Lévy Walks and scaling in quenched disordered media

Raffaella Burioni - Parma

Sperlonga - September 2010

A. Vezzani, - CNR Modena - Parma
L. Caniparoli - Sissa Trieste
S.Lepri - Firenze CNR - ISC

Work in progress with
R. Livi - Firenze
D.Wiersma's group, (J. Bertolotti, P. Barthelemy, - K.Vynck, R.Savo here) - LENS Lab - Firenze

- A Lévy Walk for Light, or building tunable disordered materials for Lévy walks. The Levy Glass
- The Lévy Glass experiment: annealed and quenched Lévy Walks, and average experimental values
- Random (and deterministic) quenched I-d Lévy models
- Transport and Diffusion on quenched Id Lévy models:
- Future: higher dimensional samples and time resolved experiments

An engineered disordered material where light performs a Lévy Walk-like motion, and superdiffuses.

Built in Florence - LENS Laboratory by D.Wiersma, J. Bertolotti and P. Barthelemy

In the lab, many experiments where light undergoes localization, Bloch
 oscillations, Hall effect in disordered samples.

Lévy walks: steps of length I in random direction.
The probability to take a long step of length I has a power law behavior, and long jumps can occur.

$$
\begin{aligned}
& p(l) \sim \frac{1}{l^{\alpha+1}} \quad \text { for large I } \\
& 0<\alpha<2
\end{aligned}
$$

Lévy walks and Lévy Fligths

- Lévy flights: each step takes a unit time
- Lévy walks: each step is covered at constant velocity, with time proportional to the step length I. A physical description.

Lévy Walks give rise to superdiffusive anomalous transport, in mean square displacement $\left\langle\mathrm{r}^{2}\right\rangle$:

$$
\left\langle r^{2}(t)\right\rangle \sim t^{\gamma} \quad \gamma>1
$$

Lévy walks and Lévy Fligths

- Annealed Lévy walks: the lengths of the jumps are chosen randomly at each time step, i.e the steps are uncorrelated. Well known and studied.
- Quenched Lévy walks? Steps are correlated. How? From the geometry of a disordered material.

Light in Lévy like disordered materials!

How they built a Lévy like disordered materials at LENS

Distribute the voids according to a power law, modifying the density of scatterers!

$$
\downarrow(d) \sim \frac{1}{d^{\alpha+1}}
$$

n.b. in 3 d to have α one needs

$$
p(d) \sim \frac{1}{d^{\alpha+2}}
$$

The Lévy Glass

- A glass matrix (polymer now)
- Scattering medium (TiO_{2} Strong scatterers)
- Glass Spheres, with diameters distributed according to a Lévy tail, that do not scatter light (550-5 $\mu \mathrm{m}$)
- Shake well, press and pack

- Quenched disorder!

Correlated steps

Measure of the transmission as a function of thickness L: compatible with annealed Lèvy flight predictions (static measure)

Evidence of Superdiffusion

$$
T \sim L^{-\frac{\mu}{2}}
$$

D.Wiersma, J. Bertolotti and P.Barthelemy, Nature 2008
J. Bertolotti, K.Vynck, L- Pattelli, P. Barthelemy, S, Lepri and D.Wiersma, Adv Material 2010
-Superdiffusion vs transmission (for future time resolved experiments)? What is the behavior of the mean square displacement?

- Effects of the quenched disorder? This is a correlated Lévy walk, with the correlation induced by the topology of the sample.

The process always starts with a scattering events.

Averages values should be calculated choosing a
scattering site as a starting site.

First try: Id models

Light in tunable Lévy-like disordered media:

- Testing Lévy like motion in tunable experiments
- Image reconstruction, medical imaging
- Experiments on light localization
- Random Lasers

One-dimensional models for the Lévy glass

- Simple models with quenched disorder (Id) where voids can be tuned by hand: self similar and random
- Control the dependence of the asymptotic laws on the starting point (averages) and the effects of long tails
- Relate transmission and diffusion through scaling laws
- An analytic estimate for exponents in the asymptotic region
- Difference between average and local measurements
- Different results under different average procedures

Annealed Lévy walks:

Annealed Lévy walks: the lengths of the jumps are chosen randomly at each time step, i.e the steps are uncorrelated

Known results:

i.e. Geisel, Nierwetberg and Zacherl I985, Zumofen and Klafter 1993

Quenched Lévy walks?

A deterministic model in Id with quenched disorder:The cantor graphs

Deterministic Fractal: scatterers placed according to a Cantor set or Cantor- Smith Volterra set (A.Vezzani - poster)

voids: ballistic motion with constant velocity

Analytic estimate for the scaling exponents
Local and average behavior (A.Vezzani-poster)

Scatterers are placed in the positions r_{i}, spaced according to a Lévy distribution with parameter α, ro sets the space scale

Two perspectives, treated independently:
model: the walker moves at constant velocity, hits a scatterer and it is transmitted or reflected with equal probability (Lévy-Lorenz gas) (Barkai, Fleurov, Klafter 2000)
model: after a voltage is put between 0 to r, the resistance $R(r)$ between the contacts is the number of scatterers between them (Beenakker, Groth, Akhmerov 2009)

The structure is given, so the disorder is quenched.

Different average procedures lead to different results: if the Random Walker starts (contact are placed)
in any point of the structure

$$
\left.\begin{array}{c}
R(r) \approx\left\{\begin{array}{l}
0 \text { for } \alpha<1 \\
r
\end{array} \text { for } \alpha>1\right.
\end{array}\right\}
$$

in a scattering point
$R(r) \approx\left\{\begin{array}{lll}r^{\alpha} \text { for } & \alpha<1 \\ r & \text { for } & \alpha>1\end{array}\right.$

Mean square displacemet

The Lens experiment! Light enters in the sample with a scattering event.

- Mapping with the equivalent electric network problem
- Generalized scaling relations and the importance of tails
- The "single long jump" ansatz

Measurements: = particle starting point (contacts)

- Local (A.Vezzani - poster)
different results
- Averaged over all points: for the asymptotic behavior
- Averaged only over scattering points:

The Random walk on Quenched Lévy graphs: the importance of averages

Local quantities: for a walker started on site i
$P_{i j}(t)$
$P_{i i}(t)$
$\left\langle x_{i}^{2}\right\rangle \equiv \sum_{j} x_{i j}^{2} P_{i j}(t)$.

Prob. of being on site j at time t

Return Probability at time t
Mean square displacement (over RW realizations)

The Random walk on Quenched Lévy graphs: the importance of averages
Average quantities: On inhomogeneous graphs

$$
\overline{P(t)}=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{i \in S_{k}} P_{i i}(t)
$$

S_{k} sequence of graphs covering the infinite graph, $\mathrm{N}_{\mathrm{k}}=\left|\mathrm{S}_{\mathrm{k}}\right|$ or subsample of points

$$
\overline{\left\langle x^{2}\right\rangle}=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{i \in S_{k}}\left\langle x_{i}^{2}\right\rangle
$$

Averages and local quantities can behave differently on inhomogeneous graphs, even in the asymptotic region

R.B., D. Cassi, (2005) R.B., D. Cassi, A. Vezzani , in "Random Walks and geometry", V. Kaimanovich, K. Schmidt and W.Woess Eds, de Gruyter, Berlin (2004)

Asymptotic behavior at large times:
$P_{i i}(t) \sim t^{-\frac{d_{s}}{2}}$
$\left\langle x_{i}^{2}\right\rangle \sim t^{\gamma}$
Anomalous diffusion:
Superdiffusion, subdiffusion, ballistic, normal
$\overline{P(t)} \sim t^{-\frac{\bar{d}_{s}}{2}}$
For SRW, weighted RW, RW with waiting probabilities \bar{d}_{s} is the spectral dimension of the graph
$\overline{\left\langle x^{2}\right\rangle} \sim t^{\bar{\gamma}} \quad$ average over scattering points?

Transmission: Random Walks and Electric Networks

Analogy between the RW master equation and the Kirchoff equations

$$
-\sum_{j} L_{j i} V_{j}=\delta_{i 0}-\delta_{i n} \quad \begin{gathered}
\text { Unit current entering from } \mathrm{i} \text { and going out } \\
\text { from } \mathrm{j} \text { all links have unit resistance, } \mathrm{V}_{\mathrm{i}} \text { potential on site } \mathrm{i}
\end{gathered}
$$

$$
P_{0 i}(t+1)-P_{0 i}(t)=-\sum_{j} L_{j i} P_{0 j}(t) / z_{j}+\delta_{i 0} \delta_{t 0}
$$

RW starting from site i

With $\quad L_{i j}=z_{i} \delta_{i j}-A_{i j}$
L Laplacian matrix of the graph
A adjacency matrix

Fourier Trasform on time for P

$$
\tilde{P}_{0 i}(\omega)\left(e^{i \omega}-1\right)=-\sum_{j} L_{j i} \tilde{P}_{0 j}(\omega) / z_{j}+\delta_{i 0}
$$

Trasmission: Random Walks and Electric Networks

Then
$V_{i}=\frac{1}{z_{i}} \lim _{\omega \rightarrow 0}\left(\tilde{P}_{0 i}(\omega)-\tilde{P}_{n i}(\omega)\right)$

$$
V_{0 i} \equiv V(L)=R(L) \sim L^{\beta}
$$

Resistance as function of the distance L between the two points 0 and L

The resistance is connected to the transmission at a distance L by

$$
T(L) \sim R(L)^{-1} \sim L^{-\beta}
$$

P.G. Doyle, J.L.Snell, Random Walks and Electric networks 2006

The scaling hypothesis and the Einstein relations

Assume that the most general scaling holds in Id for the probability of being at a distance r . If $\mathrm{I}(\mathrm{t})$ is the scaling length, then:
$P(r, t)=\ell^{-1}(t) f(r / \ell(t))+g(r, t)$
where $g(r, t)$ has zero measure
leading contribution to P
$\lim _{t \rightarrow \infty} \int_{0}^{v t}\left|P(r, t)-\ell^{-1}(t) f(r / \ell(t))\right| d r=0$

$$
\lim _{t \rightarrow \infty} /|g(r, t)| d r=0
$$

Then:
I) from the normalization of P

$$
\ell(t) \sim t^{d_{s} / 2}
$$

2) from the expression for V_{i}

$$
R(r) \sim r^{2 / d_{s}-1}
$$

NB. d_{s} is the appropriate exponent, not necessarily the spectral dimension

$$
P(0, t) \sim t^{-d_{s} / 2}
$$

The scaling hypothesis and the Einstein relations

Resistence: static problem! Much easier

Recalling the exact result for the resistance in averages over scattering points (Beenakker, Groth, Akhmerov 2009)

$\longrightarrow \quad \quad \quad(t) \sim \begin{cases}t^{\frac{1}{1+\alpha}} & \text { if } 0<\alpha<1 \\ t^{\frac{1}{2}} & \text { if } 1 \leq \alpha\end{cases}$
The scaling length for P

The importance of long tails: anomalous effects

The standard behavior would be

$$
\left\langle r^{2}(t)\right\rangle \sim \ell(t)^{2}
$$

But:
$\left\langle r^{2}(t)\right\rangle=\int_{0}^{v t} \ell^{-1}(t) f(r / \ell(t)) r^{2} d r+\int_{0}^{v t} g(r, t) r^{2} d r$.
decays too slowly with r ? (as in the annealed case)
case I
$g(r, t) \quad$ decays too slowly with r and t ? (as in Barkai et al)

Here we have both cases, depending on alpha

The importance of long tails: how to estimate the anomalous effects. The "single long jump hypotesis"

Anomalous effects appears when $r \gg l(t)$. We can suppose that the walker reaches the distance $r \gg l(t)$ with a single long jump of length r, and the other scattering processes contribute until a distance $I(t)$! Then:

$$
P(r, t) \sim N(t) / r^{1+\alpha} \quad N(t) \begin{aligned}
& \text { Number of scatterers seen by the } \\
& \text { walker in a time } \mathrm{t} \text { (but this is R!) }
\end{aligned}
$$

$$
R(r) \approx\left\{\begin{array}{ll}
r^{\alpha} \text { for } & \alpha<1 \\
r & \text { for }
\end{array} \quad \alpha>1\right.
$$

Put all together and get:

$$
\begin{aligned}
& \alpha<1 \quad r \gg \ell(t) \\
& P(r, t) \sim t^{\alpha / 1+\alpha} r^{-1-\alpha}=\frac{1}{\ell(t)}\left(\frac{r}{\ell(t)}\right)^{-1-\alpha} \quad \text { case I } \\
& \alpha>1 \quad r \gg \ell(t) \\
& P(r, t) \sim t^{\alpha / 2} r^{-1-\alpha}=\frac{t^{(1-\alpha) / 2}}{\ell(t)}\left(\frac{r}{\ell(t)}\right)^{-1-\alpha} \quad \text { case 2 } g(r, t) \\
& g(r, t) \quad \text { provide a subleading contribution to P } \quad \lim _{t \rightarrow \infty} \int_{\ell(t)}^{v t} g(r, t)=0
\end{aligned}
$$

Mean square displacement:

$$
\begin{gathered}
\left\langle r^{2}(t)\right\rangle=\int P(r, t) r^{2} d r \sim \ell(t)^{2}+\int_{\ell(t)}^{v t} N(t) r^{-1-\alpha} d r \\
r<\ell(t) \quad r>\ell(t)
\end{gathered}
$$

$$
\left\langle r^{2}(t)\right\rangle \sim \begin{cases}t^{\frac{2+2 \alpha-\alpha^{2}}{1+\alpha}} & \text { if } 0<\alpha<1 \\ t^{\frac{5}{2}-\alpha} & \text { if } 1 \leq \alpha \leq 3 / 2 \\ t & \text { if } 3 / 2<\alpha\end{cases}
$$

Moments of the mean square displacement:

$$
\left\langle r^{p}(t)\right\rangle \sim \begin{cases}t^{\frac{p}{1+\alpha}} \sim \ell(t)^{p} & \text { if } \alpha<1, p<\alpha \\ t^{\frac{p(1+\alpha)-\alpha^{2}}{1+\alpha}} & \text { if } \alpha<1, p>\alpha \\ t^{\frac{p}{2}} \sim \ell(t)^{p} & \text { if } \alpha>1, p<2 \alpha-1 \\ t^{\frac{1}{2}+p-\alpha} & \text { if } \alpha>1, p>2 \alpha-1\end{cases}
$$

$$
q \nu(q) \simeq \begin{cases}\nu_{1} q & q<q_{c} \\ q-c & q>q_{c}\end{cases}
$$

P. Castiglione, A. Mazzino, Muratore-Ginanneschi, A.Vulpiani | 999

case I: Montecarlo evaluation of the Prob density rescaled according to I(t) for $\alpha=0.3$. For $r>\mid(t)$ the behavior is as expected.

case I: Montecarlo evaluation of the Prob density rescaled according to I(t) for $\alpha=1.3$. For $r>\mid(t)$ the behavior is as expected. The coefficient depends on time and vanishes as $t^{\frac{1-\alpha}{2}}$

2d: deterministic and random, alternative to numerical disk packing

S. Lepri

Experiment: confined disks with directional/undirectional scattering particles, transmission and time resolved datas

Rigorous result for the single long jump ansatz?

Bullet, Mantica 1992
R.B., L. Caniparoli, S. Lepri, A. Vezzani (2010), cond-mat I 005.34 IO R.B., L. Caniparoli, A.Vezzani (2010)

