Transport of tracers & particles in fluid flows

Massimo Cencini

Istituto dei Sistemi Complessi CNR, Rome MASSIMO.CENCINI@CNR.IT

Conference/School on Anomalous Transport: from Billiards to Nanosystems Sperlonga Sept. 2010

transport in fluids flows

Biology & environment

Pollution

transport in fluids flows

transport in fluids flows

Enhanced Mixing

Two points of view

$$\frac{d\boldsymbol{X}}{dt} = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2D_0}\boldsymbol{\eta}(t)$$

Aim: understanding properties of trajectories X(t) given u(x,t)

 $\partial_t \theta + \boldsymbol{u} \cdot \boldsymbol{\nabla} \theta = D_0 \Delta \theta$

Aim: understanding properties of fields $\theta(\mathbf{x},t)$ given $\mathbf{u}(\mathbf{x},t)$

The two descriptions are connected

 $p(\boldsymbol{z}, 0 | \boldsymbol{x}, t) = \langle \delta(\boldsymbol{z} - \boldsymbol{y}(0; \boldsymbol{x}, t | \boldsymbol{\eta})) \rangle_{\eta}$

$$\theta(\boldsymbol{x},t) = \int d\boldsymbol{z} \; \theta(\boldsymbol{z},0) \, p(\boldsymbol{z},0|\boldsymbol{x},t)$$

Studying particle trajectories is thus relevant also to understand the transport of fields

we will focus on particle motion

Two kind of particles

Tracers

 $\begin{aligned} & \text{*same density of the fluid } \rho_p \equiv \rho_f \\ & \text{*point-like} \\ & \text{*move with the same velocity of the fluid } \\ & \text{*essentially they move like fluid elements} \end{aligned} \quad \stackrel{\cdot}{\overset{-}} = \underbrace{\boldsymbol{v}(t)}_{dt} = \underbrace{\boldsymbol{u}(\boldsymbol{X}(t),t)}^{(t)} \\ \end{aligned}$

(Inertial) Particles

*density different from the fluid $\rho_p \neq \rho_f \neq \rho_f$ *finite size *inertia & other forces are acting velocity different from the fluid one $\dot{X} = V$ $\frac{dX}{dt} = V$ We shall only consider passived particles: i.e. the velocity field is not modified by their presence

 ρ_f, ν

Outline

- (I) Single particle motion (absolute dispersion) conditions for standard & anomalous diffusion, examples in simple laminar flows
- (II) Two particle motion (relative dispersion) focus on relative dispersion in laminar & turbulent flows, relative dispersion at changing the scale & characterization of non-asymptotic regimes
- (III) Clustering of inertial particles in turbulence characterization of clustering & preferential concentration for particles which do not follow fluid motion
 - (I) & (II) focus on tracers

Single particle dynamics

We are interested in the long time behavior of $\Delta(t) = |X(t) - X(0)|$ and how it depends on the properties of $\boldsymbol{u}(\boldsymbol{x},t)$ $\boldsymbol{\nabla}\cdot\boldsymbol{u} = 0$

* Typically we expect standard diffusive behaviors $\langle \Delta^2(t) \rangle \sim 2D^E t$ * D^E effective diffusion coefficient, D^E[u]>>D₀

*Which properties must be present to have non-standard behaviors? *effective macroscopic description of transport?

Green-Kubo-Taylor relation

$$\dot{X} = V(t)$$
 \longrightarrow $X(t) = \int_0^t ds \, V(s)$ $X(0) = 0$

$$\frac{1}{2}\frac{d}{dt}\langle X^2(t)\rangle = \langle X(t)V(t)\rangle = \int_0^t ds \,\langle V(s)V(t)\rangle = \int_0^t d\tau \, C(\tau)$$

$$\begin{aligned} \frac{d\langle \Delta^2(t)\rangle}{dt} &= 2\int_0^t ds C(s) \\ \langle \Delta^2(t)\rangle &= 2\int_0^t ds \int_0^s ds' C(s') \\ &= 2t \int_0^t ds C(s) - 2\int_0^t ds \, s \, C(s) \end{aligned}$$

Everything is written in the Lagrangian velocity correlation function

conditions for standard & anomalous diffusione

$$\frac{d}{dt}\langle (\Delta X(t))^2 \rangle = 2 \int_0^t ds C(s) \qquad \langle (\Delta X(t))^2 \rangle = 2 \int_0^t ds \int_0^s ds' C(s') = 2 \int_0^t ds (t-s) C(s) ds'$$

To understand absolute dispersion we just need to know the velocity autocorrelation function $C(t) = \langle V(0)V(t) \rangle$

Standard diffusion
$$\int_0^\infty ds \, C(s) = D < \infty$$
 $\langle (\Delta X(t))^2 \rangle \propto 2Dt$

anomalous diffusion

Subdiffusion

$$\int_{0}^{\infty} ds C(s) = \infty \qquad \qquad \alpha > 1$$
$$\left((\Delta X(t))^{2} \right) \propto t^{\alpha} \qquad \qquad \alpha > 1$$
$$\int_{0}^{\infty} ds C(s) = 0 \qquad \qquad \alpha < 1$$

Standard diffusion

$$\frac{d}{dt}\langle (\Delta X(t))^2 \rangle = 2 \int_0^t ds C(s) = 2 \int_0^t \langle V(s)V(0) \rangle = \begin{cases} 2t \langle V^2 \rangle & t \ll \tau_c \\ 2 \langle V^2 \rangle \tau_c & t \to \infty \end{cases}$$

$$\langle (\Delta X(t))^2 \rangle = \begin{cases} t^2 \langle V^2 \rangle & t \ll \tau_c \\ 2 \langle V^2 \rangle \tau_c t = 2D^E t & t \to \infty \end{cases}$$

essentially CLT holds

Standard Diffusion

$$\partial_t \theta + \boldsymbol{u} \cdot \boldsymbol{\nabla} \theta = D_0 \Delta \theta$$

Effective macroscopic description

$$\Theta(\mathbf{X}_M, T_M) = \langle \theta(\mathbf{x}, t) \rangle_{\ell_c, \tau_c}$$
$$\partial_{T_M} \Theta = D^E \Delta_{X_M} \Theta$$

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2D_0}\boldsymbol{\eta}(t) = \boldsymbol{V}(t)$$

if diffusive behavior at large t & $\Delta {\rm X}$ $\langle (\Delta X(t))^2 \rangle \sim 2D^E t$

 D^{E} >> D_{0} will depend non trivially on u and D_{0}

Various techniques to derive D^E in periodic or random velocity fields based on perturbative expansions -Multiscale methods-

Idea: slow (X_M,T_M) & fast (x,t) variables

 $\partial_t = \partial_t + \epsilon \partial_{T_M} \qquad \partial_x = \partial_x + \epsilon \partial_{X_M} \qquad \theta(x, t; X_M, T_M) = \theta^{(0)} + \epsilon \theta^{(1)} + \dots$

It comes an effective equation for $\theta^0(x,t;X_M,T_M) = \theta^{(0)}(X_M,T_M) = \Theta(X_M,T_M)$

Bensoussan, Lions & Papanicolaou, Asymptotic Analysis for Periodic Structures (1978) Biferale, Crisanti, Vergassola & Vulpiani_PoF 7, 2725 (1995) Majda & Kramer Phys. Rep. 314, 237 (1999)

Non-Standard diffusion

anomalous superdiffusion

$$\int_0^{t \to \infty} ds \, C(s) = \infty$$

long positive tails

$$\begin{split} C(t) \sim t^{-\eta} & 0 < \eta < 1\\ \langle \Delta^2(t) \rangle = 2 \int_0^t ds \int_0^s ds' C(s') \sim t^{\alpha} = t^{2-\eta}\\ \alpha = 2 - \eta > 1 \end{split}$$

anomalous subdiffusion

 $\int_0^{t \to \infty} ds \, C(s) = 0$

long negative tails

 $C(t) \sim -t^{-\eta} \quad 1 < \eta < 2$

$$\langle \Delta^2(t) \rangle = 2t \int_0^t ds C(s) - 2 \int_0^t ds \, s \, C(s) \sim t^{\alpha} = t^{2-\eta}$$

$$\alpha = 2 - \eta < 1$$

Physical origin of long correlations?

Long spatial correlations of the velocity field

$$\int d\mathbf{k} \frac{\langle |\mathbf{u}(\mathbf{k})|^2}{k^2} = \int dk \frac{S(k)}{k^2} \approx \ell_c^2 \langle u^2 \rangle = \begin{cases} < \infty & \text{diffusive} \\ \infty & \text{superdiffusive} \end{cases}$$

time independent flows: Avellaneda & Majda, Commun. Math. Phys. 138, 339 (1991) time dependent flows: Avellaneda & Vergassola, Phys. Rev. E 52, 3249 (1995)

The velocity field has finite correlation length but particle dynamics generate very long Lagrangian velocity correlations

We will see these two mechanisms with some example

Random shear flows (strong spatial correlations)

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2D_0 \boldsymbol{\eta}(t)}$$
$$\boldsymbol{u}(\boldsymbol{x}, t) = \begin{pmatrix} U(y) \\ V \end{pmatrix}$$

 $\begin{array}{ll} \text{V=const U(y) random \& gaussian} & \text{Power spectrum} \\ & \text{spatial correlation function} & S(k) = \langle |\hat{U}(k)|^2 \rangle \\ & \langle U(y) \rangle = 0 & \langle U(y')U(y'+y) \rangle = R(|y|) = \int_{-\infty}^{\infty} dk \, \cos(ky) S(k) \end{array}$

$$S(k) \sim k^{\gamma} \quad k \ll 1 \Longrightarrow R(x) \sim x^{-(1+\gamma)} \quad x \gg 1$$

V=0 D₀>0 G. Matheron & G. de Marsily, Wat. Resour. Res. 16, 901 (1980) V≠0 D₀=0 F.W. Elliott, D.J. Horntrop & A. Majda, Chaos 7, 39 (1997)

Absolute dispersion in the x-direction?

Random shear: $D_0=0 V \neq 0$

$$\dot{V} = V \rightarrow Y(t) = Vt$$

$$\dot{X} = U(Y) \rightarrow X(t) = \int_0^t ds U(Y(s)) = \int_0^t ds U(Vs)$$
to simplify

$$X(0) = Y(0) = 0$$

$$\begin{array}{l} \text{temporal correlation} & \langle X^2(t) \rangle = 2 \int_0^t ds \int_0^s ds' \langle U(Y(s)) U(Y(s') \rangle & \text{spatial correlation} \\ \hline C(s-s') = \langle U(Y(s)) U(Y(s') \rangle = R(Y(s)-Y(s')) = R(V(s-s')) \\ \end{array} \end{array}$$

At large times

$$C(t) = R(Vt) = R(Y) \sim Y^{-(1+\gamma)} \sim t^{-(1+\gamma)} \qquad \qquad \langle X^2(t) \rangle \sim t^{1-\gamma}$$

$$\Upsilon$$
<($\Delta\Upsilon(t)$)²>behavior $\Upsilon \ge 1$ t^0 trapping $0 < \Upsilon < 1$ $t^{1-\Upsilon}$ subdiffusion $\Upsilon = 0$ tdiffusion $\Upsilon < 0$ $t^{1-\Upsilon}$ superdiffusion

Elliott, Horntrop & Majda, Chaos 7, 39 (1997)

Random shear: $D_0=0 V \neq 0$

Random shear: $D_0 \neq 0 \forall = 0$

$$\begin{array}{l} \text{temporal correlation} \\ \langle X^{2}(t) \rangle = 2 \int_{0}^{t} ds \int_{0}^{s} ds' \langle U(Y(s))U(Y(s') \rangle & \text{spatial correlation} \\ \\ C(s-s') = \langle U(Y(s)-Y(s') \rangle = R(Y(s)-Y(s')) \approx R(\sqrt{2D_{0}(s-s')}) \\ \\ S(k) \sim k^{\gamma} \Longrightarrow R(y) \sim y^{-(1+\gamma)} \\ \\ \hline C(t) \approx R(\sqrt{2D_{0}t}) \approx (D_{0}t)^{-(1+\gamma)/2} & \swarrow \langle X^{2}(t) \rangle \sim t^{2-\frac{(1+\gamma)}{2}} = t^{\frac{3-\gamma}{2}} \end{array}$$

$$D^{E} = \frac{\langle X^{2}(t) \rangle}{2t} = D_{0} + \frac{1}{D_{0}} \left(\int dk \frac{S(k)}{k^{2}} \approx \int dk \, k^{\gamma-2} \left\{ \begin{array}{l} < \infty \quad \Upsilon > 1 \quad \text{standard} \\ = \infty \quad -1 < \Upsilon < 1 \text{ anomalous} \end{array} \right\}$$

Matheron & de Marsily, Wat. Resour. Res. 16, 901 (1980)

Time dependent Cellular flows (Lagrangian persistency)

convection->

2d model (Solomon & Gollub PRA **38**, 6280 (1988)) $\psi(x, y, t) = \psi_0 \sin(x + B \sin(\omega t)) \sin(y)$ $u_x = \partial_y \psi = \psi_0 \sin(x + B \sin(\omega t)) \cos(y)$

 $u_y = -\partial_x \psi = -\psi_0 \cos(x + B\sin(\omega t))\sin(y)$

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2D_0}\boldsymbol{\eta}(t)$$

u has a single mode no spatial persistency

Lagrangian chaos

$$u_x = \partial_y \psi = \psi_0 \sin(x + B \sin(\omega t)) \cos(y)$$

$$u_y = -\partial_x \psi = -\psi_0 \cos(x + B \sin(\omega t)) \sin(y)$$

 u_u

$$\dot{\mathbf{X}}(t) = \mathbf{u}(\mathbf{X}(t), t) = \mathbf{V}(t)$$
$$D_0 = 0$$

 $\omega = 0$ steady flow/ particles cannot escape the vortex

Anomalous diffusion in experiments

Rotating tank (water+glycerol)

typical trajectories (trapping+ballistic flights)

Solomon, Weeks & Swinney, PRL 71, 3975 (1993)

Modelization of anomalous diffusion

$$\int d\mathbf{k} \frac{\langle |\mathbf{u}(\mathbf{k})|^2}{k^2} = \int dk \frac{S(k)}{k^2} \approx \ell_c^2 \langle u^2 \rangle = \infty$$
$$D^E = \langle V^2 \rangle \tau_c = \infty$$

 $egin{aligned} & \to \infty \ & \to \infty \end{aligned}$ can be modeled as a Levy Flights arbitrarily large velocities (physically unrealistic) X(t+1) = X(t) + V(t) V has Levy distribution $P(V) \sim V^{-\gamma}$

Long correlations can be modeled with Levy Walks motion in the same direction for long times

$$X(t) = X(t - T) + VT$$
$$P(V) = \pm V_0 \quad Prob = 1/2$$

T has Levy distribution $P(T) \sim T^{-\gamma}$

Schlesinger, West & Klafter, PRL 58, 1100 (1987).

Radons, Klages, Sokolov "Anomalous transport & applications (2008)

Macroscopic description

rco

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2D_0}\boldsymbol{\eta}(t) = \boldsymbol{V}(t)$$

$$\partial_t \theta + \boldsymbol{u} \cdot \boldsymbol{\nabla} \theta = D_0 \Delta \theta$$

Time/Space scale separation diffusion $\langle (\Delta X(t))^2 \rangle \sim 2D^E t$

$$\int_0^{\cdot} ds \, C(s) = \langle V^2 \rangle \tau_c = D^E = finite$$

macroscopic description $\partial_{T_M} \Theta = D^E \Delta_{X_M} \Theta$

NO Time/Space scale separation $\int_{0}^{\infty} ds C(s) = \infty$ anomalous diffusionmacroscopic description $\langle (\Delta X(t))^q \rangle \sim t^{q\nu(q)}$ $\nu(q) = \frac{\alpha}{2}$ fractional diffusion equation?"strong" anomalous diffusionmacroscopic description $\langle (\Delta X(t))^q \rangle \sim t^{q\nu(q)}$ $\nu(q) \neq \frac{\alpha}{2}$???still unclear???

Conclusions

- In the presence of time scale separation motion in incompressible fluids is diffusive, effective macroscopic description in terms of Fokker-Planck equation with renormalized coefficients
- Anomalous diffusion is due to long (power law) tails of the Lagrangian velocity correlation function due to:
 - Strong/persistent spatial correlations
 - Persistent Lagrangian correlations
- Models of anomalous behaviors can be obtained in terms of Levy Walks which are more appropriate than Levy Flights
- Effective macroscopic description of anomalous diffusion is an open issue, especially in the presence of "strong" anomalous behaviors

Some references

General Reviews:

Bouchaud & Georges Phys. Rep. 195, 127 (1990) emphasis on statistical mechanics Majda & Kramers Phys. Rep. 314, 237 (1999) review on diffusion standard & nonstandard in fluid flows

Multiscale methods

Bensoussan, Lions & Papanicolaou, Asymptotic Analysis for Periodic Structures (1978) Biferale, Crisanti, Vergassola & Vulpiani_PoF 7, 2725 (1995)

Random shears:

G. Matheron & G. de Marsily, Wat. Resour. Res. 16, 901 (1980) F.W. Elliott, D.J. Horntrop & A. Majda, Chaos 7, 39 (1997)

Anomalous diffusion / Levy walks / Lagrangian Chaos

Castiglione[,] Mazzino, Muratore-Ginanneschi & Vulpiani Physica D 134, 75 (1999) Andersen, Castiglione, Mazzino, Vulpiani The Europ. Phys. J B 18, 447 (2000) Solomon, Weeks & Swinney, PRL 71, 3975 (1993) Solomon, Lee & Fogleman Physica D 157, 40 (2001)