

Inertial particle clustering and random walks in random environments

Jérémie Bec

CNRS, Observatoire de la Côte d'Azur, Université de Nice

in collaboration with

L. Biferale, M. Cencini, A. Lanotte (Rome), F. Toschi (Eindhoven), B. Merlet (Paris), R. Chétrite, S. Musacchio (Nice)

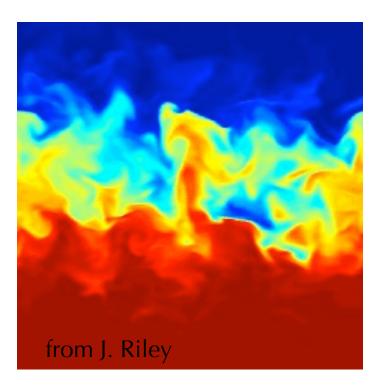
Anomalous Transport: from Billiards to Nanosystems, Sperlonga, September 2010

Turbulent Transport/Mixing

Industrial/Natural problems: passive or active transport of species by a turbulent flow

Effect of turbulence: enhance mixing/dispersion (w.r.t. molecular diffusion)

> Eddy diffusivity (~mean-field effect)



Quantifying fluctuations? What are the mechanisms leading to the presence of very high concentrations?

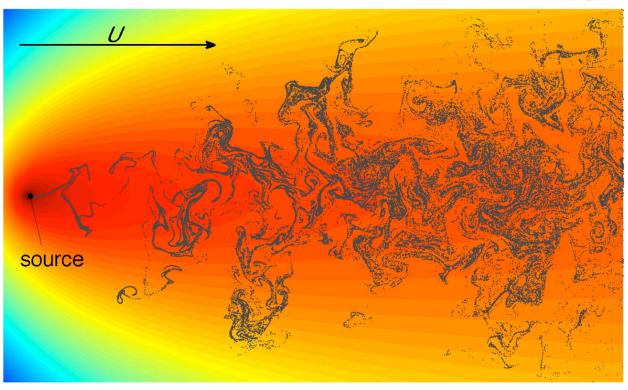
Fluctuations in turbulent transport

Fluctuations are important for risk assessments

Models/Observations: space and/or time averages

Mean vs. meandering plumes

One source of fluctuations = the turbulent transport itself

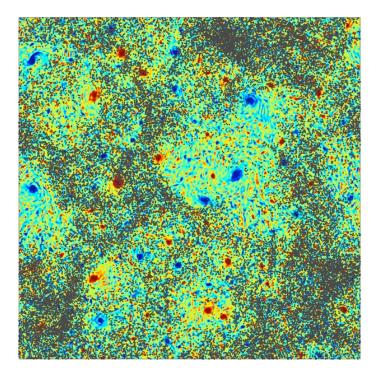


Concentration PDFs have tails rather far from Gaussian (trapping events for the random walk of particles in the random environment of subjacent turbulent fluctuations?) Universality??

Particles finite mass

Most particles are not tracers but have inertia

Heavy particles are ejected from eddies



Light particles cluster in their cores

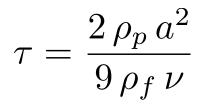
Preferential concentration

Very heavy particles

Spherical particles much much heavier than the fluid, feeling no gravity, evolving with moderate velocities: one of the simplest model

$$\ddot{\boldsymbol{X}} = -\frac{1}{\tau} \left(\dot{\boldsymbol{X}} - \boldsymbol{u}(\boldsymbol{X}, t) \right)$$

Prescribed velocity field (random or solution to NS)



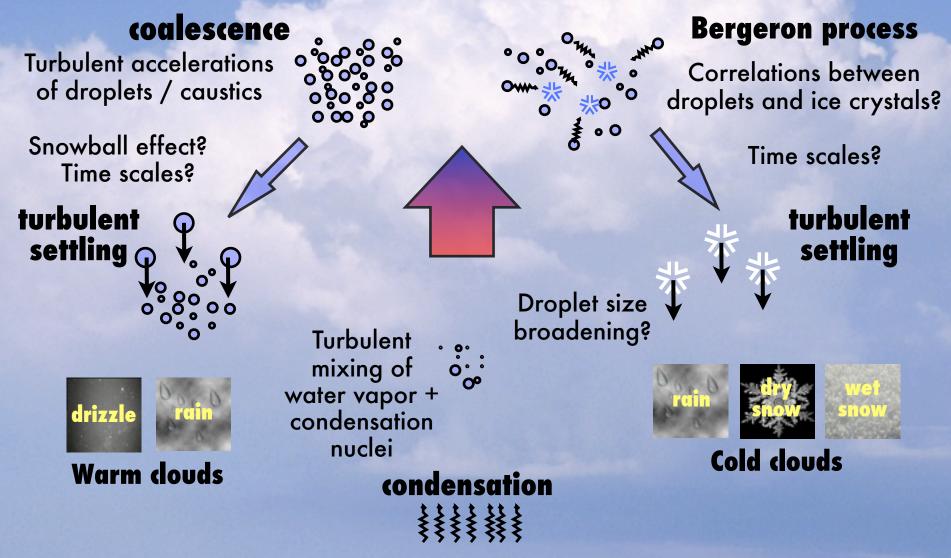
Inertia measured by the Stokes number $St=\tau/\tau_{f}$

Dissipative dynamics (even if u(x,t) is incompressible) Lagrangian averages correspond to an SRB measure (with support on the attractor) that depends on time and on the realization of the fluid velocity field.

Warm clouds

Condensation, Coalescence and Precipitation

Controversial question on the effect of airflow turbulence



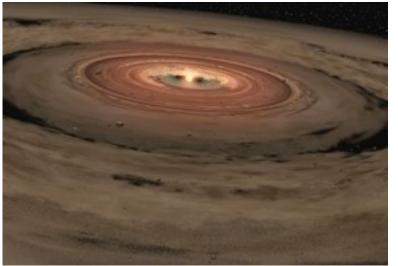
Planet formation

protostar nebula

gravitational collapse

differential rotation + momentum dissipation ⇒ migration toward the equatorial plane

circumstellar disk



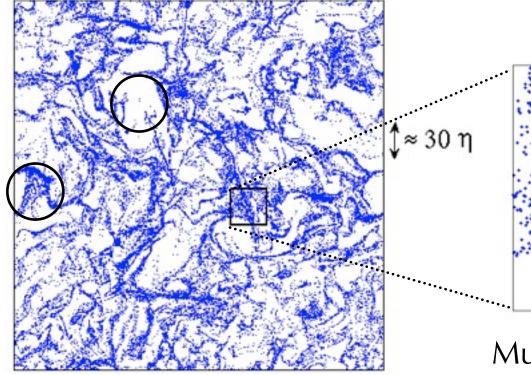
planetary system

Development of **turbulence** in the gas motion + **accretion** of dust particles creation of medium-size bodies (mm to m) Time scales?

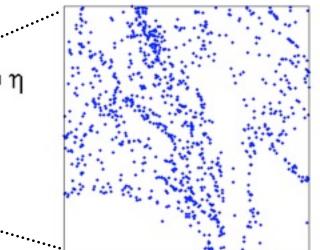
gravitational interactions + collisions between large bodies (1m to moons)

Preferential concentration

- Observed for a long time in experiments Eaton & Fessler (1994); Douady, Couder, & Brachet (1991)
- Quantifying them is important for
 * the rates at which particles interact
 * the fluctuations in the concentration of a pollutant
 * the possible feedback of the particles on the fluid



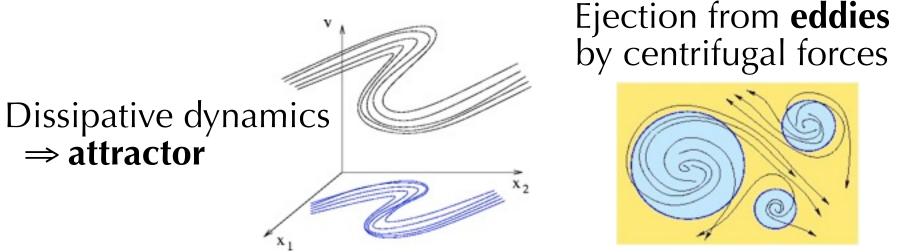
Inertial-range clusters and voids



Multifractal distribution at dissipative scales

Phenomenology

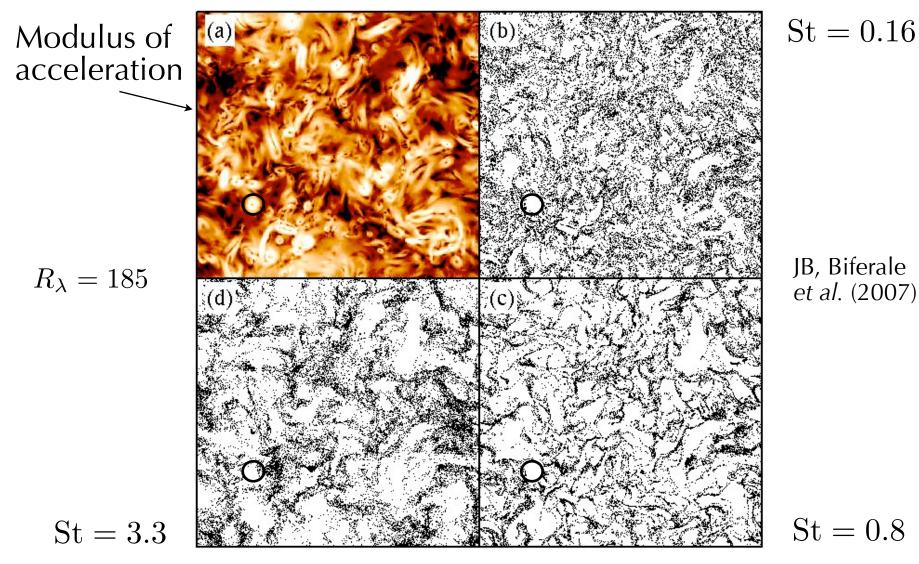
Different mechanisms:



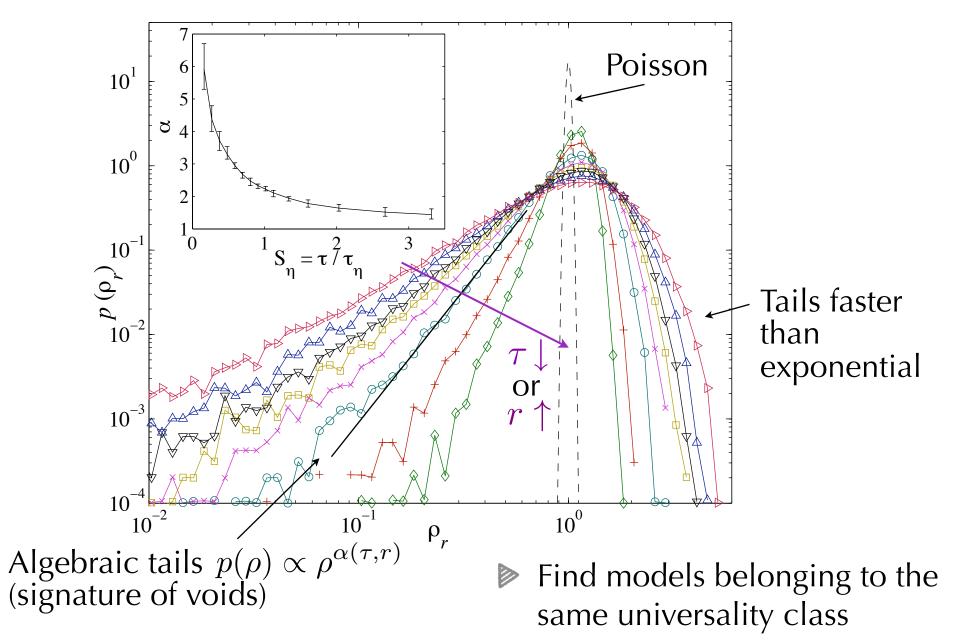
- Theory: requires elaborating models to disentangle these two effects. For instance:
 - flows with no structures (uncorrelated in time) to isolate the effects of a dissipative dynamics
 - coarse-grained closures to understand ejection from eddies
- Numerics show that these effects act at different scales

Particles in turbulent flow

Real flow contain structures and particle distribution correlates with the vortices



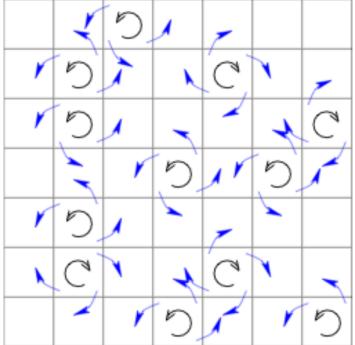
Coarse-grained density



Mass transport model

JB, R. Chétrite 2007

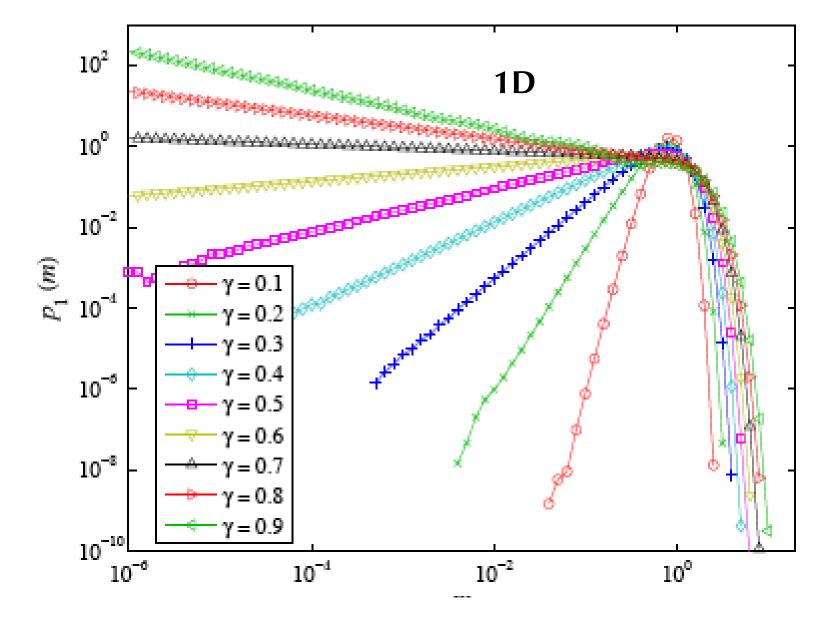
- Discreteness in time and space
- At each time step some cells are randomly chosen (with probability p) to be rotating cells. They eject a fraction γ of their mass to their neighbors



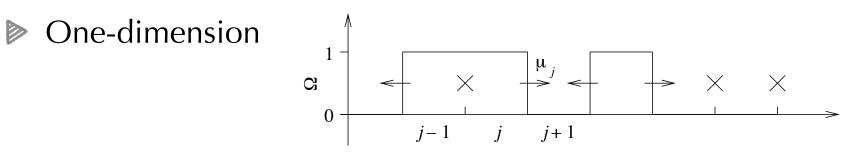
Parameters = p (probability to rotate) and γ (ejection rate)

One-cell mass distribution

PDF of mass in a given cell is very similar to that of DNS



Algebraic left tail



Left tail: $p(m) \propto m^{\alpha(\gamma)}$ Events ejecting a lot of mass: when a cell remains ejecting for a long time.

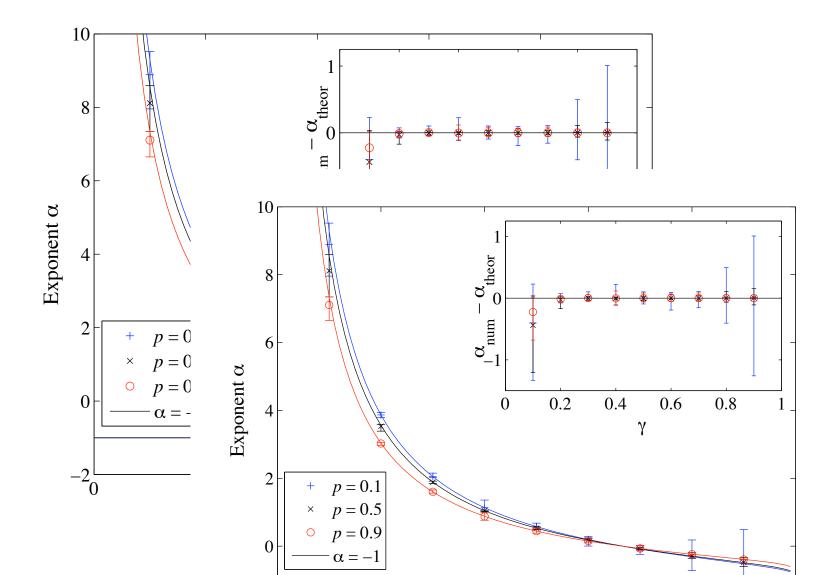
$$N \text{ times} \begin{cases} & m_0 \approx 1 \\ & m_N \approx (1 - \gamma)^N \end{cases} \quad \text{Prob} = p^N (1 - p)^{2N} \\ \text{Prob} \{ \text{mass} > m \} \ge C m^\beta \qquad \beta = \frac{\log[p(1 - p)^2]}{\log(1 - \gamma)}. \quad \text{lower bound} \end{cases}$$

Dominant balance in the Markov equation

$$\frac{2p}{(1-\gamma/2)^{\alpha+1}} + \frac{(1-p)}{(1-\gamma)^{\alpha+1}} = 3.$$

Algebraic left tail

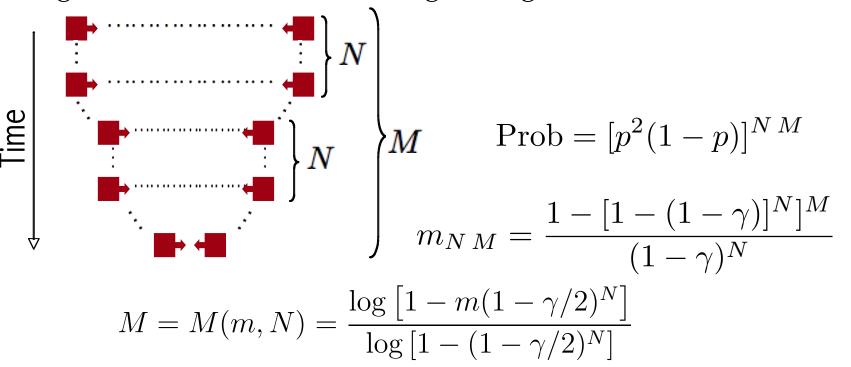
$$\frac{2p}{(1-\gamma/2)^{\alpha+1}} + \frac{(1-p)}{(1-\gamma)^{\alpha+1}} = 3$$



16

Super-exponential right tail

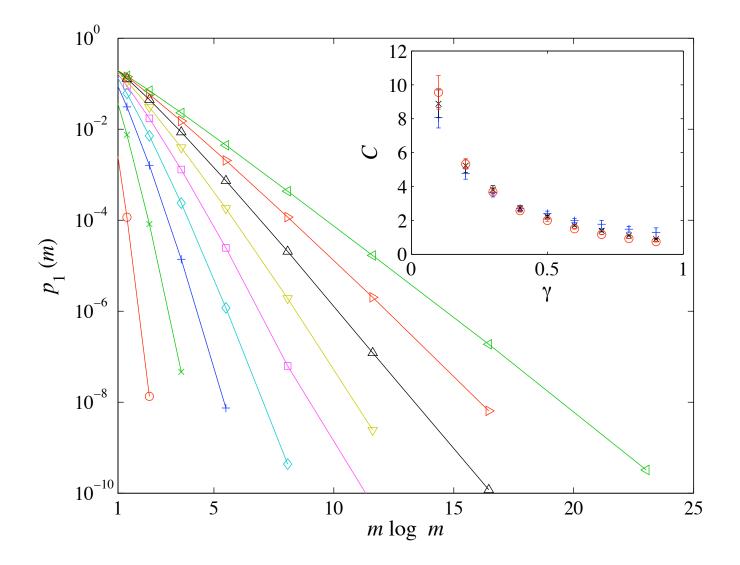
Again 1D: realization leading to large masses



Optimization problem: find N maximizing the probability to have a mass m

$$\Rightarrow p(m) \propto \exp(-C m \ln m)$$

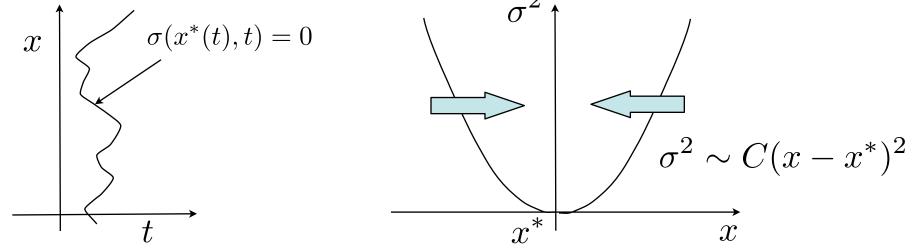
Super-exponential right tail



More general model

 σ random \Rightarrow diffusion in a random environment Green function \leftrightarrow transition probability for $dX = \sigma(X, t) dW_t$

High densities: near the zeros of the diffusion coefficient σ Example: $\sigma(x,t)$ smooth, generic, Gaussian $\langle \sigma^2 \rangle \gg 1$



Large density tail

$$\partial_t \rho = \partial_x^2 \left(x^2 \rho \right)$$

$$\rho(x,t) = \frac{1}{2} e^{2t} \operatorname{erfc} \left(\frac{\ln |x| + 3t}{2\sqrt{t}} \right)$$

$$\rho$$
Cumulative probability $P^>(\rho)$
= fraction of space-time where
the density is larger than ρ
 $\lambda = 2t / \ln \rho$

$$P^>(\rho) \simeq \ln \rho \int_1^\infty e^{-\mu(\lambda) \ln \rho} d\lambda \quad \mu$$

 \mathcal{X} 0

$$\mu(\lambda) = \frac{3}{2}\lambda - \sqrt{2\lambda(\lambda - 1)}$$

Saddle-point: $P^{>}(\rho) \propto \rho^{-1}$

Universal intermediate asymptotics where $p(\rho) = -\frac{\mathrm{d}P^{>}}{\mathrm{d}x}$

 $\propto \rho$

+ non-universal cut-off (distribution of zeros lifetime)

Conclusions

Summary

Clustering of heavy particles:

of two kinds, depending on the observation scale:

- * multifractal in the dissipative range
- * dependent on a rescaled contraction rate in the inertial range

Connection to random walks in random environments: ejection models reproduce most features (in particular tails)

Open questions

- * Universality of mass probability distribution?
- * **Spatial/temporal correlations** (e.g. scale invariance) of the ejection/diffusion rate?