rho_{p}=\rho_{f}$
*point-like

$$
\dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}, t)=\boldsymbol{v}(t)
$$

* move with the same velocity of the fluid *essentially they move like fluid elements

(Inertial) Particles

* density different from the fluid $\rho_{p} \neq \rho_{f}$ * finite size
*inertia \& other forces are acting

velocity different from the fluid one $\dot{\boldsymbol{X}}=\boldsymbol{V}$

$$
\dot{\boldsymbol{V}}=\boldsymbol{F}\left(\boldsymbol{V}, \boldsymbol{u}(\boldsymbol{X}, t), \rho_{p}, a, \nu, \ldots\right)
$$

We shall only consider passive particles: i.e. the velocity field is not modified by their presence

Outline

(I) Single particle motion (absolute dispersion) conditions for standard \& anomalous diffusion, examples in simple laminar flows
(II) Two particle motion (relative dispersion) focus on relative dispersion in laminar \& turbulent flows, relative dispersion at changing the scale \& characterization of non-asymptotic regimes
(III) Clustering of inertial particles in turbulence characterization of clustering \& preferential concentration for particles which do not follow fluid motion

(I) \& (II) focus on tracers

Single particle dynamics

$$
\begin{aligned}
& \text { prescribed fluid velocity } \\
& \qquad \dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)=\underset{\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i}}{\boldsymbol{V}(t)} \\
& \text { Lagrangian velocity }
\end{aligned}
$$

We are interested in the long time behavior of $\Delta(t)=|X(t)-X(0)|$ and how it depends on the properties of $\boldsymbol{u}(\boldsymbol{x}, t) \quad \nabla \cdot \boldsymbol{u}=0$

* Typically we expect standard diffusive behaviors $\left\langle\Delta^{2}(t)\right\rangle \sim 2 D^{E} t$ * D^{E} effective diffusion coefficient, $D^{E}[u] \gg D_{0}$
*Which properties must be present to have non-standard behaviors? *effective macroscopic description of transport?

Green-Kubo-Taylor relation

$$
\begin{aligned}
& \dot{\boldsymbol{X}}=\boldsymbol{V}(t) \Leftrightarrow \boldsymbol{X}(t)=\int_{0}^{t} d s \boldsymbol{V}(s) \quad \boldsymbol{X}(0)=0 \\
& \frac{1}{2} \frac{d}{d t}\left\langle X^{2}(t)\right\rangle=\langle X(t) V(t)\rangle=\int_{0}^{t} d s\langle V(s) V(t)\rangle=\int_{0}^{t} d \tau C(\tau)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d\left\langle\Delta^{2}(t)\right\rangle}{d t} & =2 \int_{0}^{t} d s C(s) \\
\left\langle\Delta^{2}(t)\right\rangle & =2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime} C\left(s^{\prime}\right) \\
& =2 t \int_{0}^{t} d s C(s)-2 \int_{0}^{t} d s s C(s)
\end{aligned}
$$

Everything is written in the Lagrangian velocity correlation function

Green-Kubo-Taylor formula

conditions for standard \& anomalous diffusione

$$
\frac{d}{d t}\left\langle(\Delta X(t))^{2}\right\rangle=2 \int_{0}^{t} d s C(s) \quad\left\langle(\Delta X(t))^{2}\right\rangle=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime} C\left(s^{\prime}\right)=2 \int_{0}^{t} d s(t-s) C(s)
$$

To understand absolute dispersion we just need to know the velocity autocorrelation function $C(t)=\langle V(0) V(t)\rangle$

9 Standard diffusion $\int_{0}^{\infty} d s C(s)=D<\infty \quad\left\langle(\Delta X(t))^{2}\right\rangle \propto 2 D t$
Q anomalous diffusion
Q superdiffusion $\int_{0}^{\infty} d s C(s)=\infty$

$$
\left\langle(\Delta X(t))^{2}\right\rangle \propto t^{\alpha} \quad \alpha>1
$$

Q subdiffusion

$$
\int_{0}^{\infty} d s C(s)=0
$$

$$
\alpha<1
$$

Standard diffusion

$$
\frac{d}{d t}\left\langle(\Delta X(t))^{2}\right\rangle=2 \int_{0}^{t} d s C(s)=2 \int_{0}^{t}\langle V(s) V(0)\rangle= \begin{cases}2 t\left\langle V^{2}\right\rangle & t \ll \tau_{c} \\ 2\left\langle V^{2}\right\rangle \tau_{c} & t \rightarrow \infty\end{cases}
$$

$\left\langle(\Delta X(t))^{2}\right\rangle=\left\{\begin{array}{ll}t^{2}\left\langle V^{2}\right\rangle & t \ll \tau_{c} \\ 2\left\langle V^{2}\right\rangle \tau_{c} t=2 D^{E} t & t \rightarrow \infty\end{array} \quad\right.$ essentially CLT holds

Standard Diffusion

$$
\partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta=D_{0} \Delta \theta
$$

Effective macroscopic description

$$
\begin{aligned}
& \Theta\left(\boldsymbol{X}_{M}, T_{M}\right)=\langle\theta(\boldsymbol{x}, t)\rangle_{\epsilon_{C}, T_{e}} \\
& \partial_{T_{M}} \Theta=D^{E} \Delta_{X_{M}} \Theta
\end{aligned}
$$

$$
\dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)=\boldsymbol{V}(t)
$$

if diffusive behavior at large $\dagger \& \Delta X$

$$
\left\langle(\Delta X(t))^{2}\right\rangle \sim 2 D^{E} t
$$

$D^{E} \gg D_{0}$ will depend non trivially on u and D_{0}

Various techniques to derive D^{E} in periodic or random velocity fields based on perturbative expansions -Multiscale methods-

Idea: slow $\left(X_{M}, T_{M}\right)$ \& fast (x, t) variables
$\partial_{t}=\partial_{t}+\epsilon \partial_{T_{M}} \quad \partial_{x}=\partial_{x}+\epsilon \partial_{X_{M}}$

$$
\theta\left(x, t ; X_{M}, T_{M}\right)=\theta^{(0)}+\epsilon \theta^{(1)}+\ldots
$$

It comes an effective equation for $\theta^{0}\left(x, t ; X_{M}, T_{M}\right)=\theta^{(0)}\left(X_{M}, T_{M}\right)=\Theta\left(X_{M}, T_{M}\right)$

Non-Standard diffusion

anomalous superdiffusion

$$
\int_{0}^{t \rightarrow \infty} d s C(s)=\infty
$$

long positive tails

$$
\begin{gathered}
C(t) \sim t^{-\eta} \quad 0<\eta<1 \\
\left\langle\Delta^{2}(t)\right\rangle=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime} C\left(s^{\prime}\right) \sim t^{\alpha}=t^{2-\eta} \\
\quad \alpha=2-\eta>1
\end{gathered}
$$

anomalous subdiffusion

$$
\int_{0}^{t \rightarrow \infty} d s C(s)=0
$$

long negative tails

$$
C(t) \sim-t^{-\eta} \quad 1<\eta<2
$$

$\left\langle\Delta^{2}(t)\right\rangle=2 t \int_{0}^{t} d s \not\left\langle(s)-2 \int_{0}^{t} d s s C(s) \sim t^{\alpha}=t^{2-\eta}\right.$

$$
\alpha=2-\eta<1
$$

Physical origin of long correlations?

(Long spatial correlations of the velocity field

$$
\int d \boldsymbol{k} \frac{\left.\langle | \boldsymbol{u}(\boldsymbol{k})\right|^{2}}{k^{2}}=\int d k \frac{S(k)}{k^{2}} \approx \ell_{c}^{2}\left\langle u^{2}\right\rangle= \begin{cases}<\infty & \text { diffusive } \\ \infty & \text { superdiffusive }\end{cases}
$$

time independent flows:Avellaneda \& Majda, Commun. Math. Phys. 138, 339 (1991) time dependent flows: Avellaneda \&Vergassola, Phys. Rev. E 52, 3249 (1995)

The velocity field has finite correlation length but particle dynamics generate very long Lagrangian velocity correlations

Random shear flows
 (strong spatial correlations)

$\dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)$
$\boldsymbol{u}(\boldsymbol{x}, t)=\binom{U(y)}{V}$

$V=$ const $U(y)$ random \& gaussian

Power spectrum $\left.S(k)=\left.\langle | \hat{U}(k)\right|^{2}\right\rangle$

$$
\begin{aligned}
& \quad \begin{array}{r}
\text { spatial correlation function }
\end{array} \quad S(k)= \\
& \langle U(y)\rangle=0 \quad\left\langle U\left(y^{\prime}\right) U\left(y^{\prime}+y\right)\right\rangle=R(|y|)=\int_{-\infty}^{\infty} d k \cos (k y) S(k) \\
& S(k) \sim k^{\gamma} \quad k \ll 1 \Longrightarrow R(x) \sim x^{-(1+\gamma)} \quad x \gg 1
\end{aligned}
$$

V=0 Do>0 G. Matheron \& G. de Marsily, Wat. Resour. Res. 16, 901 (1980) V $\neq 0 \mathrm{D}_{0}=0$ F.W. Elliott, D.J. Horntrop \& A. Majda, Chaos 7, 39 (1997)

Absolute dispersion in the x-direction?

Random shear: $D_{0}=0 \quad V \neq 0$

to simplify
$X(0)=Y(0)=0$
temporal correlation

$$
\begin{aligned}
& \text { rrelation }\left\langle X^{2}(t)\right\rangle=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime}\left\langle U(Y(s)) U\left(Y\left(s^{\prime}\right)\right\rangle \quad\right. \text { spatial co } \\
& C\left(s-s^{\prime}\right)=\left\langle U(Y(s)) U\left(Y\left(s^{\prime}\right)\right\rangle=R\left(Y(s)-Y\left(s^{\prime}\right)\right)=R\left(V\left(s-s^{\prime}\right)\right)\right.
\end{aligned}
$$

spatial correlation

At large times
$C(t)=R(V t)=R(Y) \sim Y^{-(1+\gamma)} \sim t^{-(1+\gamma)}$

Elliott, Horntrop \& Majda, Chaos 7, 39 (1997)

Y		behavior
$r \geq 1$	t^{0}	trapping
$0<Y<1$	$t^{1-\gamma}$	subdiffusion
$\mathrm{Y}=0$	t	diffusion
Y <0	$t^{1-\gamma}$	superdiffusion

Random shear: $D_{0}=0 \quad V \neq 0$

$$
\begin{aligned}
& \left\langle X^{2}(t)\right\rangle=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime}\left\langle U(Y(s)) U\left(Y\left(s^{\prime}\right)\right)\right\rangle= \\
& 2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime} R\left(V\left|s-s^{\prime}\right|\right)=\frac{4}{V^{2}} \int_{0}^{\infty}(1-\cos (k V t))\left(\frac{S(k)}{k^{2}} d k\right. \\
& S(k)=|k|^{\gamma} \exp (-\alpha|k|) \\
& \text { Analytically solvable }
\end{aligned}
$$

$\left\langle X^{2}(t)\right\rangle=4 \frac{\Gamma(\gamma-1)}{V^{2}}\left[\alpha^{1-\gamma}-\left(\alpha^{2}+(V t)^{2}\right)^{(1-\gamma) / 2} \cos \left[(1-\gamma) \arctan \left(\frac{V t}{\alpha}\right)\right]\right]$
$Y=1$ trapping $\left\langle X^{2}(t)\right\rangle=\frac{2}{V^{2}} \ln \left(1+\frac{(V t)^{2}}{\alpha^{2}}\right)$ in incompressible flows trapping \& subdiffusion do not happen when $D_{0} \neq 0$

Random shear: $D_{0} \neq 0 \mathrm{~V}=0$

$$
\begin{aligned}
& \dot{X}=U(Y(t))+\sqrt{2 D_{0}} \eta_{x}(t) \rightarrow X(t)=\int_{0}^{t} d s U(Y(s))+\sqrt{2 D_{0}} \int_{0}^{t} d s \eta_{x}(s) \\
& \dot{Y}=\sqrt{2 D_{0}} \eta_{y}(t) \rightarrow Y(t)=\sqrt{2 D_{0}} \int_{0}^{t} d s \eta_{y}(s)
\end{aligned}
$$

temporal correlation

$$
\left\langle X^{2}(t)\right\rangle=2 \int_{0}^{t} d s \int_{0}^{s} d s^{\prime}\left\langle U(Y(s)) U\left(Y\left(s^{\prime}\right)\right\rangle \quad\right. \text { spatial correlation }
$$

$C\left(s-s^{\prime}\right)=\left\langle U\left(Y(s)-Y\left(s^{\prime}\right)\right\rangle=R\left(Y(s)-Y\left(s^{\prime}\right)\right) \approx R\left(\sqrt{2 D_{0}\left(s-s^{\prime}\right)}\right)\right.$

$$
S(k) \sim k^{\gamma} \Longrightarrow R(y) \sim y^{-(1+\gamma)}
$$

$C(t) \approx R\left(\sqrt{2 D_{0} t}\right) \approx\left(D_{0} t\right)^{-(1+\gamma) / 2} \square\left\langle X^{2}(t)\right\rangle \sim t^{2-\frac{(1+\gamma)}{2}}=t^{\frac{3-\gamma}{2}}$
$D^{E}=\frac{\left\langle X^{2}(t)\right\rangle}{2 t}=D_{0}+\frac{1}{D_{0}} \int d k \frac{S(k)}{k^{2}} \approx \int d k k^{\gamma-2}\left\{\begin{array}{lcc}<\infty & r>1 & \text { standard } \\ =\infty & -1< & \gamma<1\end{array}\right.$ anomalous

Matheron \& de Marsily, Wat. Resour. Res. 16, 901 (1980)

Time dependent Cellular flows (Lagrangian persistency)


```
2d model (Solomon \& Gollub PRA 38, 6280 (1988))
vorticity
\[
\begin{gathered}
\psi(x, y, t)=\psi_{0} \sin (x+B \sin (\omega t)) \sin (y) \\
u_{x}=\quad \partial_{y} \psi=\psi_{0} \sin (x+B \sin (\omega t)) \cos (y) \\
u_{y}=-\partial_{x} \psi=-\psi_{0} \cos (x+B \sin (\omega t)) \sin (y) \\
\dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)
\end{gathered}
\]
```

u has a single mode no spatial persistency

Lagrangian chaos

$$
\begin{aligned}
& u_{x}=\partial_{y} \psi=\psi_{0} \sin (x+B \sin (\omega t)) \cos (y) \\
& u_{y}=-\partial_{x} \psi=-\psi_{0} \cos (x+B \sin (\omega t)) \sin (y)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\boldsymbol{X}}(t)=\boldsymbol{u}(\boldsymbol{X}(t), t)=\boldsymbol{V}(t) \\
& D_{0}=0
\end{aligned}
$$

$\omega=0 \quad$ steady flow/ particles cannot escape the vortex

Lagrangian motion is regular
time periodic flow: Lagrangian chaos induces motion along x even if $D_{0}=0$ Lagrangian velocity is irregular even if eulerian velocity is regular

$\omega \neq 0$

"Strong" anomalous diffusion

$$
\left\langle\Delta^{2}(t)\right\rangle \sim t^{\alpha} \quad \begin{aligned}
& \alpha=1 \\
& \alpha>1
\end{aligned} \begin{aligned}
& \text { diffusion } \\
& \text { superdiffusion }
\end{aligned}
$$

What about higher moments? $\left\langle\Delta^{q}(t)\right\rangle \sim t^{q \nu(q)}$
for pure diffusion or superdiffusion

$$
\nu(q)=\frac{\alpha}{2}
$$

$P(\Delta, t)=t^{-\frac{\alpha}{2}} F\left(\Delta t^{-\frac{\alpha}{2}}\right) \quad P(\Delta, t) \not \approx t^{-\frac{\alpha}{2}} F\left(\Delta t^{-\frac{\alpha}{2}}\right)$

$$
q \nu(q) \simeq \begin{cases}\frac{\alpha}{2} q & q<q_{c} \\ q-c & q>q_{c}\end{cases}
$$

when "strong" anomalous diffusion

Anomalous diffusion in experiments

Solomon, Weeks \& Swinney, PRL 71, 3975 (1993)

Modelization of anomalous diffusion

$$
\begin{aligned}
& \int d \boldsymbol{k} \frac{\left.\langle | \boldsymbol{u}(\boldsymbol{k})\right|^{2}}{k^{2}}=\int d k \frac{S(k)}{k^{2}} \approx \ell_{c}^{2}\left\langle u^{2}\right\rangle=\infty \\
& D^{E}=\left\langle V^{2}\right\rangle \tau_{c}=\infty
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline\left\langle u^{2}\right\rangle \rightarrow \infty \\
\left\langle V^{2}\right\rangle \rightarrow \infty \\
\hline
\end{array}
$$

can be modeled as a Levy Flights
$X(t+1)=X(t)+V(t) \quad \vee$ has Levy distribution $\quad P(V) \sim V^{-\gamma}$

$\ell_{c} \rightarrow \infty$
$\tau_{c} \rightarrow \infty$

Long correlations can be modeled with Levy Walks motion in the same direction for long times

$$
\begin{gathered}
X(t)=X(t-T)+V T \\
P(V)= \pm V_{0} \quad \text { Prob }=1 / 2
\end{gathered}
$$

T has Levy distribution $\quad P(T) \sim T^{-\gamma}$
Schlesinger, West \& Klafter, PRL 58, 1100 (1987).
Radons, Klages, Sokolov "Anomalous transport \& applications (2008)

Macroscopic description

$\dot{\boldsymbol{X}}=\boldsymbol{u}(\boldsymbol{X}(t), t)+\sqrt{2 D_{0}} \boldsymbol{\eta}(t)=\boldsymbol{V}(t) \quad \partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta=D_{0} \Delta \theta$
Time/Space scale separation $\int_{0}^{\infty} d s C(s)=\left\langle V^{2}\right\rangle \tau_{c}=D^{E}=$ finite
diffusion
$\left\langle(\Delta X(t))^{2}\right\rangle \sim 2 D^{E} t$
macroscopic description
$\partial_{T_{M}} \Theta=D^{E} \Delta_{X_{M}} \Theta$

NO Time/Space scale separation $\quad \int_{0}^{\infty}{ }_{d s C(s)}=\infty$
anomalous diffusion
$\left\langle(\Delta X(t))^{q}\right\rangle \sim t^{q \nu(q)} \quad \nu(q)=\frac{\alpha}{2}$
"strong" anomalous diffusion $\left\langle(\Delta X(t))^{q}\right\rangle \sim t^{q \nu(q)} \quad \nu(q) \neq \frac{\alpha}{2}$
macroscopic description
fractional diffusion equation?
macroscopic description ???still unclear???

Conclusions

B In the presence of time scale separation motion in incompressible fluids is diffusive, effective macroscopic description in terms of Fokker-Planck equation with renormalized coefficients

* Anomalous diffusion is due to long (power law) tails of the Lagrangian velocity correlation function due to:
© Strong/persistent spatial correlations
© Persistent Lagrangian correlations
* Models of anomalous behaviors can be obtained in terms of Levy Walks which are more appropriate than Levy Flights
* Effective macroscopic description of anomalous diffusion is an open issue, especially in the presence of "strong" anomalous behaviors

Some references

General Reviews:

Bouchaud \& Georges Phys. Rep. 195, 127 (1990) emphasis on statistical mechanics Majda \& Kramers Phys. Rep. 314, 237 (1999) review on diffusion standard \& nonstandard in fluid flows

Multiscale methods

Bensoussan, Lions \& Papanicolaou, Asymptotic Analysis for Periodic Structures (1978)
Biferale, Crisanti, Vergassola \& Vulpiani_PoF 7, 2725 (1995)

Random shears:

G. Matheron \& G. de Marsily, Wat. Resour. Res. 16, 901 (1980) F.W. Elliott, D.J. Horntrop \& A. Majda, Chaos 7, 39 (1997)

Anomalous diffusion / Levy walks / Lagrangian Chaos

Castiglione Mazzino, Muratore-Ginanneschi \& Vulpiani Physica D 134, 75 (1999)
Andersen, Castiglione, Mazzino, Vulpiani The Europ. Phys. J B 18, 447 (2000)
Solomon, Weeks \& Swinney, PRL 71, 3975 (1993)
Solomon, Lee \& Fogleman Physica D 157, 40 (2001)

