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Work in progress with



• A Lévy Walk for Light, or building tunable disordered 
materials for Lévy walks. The Levy Glass

• The Lévy Glass experiment: annealed and quenched Lévy 
Walks, and average experimental values

• Random (and deterministic) quenched 1-d Lévy models 

• Transport and Diffusion on quenched 1d Lévy models:  the 
effect of Averages over starting sites on asymptotics 

• Future: higher dimensional samples and time resolved 
experiments



A Lévy Walk for light

An engineered disordered material 
where light performs a Lévy Walk-like 
motion, and superdiffuses.

Built in Florence - LENS Laboratory  
by D.Wiersma, J. Bertolotti and P. 
Barthelemy 

In the lab, many experiments where 
light undergoes localization, Bloch 
oscillations, Hall effect in disordered 
samples. 



Lévy walks: steps of length l in random direction.
The probability to take a long step of length l has a power law 
behavior, and long jumps can occur.  

p(l) ∼ 1
lα+1

0 < α < 2

for large l 



- Lévy flights:  each step takes a unit time

Lévy walks and Lévy Fligths

- Lévy walks:  each step is covered at constant velocity,  with time
proportional to the step length l.  A physical description.

Lévy Walks give rise to superdiffusive anomalous transport, in mean square 
displacement <r2>:

γ > 1〈r2(t)〉 ∼ tγ



Lévy walks and Lévy Fligths

- Annealed Lévy walks: the lengths of the jumps are   
chosen randomly at each time step, i.e the steps are 
uncorrelated.  Well known and studied.

- Quenched Lévy walks? Steps are correlated. How?
  From the geometry of a disordered material. 
  Example:
  Light in Lévy like disordered materials!

How they built a Lévy like disordered materials at LENS



Distribute the voids according to a power law, modifying the 
density of scatterers!

The Lévy Glass

d

n.b. in 3d to have    one needs  α
p(d) ∼ 1

dα+2

p(d) ∼ 1
dα+1



• A glass matrix (polymer now)  

•Scattering medium (Ti O2,  

Strong scatterers)

• Glass Spheres, with diameters 
distributed according to a Lévy 
tail, that do not scatter light 
(550-5   m) 

• Shake well, press and pack

• Quenched disorder! 
Correlated steps

The Lévy Glass

µ



The Lévy Glass

Measure of the transmission as a function of thickness L:
compatible with annealed Lèvy flight predictions (static measure)

Evidence of Superdiffusion 

-Superdiffusion vs transmission (for future time resolved experiments)? 
What is the behavior of the mean square displacement?

- Effects of the quenched disorder? This is a correlated Lévy walk,
with the correlation induced by the topology of the sample.  

D.Wiersma, J. Bertolotti and P.Barthelemy, Nature 2008
J. Bertolotti, K. Vynck, L- Pattelli, P. Barthelemy, S, Lepri
and D. Wiersma,  Adv Material 2010

T ∼ L−
µ
2



The Lévy Glass

The process always starts 
with a scattering events. 

Averages values should be 
calculated choosing a 
scattering site as a starting 
site.

First try: 1d models



Light in tunable Lévy-like disordered media:

• Testing Lévy like motion in tunable experiments

• Image reconstruction, medical imaging

• Experiments on light localization

• Random Lasers



• Simple models with quenched disorder (1d) where
voids can be tuned by hand: self similar and random

• Control the dependence of the asymptotic laws on 
the starting point (averages) and the effects of long tails

• Relate transmission and diffusion through scaling laws

• An analytic estimate for exponents in the asymptotic region

• Difference between average and local measurements

• Different results under different average procedures

One-dimensional models for the Lévy glass



Annealed Lévy walks: 

Annealed Lévy walks: the lengths of the jumps are 
chosen randomly at each time step, i.e the steps are 
uncorrelated 

Known results:

R ∼ 1
T

i.e. Geisel, Nierwetberg and Zacherl 1985, Zumofen and Klafter 1993 

Quenched Lévy walks?



A deterministic model in 1d with quenched disorder: The cantor graphs

Deterministic Fractal: scatterers placed according to a Cantor set or 
Cantor- Smith Volterra set (A. Vezzani - poster)

scatterers: particle transmitted or reflected
with prob 1/2

voids: ballistic motion with constant velocity

Analytic estimate for the scaling exponents  
Local and average behavior   (A. Vezzani - poster)



Closer to experiments:1d  random models

Scatterers are placed in the positions ri, spaced according to a Lévy 
distribution with parameter     , r0 sets the space scaleα

Lévy walk model: the walker moves at constant velocity,  hits a scatterer and it is 
transmitted or reflected with equal probability (Lévy-Lorenz gas) (Barkai, Fleurov, 
Klafter 2000)

Electric model: after a voltage is put between 0 to r, the resistance R(r) between the 
contacts is the number of scatterers between them (Beenakker, Groth, Akhmerov 2009)

Two perspectives, treated independently: 

The structure is given, so the disorder is quenched. 



1d  random quenched models: Known results

Different average procedures lead to different results:  
if the Random Walker starts (contact are placed)

The Lens experiment! Light enters in the sample with a scattering event.

this was an open point in the Lévy-Lorentz gas 
(Barkai, Fleurov, Klafter 2000)

Beenakker et al (2009)



Measurements:  = particle starting point (contacts)

- Local (A. Vezzani - poster)

- Averaged over all points:

- Averaged only over scattering points:

different results
for the asymptotic behavior

- Mapping with the equivalent electric network problem

- Generalized scaling relations and the importance of tails

Tools:

- The “single long jump” ansatz



The Random walk on Quenched Lévy graphs: the
importance of averages 

Pij(t)

Pii(t)

Local quantities: for a walker started on site i

〈x2
i 〉 ≡

∑

j

x2
ijPij(t).

Prob. of being on site j at time t

Return Probability at time t

Mean square displacement
(over RW realizations) 



Average quantities:  On inhomogeneous graphs

Sk sequence of graphs covering the
infinite graph, Nk =|Sk|
or subsample of points

〈x2〉 = lim
k→∞

1
Nk

∑

i∈Sk

〈x2
i 〉

P (t) = lim
k→∞

1
Nk

∑

i∈Sk

Pii(t)

Averages and local quantities can behave differently on 
inhomogeneous graphs, even in the asymptotic region

R.B., D. Cassi, (2005) R.B., D. Cassi, A. Vezzani , in “Random Walks and geometry”, V. 
Kaimanovich, K. Schmidt and W. Woess Eds, de Gruyter, Berlin (2004)

The Random walk on Quenched Lévy graphs: the
importance of averages



Asymptotic behavior at large times:

For SRW, weighted RW, RW with waiting probabilities     
     is the spectral dimension of the graph

Anomalous diffusion: 
Superdiffusion, subdiffusion, ballistic, normal

Pii(t) ∼ t−
ds
2

〈x2
i 〉 ∼ tγ

P (t) ∼ t−
d̄s
2

〈x2〉 ∼ tγ̄

d̄s

The Random walk on Quenched Lévy graphs

average over scattering points?



Transmission: Random Walks and Electric Networks

Analogy between the RW master equation and the Kirchoff equations

−
∑

j

LjiVj = δi0 − δin

P0i(t + 1)− P0i(t) = −
∑

j

LjiP0j(t)/zj + δi0δt0

Unit current entering from i and going out
from j, all links have unit resistance, Vi potential on site i

Lij = ziδij −AijWith L  Laplacian matrix of the graph
A adjacency matrix

RW starting from site i

Fourier Trasform on time for P

P̃0i(ω)(eiω − 1) = −
∑

j

LjiP̃0j(ω)/zj + δi0



Trasmission: Random Walks and Electric Networks

Then

Resistance as function of the distance L 
between the two points 0 and L

Vi =
1
zi

lim
ω→0

(P̃0i(ω)− P̃ni(ω))

The resistance is connected to the transmission  at a distance L by  

V0i ≡ V (L) = R(L) ∼ Lβ

T (L) ∼ R(L)−1 ∼ L−β

P.G. Doyle, J.L.Snell, Random Walks and Electric networks 2006



The scaling hypothesis and the Einstein relations

Assume that the most general scaling holds in 1d for the probability 
of being at a distance r.  If l(t) is the scaling length, then:

Then:  
         1)   from the normalization of P !(t) ∼ tds/2

R(r) ∼ r2/ds−1.2)   from the expression for Vi 

NB.     is the appropriate exponent, not necessarily the spectral dimensionds

Cates,  1985

P (r, t) = !−1(t)f(r/!(t)) + g(r, t) where             has zero measure 

lim
t→∞

∫ vt

0
|P (r, t)− !−1(t)f(r/!(t))|dr = 0

g(r, t)

lim
t→∞

∫
|g(r, t)|dr = 0

P (0, t) ∼ t−ds/2

leading contribution to P 



The scaling hypothesis and the Einstein relations

Resistence: static problem! Much easier  

Recalling the exact result for the resistance in averages over 
scattering points (Beenakker, Groth, Akhmerov 2009)

The scaling length for P 

!(t) ∼
{

t
1

1+α if 0 < α < 1
t

1
2 if 1 ≤ α



The importance of long tails: anomalous effects

decays too slowly with r? (as in the annealed case)

decays too slowly with r and t? (as in Barkai et al) 

P (r, t)

g(r, t)

〈r2(t)〉 =
∫ vt

0
!−1(t)f(r/!(t))r2dr +

∫ vt

0
g(r, t)r2dr.

case 1

case 2

The standard behavior would be 〈r2(t)〉 ∼ !(t)2

But:

Here we have both cases, depending on alpha



Anomalous effects appears when r>> l(t).  We can suppose that the 
walker reaches the distance r>> l(t) with a single long jump of length r, 
and the other scattering processes contribute until a distance l(t)!
Then:

P (r, t) ∼ N(t)/r1+α

The importance of long tails: how to estimate the anomalous effects.
The “single long jump hypotesis”

N(t) Number of scatterers seen by the 
walker in a time t ( but this is R!)

Prob. that a scatterer is followed by 
a jump of length r>>l(t)



Put all together and get: 

P (r, t) ∼ tα/1+αr−1−α =
1

!(t)
(

r

!(t)
)−1−α

P (r, t) ∼ tα/2r−1−α =
t(1−α)/2

!(t)
(

r

!(t)
)−1−α

α > 1

α < 1 r ! !(t)

r ! !(t)

g(r, t)

case 1

case 2

provide a subleading contribution to P g(r, t) lim
t→∞

∫ vt

!(t)
g(r, t) = 0



Mean square displacement:

〈r2(t)〉 =
∫

P (r, t)r2dr ∼ !(t)2 +
∫ vt

!(t)
N(t)r−1−αdr

r > !(t)r < !(t)

〈r2(t)〉 ∼






t
2+2α−α2

1+α if 0 < α < 1
t

5
2−α if 1 ≤ α ≤ 3/2

t if 3/2 < α



Moments of the mean square displacement:

〈rp(t)〉 ∼






t
p

1+α ∼ !(t)p if α < 1, p < α

t
p(1+α)−α2

1+α if α < 1, p > α

t
p
2 ∼ !(t)p if α > 1, p < 2α− 1

t
1
2+p−α if α > 1, p > 2α− 1

P. Castiglione, A. Mazzino, Muratore-Ginanneschi, A. Vulpiani
1999
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t

1−α
2



2d: deterministic and random, alternative to 
numerical disk packing

Experiment: confined disks with directional/undirectional 
scattering particles, transmission and time resolved datas

Rigorous result for the single long jump ansatz?

S. Lepri



Bullet, Mantica 1992

             

An Apollonian packing of spheres

R.B., L. Caniparoli, S. Lepri, A. Vezzani  (2010),  cond-mat 1005.3410
R.B., L. Caniparoli, A. Vezzani  (2010)


