
Inertial particle clustering 
and random walks in 

random environments
Jérémie Bec

CNRS, Observatoire de la Côte d’Azur, Université de Nice

in collaboration with

L. Biferale, M. Cencini, A. Lanotte (Rome),
F. Toschi (Eindhoven), B. Merlet (Paris),

R. Chétrite, S. Musacchio (Nice)
Anomalous Transport: from Billiards to Nanosystems, Sperlonga, September 2010

1



Turbulent Transport/Mixing
Industrial/Natural problems: passive or active transport of 
species by a turbulent flow

Effect of turbulence: 
enhance mixing/dispersion 
(w.r.t. molecular diffusion)

Quantifying fluctuations? What are the mechanisms leading 
to the presence of very high concentrations?

Eddy diffusivity 
(~mean-field effect)

from J. Riley
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Fluctuations in turbulent transport

Icelandic 
volcano ash 

Fluctuations are important for risk assessments

Models/Observations: space and/or time averages
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Mean vs. meandering plumes
One source of fluctuations = the turbulent transport itself

!
Concentration PDFs have tails rather far from Gaussian
(trapping events for the random walk of particles in the 
random environment of subjacent turbulent fluctuations?)

Universality??
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Particles finite mass
Most particles are not tracers but have inertia

!

Heavy particles are 
ejected from eddies

Light particles cluster 
in their cores

Preferential concentration

from I. Mazzitelli
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Ẍ = −

1

τ

(

Ẋ − u(X, t)
)

τ =
2 ρp a2

9 ρf ν

St = τ/τf

Very heavy particles
Spherical particles much much heavier than the fluid, 
feeling no gravity, evolving with moderate velocities: 
one of the simplest model

Prescribed velocity field 
(random or solution to NS) 

Dissipative dynamics (even if      is incompressible)
 Lagrangian averages correspond to an SRB measure (with 

support on the attractor) that depends on time and on the 
realization of the fluid velocity field.

Inertia measured by the Stokes number

Stokes time:

6



Condensation, Coalescence and Precipitation

Warm clouds

Controversial question on the effect of airflow turbulence

 

condensation

coalescence

turbulent 
settling

*

drizzle rain

Bergeron process

***
rain dry 

snow
wet 

snow

Cold clouds

turbulent 
settling

Turbulent 
mixing of 

water vapor + 
condensation 

nuclei

Turbulent accelerations 
of droplets / caustics

Correlations between 
droplets and ice crystals?

Droplet size 
broadening?

Snowball effect? Time scales?
Time scales?

Warm clouds

**
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Planet formation
protostar nebula

planetary system

circumstellar disk
gravitational collapse

differential rotation + 
momentum dissipation 
⇒ migration toward 
the equatorial plane

gravitational interactions 
+ collisions between large 

bodies (1m to moons)

Development of turbulence 
in the gas motion + 

accretion of dust particles

creation of 
medium-size 

bodies (mm to m)
Time scales?
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Preferential concentration

Quantifying them is important for
the rates at which particles interact 
the fluctuations in the concentration of a pollutant
the possible feedback of the particles on the fluid

Inertial-range clusters and voids
Multifractal distribution
at dissipative scales

Observed for a long time in experiments
Eaton & Fessler (1994); Douady, Couder, & Brachet (1991)
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Phenomenology

Theory: requires elaborating models to disentangle these 
two effects. For instance:

flows with no structures (uncorrelated in time) to isolate the 
effects of a dissipative dynamics
coarse-grained closures to understand ejection from eddies

Numerics show that these effects act at different scales

Different mechanisms:
Ejection from eddies 
by centrifugal forces

Dissipative dynamics
⇒ attractor
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St = 0.16

St = 0.8St = 3.3

Rλ = 185

Particles in turbulent flow

Modulus of 
acceleration 

Real flow contain structures and particle distribution correlates 
with the vortices

JB, Biferale  
et al. (2007)
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Coarse-grained density
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Poisson

Algebraic tails 
(signature of voids)

p(ρ) ∝ ρ
α(τ,r)

τ ↓

Tails faster 
than 
exponential

r ↑
or

Find models belonging to the 
same universality class
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Discreteness in time and space

At each time step some cells are randomly chosen (with 
probability    ) to be rotating cells. They eject a fraction    of their 
mass to their neighbors

Parameters =      (probability to rotate) and    (ejection rate) 

γ

Mass transport model
JB, R. Chétrite 2007

p

γp
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PDF of mass in a given cell is very similar to that of DNS

One-cell mass distribution

1D
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times
m0 ≈ 1

mN ≈ (1 − γ)N Prob = p
N (1 − p)2N

A phenomenological approach to the clustering of heavy particles in turbulent flows 6

p and Ωj = 0 with probability 1 − p. The evolution of mass between times n and n + 1

is given by:

mj(n+1) =

{

mj(n) − γ
2 [2 − Ωj−1 − Ωj+1] mj(n) if Ωj = 1 ,

mj(n) + γ
2 [Ωj−1 mj−1(n) + Ωj+1 mj+1(n)] if Ωj = 0 .

(7)

In other terms, when Ωj = 1, the j-th cell looses mass if Ωj−1 = 0 or Ωj+1 = 0, and

when Ωj = 0, it gains mass if Ωj−1 = 1 or Ωj+1 = 1. The flux of mass between the

j-th and the (j + 1)-th cell is proportional Ωj − Ωj+1 (see figure 2). In particular, if

j

j j+ 1! 1j
0

1

!

µ

Figure 2. Sketch of the dynamics in the one-dimensional case: the fluxes of mass are
represented as arrows. A cross means no flux.

Ωj = Ωj+1, no mass is transfered between cells. When the system is supplemented by

periodic boundary conditions between the cells N and 1, it is clear that the total mass is

conserved. Hereafter we assume that the mass is initially mj = 1 in all cells., so that the

total mass is
∑

j mj = N . Spatial homogeneity of the random process Ωj implies that
〈mj〉 = 1 for all later times, where the angular brackets denote average with respect to

the realizations of the Ωj ’s.

A noticeable advantage of such a model for mass transportation is that the mass field

m = (m1, . . . , mN) defines a Markov process. Its probability distribution pN(m, n + 1)

at time n+1, which is the joint PDF of the masses in all cells, is related to that at time

n by a Markov equation, which under its general form can be written as

pN(m, n + 1) =

∫

dNm′ pN(m′, n) P [m′ → m]

=

∫

dNm′ pN(m′, n)

∫

dNΩ p(Ω) P [m′ → m|Ω], (8)

where P [m′ → m|Ω] denotes the transition probability from the field m′ to the field

m conditioned on the realization of Ω = (Ω1, . . . , ΩN ). In our case it takes the form

P [m′ → m|Ω] =
N
∏

j=1

δ[mj − (m′
j + µj−1(n) − µj(n))] . (9)

The variable µj denotes here the flux of mass between the j-th and the (j + 1)-th cell.

It is a function of Ωj , Ωj+1, and of the mass contained in the two cells. It can be written

as

µj(n) =
γ

2

[

Ωj(n)(1 − Ωj+1(n))m′
j(n) − Ωj+1(n)(1 − Ωj(n))m′

j+1(n)
]

. (10)

In the particular case we are considering, the joint probability of the Ωj ’s factorizes and

we have

p(Ωj) = p δ(Ωj − 1) + (1 − p) δ(Ωj) , (11)

Prob {mass > m} ≥ C m
β

Algebraic left tail

Left tail:

One-dimension

Events ejecting a lot of mass: when a cell remains ejecting for a 
long time.
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Figure 4. Log-log plot of the one-point PDF of the mass in one dimension for p = 1/2
and different values of the parameter γ as labeled. The integration was done on a
domain of 216 = 65536 cells and time average wee performed during 106 time steps
after a statistical steady state is reached.

statistical signature. A second observation is that at large masses, the PDF decays

faster than exponentially, as also observed in realistic flows. As we will now see these

two tails can be understood analytically for the model under consideration.

We here first present an argument explaining why an algebraic tail is present at
small masses. For this we exhibit a lower bound of the probability P <(m) that the mass

in the given cell is less than m. Namely, we have

P <(m) = Prob(mj(n) < m) ≥ Prob (A) , (16)

where A is a set of space-time realizations of Ω such that the mass in the j-th cell at
time n is smaller than m. For instance we can choose the set of realizations which are

ejecting mass in the most efficient way: during a time N before n, the j-th cell has spin

vorticity 1 and its two neighbors have 0. The mass at time n is related to the mass at

time n − N by

mj(n) = (1 − γ)Nmj(n − N) , that is N =
log[mj(n − N)/mj(n)]

log(1 − γ)
.(17)

The probability of such a realization is clearly pN (1 − p)2N . Replacing N by the

expression obtained in (17), we see that

Prob (A) =

[

mj(n)

mj(n − N)

]β

with β =
log[p(1 − p)2]

log(1 − γ)
. (18)

After averaging with respect to the initial mass mj(n − N), one finally obtains

P <(m) ≥ A mβ. (19)

Dominant balance in the Markov equation
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Hence the cumulative probability of mass cannot have a tail faster than a power law at

small arguments. It is thus reasonable to make the ansatz that p1(m) have an algebraic

tail at m → 0, i.e. that p1(m) " Cmα. To obtain how the exponent α behaves as a

function of the parameters γ and p, this ansatz is injected in the stationary version

of the Markov equation (15). One expects that the small-mass behavior involves only

the terms due to ejection from a cell, namely the three first terms in the r.h.s. of (15),
and that the terms involving averages of the two-point and three-point PDFs give only

sub-dominant contributions. This leads to

Cmα ≈ C
[

p3 + (1 − p)3
]

mα + C
2p2(1 − p)

1 − γ/2

[

m

1 − γ/2

]α

+

+ C
p(1 − p)2

1 − γ

[

m

1 − γ

]α

. (20)

Equating the various constants we finally obtain that the exponent α satisfies

2p

(1 − γ/2)α+1
+

(1 − p)

(1 − γ)α+1
= 3 . (21)

Note that the actual exponent α given by this relation is different from the lower-bound

β + 1 obtained above in (18) and (19). However it is easily checked that α approach

the lower bound when p → 0. As seen from figure 5, formula (21) is in good agreement
with numerics. Note that the large error bars obtained for p small and γ large are due
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Figure 5. Scaling exponent α as a function of the ejection rate γ for three different
values of p as labeled. The solid lines represents the prediction given by (21); the error
bars are estimated from the maximal deviation of the logarithmic derivative from the
estimated value. Inset: difference between the numerical estimation and the value
predicted by theory.

to the presence of logarithmic oscillations in the left tail of the PDF of mass. This log

periodicity is slightly visible for γ = 0.9 in figure 4. It occurs when the spreading of the

lower bound

15
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Figure 5. Scaling exponent α as a function of the ejection rate γ for three different
values of p as labeled. The solid lines represents the prediction given by (21); the error
bars are estimated from the maximal deviation of the logarithmic derivative from the
estimated value. Inset: difference between the numerical estimation and the value
predicted by theory.

to the presence of logarithmic oscillations in the left tail of the PDF of mass. This log

periodicity is slightly visible for γ = 0.9 in figure 4. It occurs when the spreading of the

Algebraic left tail
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Figure 5. Scaling exponent α as a function of the ejection rate γ for three different
values of p as labeled. The solid lines represents the prediction given by (21); the error
bars are estimated from the maximal deviation of the logarithmic derivative from the
estimated value. Inset: difference between the numerical estimation and the value
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to the presence of logarithmic oscillations in the left tail of the PDF of mass. This log
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Tim
e

Prob = [p2(1 − p)]N M

mN M =
1 − [1 − (1 − γ)]N ]M

(1 − γ)N

⇒ p(m) ∝ exp(−C m lnm)

A phenomenological approach to the clustering of heavy particles in turbulent flows 11

distribution close to the mean value m = 1 is much smaller than the rate at which mass

is ejected. This results in the presence of bumps in the PDF at values of m which are

powers of 1−2γ. Notice that for all values of p, one has α ≤ 0 when γ ≥ 2/3. However,

according to the estimate (6), values of the ejection rate larger than 2/3 can be attained

only for large enough Kubo numbers. This is consistent with the fact that power-law

tails with a negative exponent were not observed in the direct numerical simulations of
turbulent fluid flows [16] where Ku ≈ 1.

It is much less easy to get from numerics the behavior of the right tail of the mass

PDF p1(m). As seen from figure 4, there was no events recorded where the mass is larger

than roughly ten times its average. We however present now an argument suggesting

that the tail is faster than exponential, and more particularly that log p1(m) ∝ −m log m

when m & 1. We first observe that in order to have a large mass in a given cell,
one needs to transfer to it the mass coming form a large number M of neighboring

cells. Estimating the probability of having a large mass is equivalent to understand the

probability of such a transfer. For moving mass from the j-th cell to the (j − 1)-th cell,

the best configuration is clearly (Ωj−1, Ωj, Ωj+1) = (0, 1, 1). After N time steps with

this configuration, the fraction of mass transfered is 1− (1−γ/2)N . This process is then

repeated for moving mass to the second neighbor, and so on. After order M iterations,
the mass in the M-th neighbor is

m =
1 −

[

1 − (1 − γ/2)N
]M

(1 − γ/2)N
. (22)

This means that

M = M(m, N) =
log

[

1 − m(1 − γ/2)N
]

log [1 − (1 − γ/2)N ]
, (23)

with the condition that N > −(log m)/[log(1 − γ/2)]. The probability of this whole

process of mass transfer is

P =
[

p2(1 − p)
]N M

= exp
[

log(p2(1 − p)) N M(m, N)
]

. (24)

All the processes of this type will contribute terms in the right tail of the mass PDF. The
dominant behavior is given by choosing N = N! such that N! M(m, N!) is minimal.

Such a minimum cannot be written explicitly. One however notices that, on the one

hand, if N is much larger than its lower bound (i.e. N & −(log m)/[log(1 − γ/2)]),

then N M(m, N) & −m(log m)/[log(1 − γ/2)]. On the other hand when N is chosen

of the order of log m, then N M(m, N) ∝ m log m. This suggests that the minimum is

attained for N! ∝ log m. Finally, such estimates lead to predict that the right tail of
the mass probability density function behaves as

p1(m) ∝ exp [−C m log m] , (25)

where C is a positive constant that depends upon the parameters p and γ. As seen in

figure 6, such a behavior is confirmed by numerical experiments.

The estimations of the left and right tails of the distribution of mass in a given cell

can be extended to the two-dimensional case. The results do not qualitatively change.

Super-exponential right tail
Again 1D: realization leading to large masses

Optimization problem: find      maximizing the probability to 
have a mass m

N
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Figure 6. Lin-log plot of the one-point PDF of the mass m in one dimension
represented as a function of m log m for p = 1/2 and various values of the parameter
γ as labeled; the different colors and symbols are the same as those used in figure 4.
Inset: behavior of the constant C appearing in (25) as a function of the ejection rate
γ for three different values of the fraction of space p occupied by eddies (blue crosses:
p = 0.1, black times: p = 0.5, red circles: p = 0.9).

The exponent α of the algebraic behavior at small masses is given as a solution of

4p3

(1 − γ/4)α+1
+

6p2(1 − p)

(1 − γ/2)α+1
+

4p(1 − p)2

(1 − 3γ/4)α+1
+

+
(1 − p)3

(1 − γ)α+1
= 5(1 − p + p2) . (26)

By arguments which are similar to the one-dimensional case and which are not detailed

here, one obtains also that log p1(m) ∝ −m log m. Numerical experiments in two
dimensions confirm these behaviors of the mass probability distribution. As seen from

figure 7 an algebraic behavior of the left tail of the PDF of m is observed and the value

of the exponent is in good agreement with (26).

5. Coarse-grained mass distribution

We investigate in this section the probability distribution of the mass coarse-grained on
a scale L much larger than the box size #, which is defined as

m̄L =
#

L

K
∑

j=−K

mj where K = L/2#. (27)

As seen from the numerical results presented on figure 8, the functional form of the

PDF pL(m̄) is qualitatively similar to that of the mass in a single cell. In particular for
various values of L it also displays an algebraic tail at small arguments with an exponent

Super-exponential right tail
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(dx2/dt) γn → σ2(x, t)/2

mn/dx → ρ(x, t)
⇒ ∂tρ =

1

2
∂2
x

�
σ2 ρ

�

σ

↔ dX = σ(X, t) dWt

σ

σ(x, t)

σ(x∗(t), t) = 0x

t xx∗

σ2 ∼ C(x− x∗)2

σ2
�σ2� � 1

More general model
Continuous limit dmn = γn+1mn+1 + γn−1mn−1 − 2γnmn

random ⇒ diffusion in a random environment
Green function      transition probability for 

High densities: near the zeros of the diffusion coefficient

Example:              smooth, generic, Gaussian
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∂tρ = ∂2
x

�
x2 ρ

�

ρ

x
λ = 2t/ ln ρ

P>(ρ) � ln ρ

� ∞

1
e−µ(λ) ln ρdλ µ(λ) =

3

2
λ−

�
2λ(λ− 1)

P>(ρ) ∝ ρ−1

P>(ρ)

ρ(x, t) =
1

2
e2terfc

�
ln |x|+ 3t

2
√
t

�

p(ρ) = −dP>

dx
∝ ρ−2

Large density tail

t ↑
ρ

Cumulative probability                
= fraction of space-time where 
the density is larger than 

Saddle-point:

Universal intermediate asymptotics where

+ non-universal cut-off (distribution of zeros lifetime)

0
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Conclusions
Summary

Clustering of heavy particles:
of two kinds, depending on the observation scale:

multifractal in the dissipative range 
dependent on a rescaled contraction rate in the inertial range

Connection to random walks in random environments: 
ejection models reproduce most features (in particular tails)

Open	 questions
Universality of mass probability distribution?
Spatial/temporal correlations (e.g. scale invariance) of the 
ejection/diffusion rate?

21


