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What’s this?

Correlation decay for weakly chaotic dynamical 
systems  

G.M. Zaslavsky / Physica D 168–169 (2002) 292–304 295
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ln λT (j) > 0 (n → ∞) (3.4)

with scaling constants λΓ (j), λT (j) on j th step.

Fig. 1. Example of HIT with a hierarchical set of islands and a sticky part of a trajectory (standard map, K = 6.908745): (a) full phase

space with two accelerator mode islands; (b)–(d) consequent magnification of the island chains. Full set of islands represents the hierarchy
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Abstract

In this work, we consider the problem of tracking players, during a soccer game, through the use of multiple cameras. The main goal
here consists in finding the position of the players on the pitch at each instance of time. The tracking is performed through a graph rep-
resentation in which the nodes correspond to the blobs obtained by image segmentation and the edges, weighted using the blobs infor-
mation and trajectory in the image sequence, represent the distance between nodes. We present a new way of trating occlusions by
splitting segmented blobs based on morphological operators and a backward and forward graph representation which allows an increas-
ing in the number of frames automatically tracked. Unlike other works in which the analysis of short video sequences is presented, this
paper illustrates the tracking results for all the players during a whole game.
! 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Soccer is a very popular sport in the world and there is a
great interest in better understanding its important funda-
ments if one wants to increase the performance of a team
during a game, and better adapt the planning of the train-
ings. The movement of the players on the field, as a func-
tion of time, is a useful information that can contribute
for improving the performance of the players at different
positions [1]. For tactical variations that a team can assume
during a game, for example, the measured values may be
associated to physiological variables as well as to technical
and tactical information [3,18].

The first studies concerned with the players movement
during the game were made by Reilly and Thomas [18]
which employed audio recorders to register the estimated
location of the players. Withers et al. [23] used a camera
to analyze the movement of a unique soccer player. May-
hew and Wenger [15] also used a camera to track two play-

ers, each one filmed alternately for 7 min. They computed
the time spent for each activity of these tracked players,
such as walking, running, jogging, staying, as well as the
frequency of the corresponding activities.

Aiming to better quantify the players movements, Erd-
mann [7] filmed a soccer game with one stationary TV cam-
era (using wide-angle lens of 130") and analyzed the
displacement of one player, by replaying frame by frame,
using a videotape player and a transparent squared sheet
adapted to the monitor of the screen. The player position
was annotated each 1 s, during 5 min, and the kinematic
quantities were calculated.

Henning and Briehle [10] analyze the soccer players
movement by using a global positioning system (GPS). This
kind of system locates the global position of the object by
satellites which receive the signal emitted by a transmitter
located on the earth surface. This methodology demands
a device of 250 g to be carried by the tracked object from
which the data are collected at a frequency of 1 Hz.

D!Ottavio and Tranquilii [6] presents a method based on
a potentiometer and two cameras for tracking one player
during 90 min. The operator focus on the player of interest
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Estimates and computation of correlations

Spectral methods: Perron-Frobenius operator,zeta 
functions techniques

Inducing: Poincaré recurrences, waiting time 
distributions, Markov towers

Adding noise: reading asymptotic noiseless limit 
by transients





“Generic” correlation decay?

Crawford, Cary, Collet, Isola... modes and rates of 
decay depend crucially on smoothness properties 
of observables

Physica 6D (1983) 223-232 

North-Holland Publishing Company 

DECAY OF CORRELATIONS IN A CHAOTIC MEASURE-PRESERVING 

TRANSFORMATION* 

John David CRAWFORD and John R. CARYt 

Lawrence Berkeley Laboratory Unioersity of California Berkeley, CA 94720, USA 

Received 8 March 1982 

For a chaotic, area-preserving map on the torus, we study the decay of correlations in detail. Taking as observables the 

square-integrable functions, we find examples of decay rates which are algebraic, exponential, and faster than 

exponential. For correlations that decay exponentially the rate is sensitive to the choice of function. The implications for 

numerical experiments of this nonuniformity in the decay are discussed. 

1. Introduction 

In the theory of dynamical systems, the properties of correlation functions have been studied with 

a variety of motivations: to detect a transition from ordered to chaotic motion, to test whether a 

system relaxes to equilibrium, and to determine the transport coefficients for dynamical variables. In 

the absence of rigorous results, it is widely assumed that for systems which are “sufficiently” chaotic, 

the decay of an autocorrelation function, eq. (3), denoted C&t), will be exponential, 

CF(f) - A(F) e-*, t > 0 (1) 

and the decay rate, y, should be determined by the underlying dynamics in a way that is insensitive to 

the particular observable, F, e.g., y would be given by the metric entropy or perhaps an average of the 

Lyapunov exponent. 

There are rigorous results for certain classes of chaotic maps which reinforce this belief. For 

diffeomorphisms satisfying Smale’s Axiom A, Ruelle proved the bound, 

I&(t)1 5 A(F) e-* 

for functi’ons which are continuously differentiable 111. For Anosov diffeomorphisms, or C-systems, 

Sinai has established exponential decay for correlation functions of C’ functions [2]. These results 

were obtained by associating the diffeomorphism to a Markov chain through the construction of 

Markov partitions. The exponential decay of correlations for the Markov chain implies an exponential 

decay for the correlations in the original system. 

On the other hand there are growing indications that an uncritical acceptance of (1) is naive. We 

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering, 

Mathematics, and Geoscience Division, of the U.S. Department of Energy under Contract DE-AC03-76SFOOO98, and DARPA 

Contract no. 4805-02. 

t Permanant address: Institute of Fusion Studies, University of Texas, Austin, Texas 78712, USA. 
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noisiness of numerical data



Residence times distribution

ψ(t)



Waiting times and correlations

Channon,Lebowitz,Chirikov,Shepelyansky,Karney

Correlation(n) ~ Probability that two 
points, chosen at random n-steps apart 
belong to the same residence sequence

C(n) ∼
1

〈n〉
(ψ(n) + 2ψ(n + 1) + 3ψ(n + 2) · · ·)

C(n) ∼
1

〈n〉

∫
∞

n

dt

∫
∞

t

dτ ψ(τ)



Short time dynamics is 
far more complex but 
asymptotic behavior is 
correctly reproduced 

Baladi. Eckmann, Ruelle, Dahlqvist, RA



Area-preserving map

Prototype example: parabolic fixed point

(0,0) is a parabolic fixed point

T (x, y) =
�

2x− sin(x) + y
y + x− sin(x)

z=2 intermittency?∼ x3

Lewowicz, MacKay, RA, Prampolini, Liverani



Tz(x, y) =
�

x + fz(x) + y on T
y + fz(x) on T

1-parameter family 
(Frigerio, Guarneri; RA, Cavallasca, Cristadoro)

fz(x) ∼ xz

choice of Eq. !3" we have that f!!x"#a x! and the Jacobian
matrix $Eq. !4"% of the map is

J!!x,y" = &1 + bx!−1 1

bx!−1 1
' , !14"

whose eigenvalues are written to leading order as "#

=1#$x!!−1"/2.
The vector (1,y!!x"), i.e., !1,% x&−1", tangent to the un-

stable manifold satisfies

J!!x,y"& 1

% x&−1 ' # !1 + $ x!!−1"/2"& 1

% x&−1 ' , !15"

i.e.,

1 + bx!−1 + %x&−1 # 1 + $x!!−1"/2,

b x!−1 + %x&−1 # %x&−1 + %$x!!−1"/2+!&−1", !16"

and from these equations, remembering that x'1 and !
(1, we obtain

& =
! + 1

2
. !17"

We note explicitly that, for !=3, this result is in agreement
with the case f =x−sin!x" derived in $12%. We can now study
the dynamics restricted to the unstable manifold. Let us de-
note by ! the arc length coordinate along the manifold; for
small x we get

!!x" = (x

dx)1 + $dy!x"/dx%2 # x . !18"

Denote by !n the coordinate ! at a point (xn ,y!xn") and by
!n+1 the coordinate along the manifold of T!(xn ,y!xn"),

!n+1 = !n + h!!n" . !19"

By using Eqs. !18" and !2" we get

h!!" #
d!

dt
!!" =

d!

dx

dx

dt
!!" # $y!!" + x!!!"% = !& + !!.

!20"

From Eq. !17" and by remembering that !(1, we obtain, via
a continuous time approximation $36,37%,

h!!" # !& =
d!

dt
. !21"

If we fix the boundary of ) at a scale L, we can then evalu-
ate the time needed to reach the boundary as a function of the
arc length ! along the manifold, by employing the standard
argument of $36,37%:

T!!" =
2

! − 1
!!−!!−1"/2 − L−!!−1"/2"; !22"

this implies the following scaling for the inverse function:

!!T" * T−2/!!−1". !23"

We now arrive at the crucial point: we estimate p)!n" as the
area of a rectangle having one vertex at the origin !the para-
bolic fixed point", and another at a point on the unstable
manifold !x̄ , ȳ" that exits ) in n steps !see Fig. 2":

p)!n" # x̄ȳ # !!n"&+1 # !n−2/!!−1""&+1 = n−!!+3"/!!−1".

!24"

Thus we have an estimate of the power-law decay of the
survival probability as a function of the intermittency param-
eter ! as

p)!n" * n−!!+3"/!!−1", !25"

and for the waiting time distribution as well $Eq. !9"%:

*)!n" * n−!3!+1"/!!−1". !26"

In view of the argument we earlier mentioned $see Eq. !11"%,
the estimate of Eq. !25" suggests the same decay law for
!auto"correlation functions,
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FIG. 1. !Color online" Portion of phase space of the map of Eq.
!2" for !=3 close to the marginal fixed point, together with the
graph of its unstable manifold $continuous !red" line%.

FIG. 2. !Color online" A few )n !once we set ) as the first
quadrant x+0, y+0".

DYNAMICAL AND TRANSPORT PROPERTIES IN A… PHYSICAL REVIEW E 77, 046206 !2008"
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Cg(n) ∼ n−
z+3
z−1

and

ψΩ(n) ∼ n−
3z+1
z−1 .

CAA!n" # n−!!+3"/!!−1". !27"

The next section will present several numerical simulations
concerning these quantities.

IV. ASYMPTOTIC DECAYS

We start by considering the survival probability: Fig. 3
shows two examples of numerically computed p"!n". The
numerical data exhibit an excellent agreement with analytic
estimates over a wide range of intermittency parameters, as
shown in Fig. 4, which also provides clear indications of the
validity of our estimate for the asymptotic decay of the wait-
ing time distribution.

We already mentioned that various arguments support the
expectation that correlation functions should decay as the

survival probability $Eq. !27"%, so we proceed to scrutinize
this prediction by running extensive direct numerical simu-
lations on autocorrelation functions; as we are dealing with
an ergodic !and mixing $12%" system, autocorrelation func-
tions can be evaluated in terms of phase space averages !in-
stead of temporal averages":

CAA!n" = &
M

d#!z"A!T!
nz"A!z" − '&

M
d#!z"A!z"(2

,

!28"

where A is a smooth function on the phase space M and # is
the invariant Lebesgue measure. From a numerical point of
view, it is known that often Monte Carlo evaluation of Eq.
!28" cannot be pushed too far, as the statistical error is of
order 1 /)N in the number of initial conditions. Generally we
also expect an !exponential" transient in the decay
$10,31,38%; the transient time t̄ might depend on both ! and
the choice of phase space function A $6%. We also remark that
the smoothness of the function A plays a fundamental role;
as a matter of fact, we may obtain arbitrarily slow correlation
decay even for Anosov maps by using integrable nonsmooth
functions $39%, or, from a mathematical point of view, we
may have that the degree of smoothness determines the es-
sential spectral radius of the Perron-Frobenius operator $40%.

We performed explicit calculations of the autocorrelation
function for different values of the intermittency parameter !
and for different observables. We obtained the best results
!i.e., cleanest curves and shortest time t̄" for large values of !
and by using A!x ,y"=e−y2

. The choice of the smooth func-
tion to use is quite arbitrary; we looked for a function not
vanishing in correspondence with the marginal fixed point
!as suggested, for example, in $6%" and by the special choice
of a Gaussian depending on a single variable we could save
computational time !see also $21%". In Figs. 5 and 6 we
present results for !=3 and 10.
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FIG. 3. !Color online" Survival probabilities for !=3 !lower
curve" and 10 !upper curve" together with the power-law decays
predicted by Eq. !25". We used 1012 initial conditions and set "
= $−1 /2,1 /2%2.
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4

8

12
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FIG. 4. !Color online" Exponents of power-law decay for sur-
vival probability p"!n" and waiting time distribution $"!n": lines
refer to analytic estimates of Eq. !25" !upper" and Eq. !26" !lower":
circles come from numerical simulations of the waiting time distri-
bution, diamonds from survival probability simulations.
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FIG. 5. !Color online" Autocorrelation function for the observ-
able e−y2

and !=3. We used 2%1010 initial conditions !uniformly
distributed in the torus cell". The predicted decay is shown by the
!red" straight line, which has a slope −3.
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The case reported in Fig. 5 is important because for a
similar 2D mapping !having the same intermittent exponent
!=3" it was proved in #12$ that the decay is faster than n−2,
and a class of cross correlation was constructed indicating
that the bound is optimal; while survival probability data for
the same exponent indicate clearly that the decay we predict
!n−3" is numerically well reproduced, data for correlations
are less conclusive !see Fig. 5". In general, numerical data
are more difficult to interpret for low values of !, and nu-
merical fits tend to lie below the predicted exponents !see
Fig. 7", while for larger values of ! the accordance with our
estimates is much better. Moreover, the agreement improves
when the number of initial conditions is increased, so that we
expect the discrepancy to be essentially due to numerical
limitations !Fig. 7". Further indications of the similarity be-

tween correlations and survival probability decays will be
provided in Sec. VI, when we consider the role of stochastic
perturbations.

V. TRANSPORT PROPERTIES

In order to study transport properties, we have to abandon
the dynamics restricted to the torus #Eq. !2"$ by lifting the
map in an appropriate way.

For the sake of clarity we introduce a third dimension !say
z" to describe the motion through elementary cells. We then
assign a jumping number +1 to the points belonging to the
first quadrant, −1 to the points belonging to the third quad-
rant, and 0 to all the other points. This means that a laminar
phase of length n will correspond to a jump in the positive
direction of n elementary cells Fig. 8.

Formally, the lift is given by the following formula:

T̄!!x,y,m" = % !T!!x,y",m" for xy " 0,

!T!!x,y",m + sgn!x"" for xy # 0,
&

!29"

where m is an integer variable.
Considering successive entrances into the laminar regions

as uncorrelated, we can approximate the diffusion process by
a continuous time random walk !CTRW" #41,42$, with the
probability distribution of the laminar phases given by the
waiting time distribution $%!n". In particular, by making use
of the CTRW approach, it is possible to characterize the
transport properties of the process in terms of the set of mo-
ments of the diffusing variable #43$:

'(z!n" − z!0"(q) * n&!q", !30"

which is expected to present a sort of phase transition #25$.

A. Continuous time random walk approach

For completeness, we briefly recall the standard theory of
continuous time random walks #41–45$. Generally speaking,
a CTRW is a stochastic model in which steps of a simple
random walk take place at times ti, following some waiting
time distribution. Mathematically, it is asserted that a CTRW
is a !non-Markovian" process subordinated to a random walk
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FIG. 6. !Color online" Autocorrelation function for the observ-
able e−y2

and !=10. We used 109 initial conditions !uniformly dis-
tributed in the torus cell". The predicted decay is shown by the !red"
straight line, which has a slope −13 /9.

3 4 5 6 7 8 9 10γ
1

2

3

4

4 6 8 10

correlations decay exponent
correlations decay exponent
(more initial conditions)
analytical estimate

FIG. 7. !Color online" Numerical values of power-law decay
exponents for the autocorrelation function for the observable e−y2

#!black" circles and !blue" triangles$ together with the analytical
estimates #full !red" line$. Circles were obtained by using 2'109

initial conditions while the triangles were obtained for !=2.5 by
using 5'1010 initial conditions, in the range 3(!(6 by using 2
'1010 initial conditions, and in the range 6.5(!(10 by using
1010 initial conditions.

FIG. 8. !Color online" Jumping numbers and lifted map.
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CAA!n" # n−!!+3"/!!−1". !27"

The next section will present several numerical simulations
concerning these quantities.

IV. ASYMPTOTIC DECAYS

We start by considering the survival probability: Fig. 3
shows two examples of numerically computed p"!n". The
numerical data exhibit an excellent agreement with analytic
estimates over a wide range of intermittency parameters, as
shown in Fig. 4, which also provides clear indications of the
validity of our estimate for the asymptotic decay of the wait-
ing time distribution.

We already mentioned that various arguments support the
expectation that correlation functions should decay as the

survival probability $Eq. !27"%, so we proceed to scrutinize
this prediction by running extensive direct numerical simu-
lations on autocorrelation functions; as we are dealing with
an ergodic !and mixing $12%" system, autocorrelation func-
tions can be evaluated in terms of phase space averages !in-
stead of temporal averages":

CAA!n" = &
M

d#!z"A!T!
nz"A!z" − '&

M
d#!z"A!z"(2

,

!28"

where A is a smooth function on the phase space M and # is
the invariant Lebesgue measure. From a numerical point of
view, it is known that often Monte Carlo evaluation of Eq.
!28" cannot be pushed too far, as the statistical error is of
order 1 /)N in the number of initial conditions. Generally we
also expect an !exponential" transient in the decay
$10,31,38%; the transient time t̄ might depend on both ! and
the choice of phase space function A $6%. We also remark that
the smoothness of the function A plays a fundamental role;
as a matter of fact, we may obtain arbitrarily slow correlation
decay even for Anosov maps by using integrable nonsmooth
functions $39%, or, from a mathematical point of view, we
may have that the degree of smoothness determines the es-
sential spectral radius of the Perron-Frobenius operator $40%.

We performed explicit calculations of the autocorrelation
function for different values of the intermittency parameter !
and for different observables. We obtained the best results
!i.e., cleanest curves and shortest time t̄" for large values of !
and by using A!x ,y"=e−y2

. The choice of the smooth func-
tion to use is quite arbitrary; we looked for a function not
vanishing in correspondence with the marginal fixed point
!as suggested, for example, in $6%" and by the special choice
of a Gaussian depending on a single variable we could save
computational time !see also $21%". In Figs. 5 and 6 we
present results for !=3 and 10.
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FIG. 3. !Color online" Survival probabilities for !=3 !lower
curve" and 10 !upper curve" together with the power-law decays
predicted by Eq. !25". We used 1012 initial conditions and set "
= $−1 /2,1 /2%2.
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waiting time distribution
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FIG. 4. !Color online" Exponents of power-law decay for sur-
vival probability p"!n" and waiting time distribution $"!n": lines
refer to analytic estimates of Eq. !25" !upper" and Eq. !26" !lower":
circles come from numerical simulations of the waiting time distri-
bution, diamonds from survival probability simulations.
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FIG. 5. !Color online" Autocorrelation function for the observ-
able e−y2

and !=3. We used 2%1010 initial conditions !uniformly
distributed in the torus cell". The predicted decay is shown by the
!red" straight line, which has a slope −3.
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under the operational time defined by the process ti !44".
A CTRW is completely characterized by the quantity

!#r ,"$, the probability density function for moving a dis-
tance r during a time interval " in a single motion event; the
dependence upon r and " can be either decoupled !i.e.,
!#r ,"$=##r$!#"$" or coupled !e.g., !#r ,"$=##%r%"$!#"$".

The object we are interested in is the probability density
function P#x , t$ of being at x at time t; indeed it allows us to
obtain the full spectrum of transport moments, through the
formula

&x#t$q' = #i$qL−1( !q

!kq %P̂˜ #k,u$%k=0) , #31$

where L−1 is the inverse Laplace transform and P̂
˜

denotes the
Fourier-Laplace transform, k being the Fourier variable and u
the Laplace variable.

Let us introduce $#x , t$, the probability density function
of passing through #x , t$, even without stopping at x, in a
single motion event,

$#x,t$ = P#%x%t$*
t

%

d"*
%x%

%

dr !#r,"$ . #32$

P#x , t$ is given by the sum of the probabilities of passing
through #x , t$, even without stopping at x, in one or more
motion events,

P#x,t$ = $#x,t$ + *
−%

%

dx!*
0

t

d"!#x!,"$$#x − x!,t − "$ + ¯ .

#33$

By performing the convolution integrals, the Fourier-Laplace
transform of this expression assumes the closed form

P̂
˜ #k,u$ =

$̃̂#k,u$

1 − !̂
˜ #k,u$

. #34$

A special realization of the CTRW is the so-called velocity
model !42": a particle moves at a constant velocity for a
given time, then stops and chooses a new direction and a
new time of sojourn at random according to given probabili-
ties.

Our case belongs to this class, with velocities being &1,
and

##%r%"$ =
1
2

'#%r% − "$ and !#"$ + "−g, #35$

so that

!#r,"$ +
1
2

'#%r% − "$"−g and $#x,t$ +
1
2

'#%x% − t$t−g+1,

#36$

where g= 3(+1
(−1 , !#"$ being given by the waiting time distri-

bution !)#n$ of Eq. #26$.
By making use of the Tauberian theorems for the Laplace

transform !46" and by applying the CTRW formalism !45"
we derive, through Eqs. #31$ and #34$ the full spectrum of

transport moments. The obtained spectrum of moments
#more precisely, from the previous calculation it is possible
to obtain only the even moments, and then to infer that a
similar law drives also the behavior of the absolute value of
odd moments$ is

&%z#n$ − z#0$%q' , n*#q$, #37$

where the exponent *#q$ has a piecewise linear behavior

*#q$ = -q/2 if q + 2, ,

q − , if q - 2, ,
. , =

( + 3
( − 1

, #38$

in agreement with numerical results shown in Fig. 9. The
transition at q=2, in the momenta spectrum of Eq. #38$ is
general in systems manifesting anomalous diffusion !25".

As an outcome, we have that #anomalous$ transport prop-
erties fully agree with the power laws we deduced for the
waiting time distribution !Eq. #26$".

VI. NOISE EFFECTS

In order to better understand the link between correlation
decay and time statistics #and to verify, if not rigorously
prove, it$, we consider the effects of a small stochastic per-
turbation. The behavior, under the modified dynamics, of the
survival probability and of correlation decay may provide
further information about the interconnection between them.
At the same time, the dynamical effects of a superimposed
noise are interesting by themselves #see Refs. !16,37,47,48"$.

The general expectation is that small-scale stochasticity
blurs the behavior in the vicinity of the parabolic fixed point,
enhancing the chaotic character of the motion; one then ex-
pects a transition to an exponential decay of the survival
probability and correlation functions: this intuition is cor-
roborated by numerical experiments, reported in Fig. 10. We
perturb the system by introducing a stochastic noise, adding
at each iteration of the map a random vector of the type .
= #.1 ,.2$ with .i independent identically distributed #i.i.d$ in

0 2 4 6 8 10q
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ν(q)

γ=3
γ=5
γ=11/3
γ=7

FIG. 9. #Color online$ Spectrum of the transport moments for
different values of the parameter (. Lines correspond to theoretical
predictions of Eq. #38$; symbols correspond to numerical simula-
tions: circles (=3, diamonds (=11 /3, squares (=5, and triangles
(=7.
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Statistics of Finite-time Lyapunov

-Detection of small islands

Tomsovic, Lakshminarayanthough note that “wiggles” in the FTLE were attributed to
stability islands in an earlier work on kicked tops !27". The
variance can be written

Var!!t
0#q0,p0$"A = DA/t", #22$

where #2
0#t$=Var!!t

0#q0 , p0$"$. After accounting properly for
the t−" dependence, one sees that DA fluctuates as a function
of time similarly to a diffusive variable. Generally speaking,
the greater the time range over which " is calculated and the
greater the number of trajectories run, the greater precision
with which " is determined. In this regard, the simplicity of
the j=0 approximation is quite helpful because it makes it
possible to increase both in a practical sense. One suspects
that the smaller and less influential the island of regular mo-
tion, the closer " approaches unity and thus " accuracy is
directly linked to how small an island one can detect in this
way. Earlier works such as !28,29" have studied scaling laws
that arise in the fluctuations of the FTLE and have already
emphasized the role of sticky regions and islands. Ahead, we
show islands of measure roughly 0.01% of $ that were
found with the FTSE time scalings relatively easily.

In Fig. 6 we show the scaling of the FTSE variance for a
few values of the kicking parameter compared with "=1.

The regular island structures of Fig. 4 at K=9.26 have a
very significant effect on the time scaling. One also sees the
appearance of more than one time scale—i.e., slope—
depending on the time regime. The turnstiles previously pic-
tured would at first lead to only small numbers of trajectories
entering into the interior region of the homoclinic tangle, and
one would expect " to begin close to unity. Later, a certain
proportion would get trapped inside for up to hundreds or
thousands of time steps. During this period, the greatest pro-
portion would resemble nearly stable orbits and " would
deviate most from unity. Further in time, only the trapping
right at the regular island-chaos interface would contribute to
deviations from unity and the slope increases somewhat
again. It is known that different trapping mechanisms can
coexist in phase space and lead to a “multifractal” process
!30". This particular example is instructive because the turn-

stile time scale is fairly well separated from the others. The
smaller the stable islands, the more the power laws recover
the uncorrelated 1/ t form. At K= #8.47,9.35$ there are only
small detectable deviations from unity, and in both cases it is
possible to locate very small islands; see Fig. 7.

At K=9.5 we could not locate islands in this way and the
exponent " is as close to unity as the precision of the calcu-
lation.

It is worthwhile remarking that while accelerator modes
give rise to anomalous diffusion #in momentum$ in the stan-
dard map on the cylinder !31", the different scaling regimes
discussed above hold whether the stable regions are accel-
erator modes or not. However, the suppression of the rate of
the variance’s approach to zero and the average Lyapunov or
stability exponent to the ergodic average in the presence of
small islands have similar origins. Namely, they are due to
trajectories spending intermittently long intervals of time
near sticky islands or regions of almost marginal stability
and nonhyperbolicity.

We point out that although power laws such as that given
in Eq. #22$ are susceptible to variations in the initial position
#q0 , p0$, to changes of the trajectory sampling, and to the
time window in which they are under study, the " deviations
from unity are robust structures and can be correlated to
phase-space structures.

In Fig. 8 we show the variation of " as K is tuned through
a range which has small stable regions. The “normal ” expo-
nent "=1 is realized to a very good approximation for most
values of K, indicating the general absence of significantly
large, low-instability traps. The prominent deviation around
K=9.3 is due to the structure of Fig. 4 born out of a double
saddle node bifurcation around K=9.2 and it persists to near
K=9.45. It grows to its largest size around K=9.26 where the
variance decays the most slowly, "%0.16. In terms of the
phase-space area, the islands occupy approximately 0.5% of
$ at K=9.26 and 0.2% at K=9.35 #for which "%0.88$.
Notice robust, though small, deviations from unity at several
other values of K. For example, even for an island as small
as that found at K=8.47 #0.01%, "%0.96$, there is a range
of K values where " is significantly and consistently differ-
ent from unity; the inset shows a finer scan of this region.
The fine oscillatory structure that is apparent here could be
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FIG. 6. The scaling of the variance for an ensemble of 40000
initial conditions uniformly distributed in the square A
= &#0.10,0.10$ , #0.15,0.15$'.
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FIG. 7. #Color online$ Small regular islands found at K
= #8.47,9.35$ and their surrounding homoclinic tangles. Not only
are the islands much smaller than for K=9.26, but the turnstile
fluxes are larger relative to the measure of the enclosed area, mak-
ing the flow much less restricted in the neighborhoods of the is-
lands. The measure of the regular region for K=8.47 is roughly
0.01% of $, counting all the unique iterations of the structure.
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Large deviations and correlations

Originally proposed for 1d intermittent maps

λn(x0) =
1
n

ln

�����
df (n)(x)

dx

����
x0

�����

with corresponding probability distribution  Pn

Fix a threshold λ̃ <λ

Mλ̃(n) =
� λ̃

−∞
dλn Pn(λn).



Alves, Luzzatto, Pinheiro

The idea is to connect the shrinking of such a 
tail to correlation decay

Mλ̃(n) ∼ 1
nξ

C(n) ≤ 1
nξ−1



Birkhoff averages and correlations

µ

�
x

���� |n−1
n−1�

k=0

φ(f (k)(x))− φ| > �

�
≤ Cφ,�

1
nξ

Melbourne

Pollicott, Sharp

Polynomial large deviations for bounded 
functions



An intermittent paradigm: Pomeau-Manneville

 Marginal fixed 
point

xn+1 = xn + xz
n



Periodic orbits instability growth

Hyperbolic orbits Λn ∼ σn

Sticking orbits Λ0n1 ∼ nz/(z−1)

broaden the distribution of 
finite-time averages

change the spectral properties of PF



Instability statistics and mixing rates

Roberto Artuso1,2,* and Cesar Manchein1,3,†

1Center for Nonlinear and Complex Systems and Dipartimento di Fisica e Matematica,
Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy

2I.N.F.N. Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
3Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil

!Received 3 June 2009; revised manuscript received 7 August 2009; published 21 September 2009"

We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more
precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative
estimates of polynomial decay rates of time correlations and Poincaré recurrences in the-quite-delicate case of
dynamical systems with weak chaotic properties.

DOI: 10.1103/PhysRevE.80.036210 PACS number!s": 05.45.Ac

I. INTRODUCTION

A general problem of dynamical systems theory concerns
both the evaluation of time or space averages, and an under-
standing of how finite order estimates of such averages con-
verge to their asymptotic limit. The second feature is tightly
connected to a quantitative estimation of mixing rates, that is
how time correlations asymptotically decay. Though in ex-
tremely simplified models !simple Markov chains, lattice
models with a finite transition matrix" the connection be-
tween convergence of finite order estimates and mixing prop-
erties may be established quite easily, the issue in more gen-
eral contexts is much more complicated, and many facets of
the problem still remain as open problems. In particular
when weakly chaotic systems are considered it is expected
that sticking to regular structures in the phase space severely
degrades mixing properties, and critical, polynomial decay of
temporal correlations can be observed. We remark that mixed
systems are thought to be generic #1$ and that slow polyno-
mial decay may influence deeply deterministic transport
properties #2$, as the Kubo formula suggests. We here pro-
pose to look at large deviation properties of finite time esti-
mates as an efficient tool to get quantitative information
about mixing properties of the system. We emphasize that
the idea of a relationship between the tails of finite time
distributions and memory effects is not new: for instance
inspection of the tails of finite time Lyapunov exponents was
used to get informations about qualitative changes in the
dynamics of coupled maps in #3$, the detection of small
regular islands in #4,5$, or motion of a particle in a random
time-dependent potential #6$ !see also #7$ for an example in
hyperbolic dynamics". A rigorous analysis, inspiring the
present work, was presented in #8,9$: originally #8$ a class of
one-dimensional maps f was taken into account !the theoret-
ical analysis was extended to higher dimensional systems in
#10$: if we denote by ! the Lyapunov exponent, and by
Pn!!n" the distribution of finite time estimates

!n!x0" =
1
n

ln%% df !n"!x"
dx %

x0

% !1"

then, by fixing a threshold !̃ such that 0"!̃"! we may
estimate the fraction of initial conditions yielding an estimate
below the threshold

M!̃!n" = &
−#

!̃
d!nPn!!n" . !2"

The quantity M!̃!n" asymptotically vanishes if the system is
ergodic !as we always suppose": for weakly chaotic system it
may however decay polynomially,

M!̃!n" '
1
n$ , !3"

in such a case a bound is proven #8$ for correlation decay,

C!n" %
1

n$−1 , !4"

where, as usual,

C!n" =& d&!x"'!x"(!f !n"!x""

where ' and ( are taken in a suitable class of smooth ob-
servables #11$ and & is the invariant measure of the system.
Actually in #8$ M!̃!n" is defined in a slightly different way
!a full equivalence is established only via further assump-
tions": our definition accomplishes a twofold purpose: on the
one side it allows a comparison with large deviation esti-
mates in #9$, and on the other side it yields an easily com-
putable quantity.

This actually leads to the main point of our paper: we
argue that scrutinizing the way in which M!̃!n" decays pro-
vides an extremely efficient way of studying quantitatively
the decay of correlations, a key issue in the analysis of fully
and weakly chaotic dynamical systems. As a matter of fact
direct quantitative estimates of mixing rates are known to be
quite delicate numerically #12$, and many efforts have been
devoted to devise how to tackle the problem by alternative

*roberto.artuso@uninsubria.it
†cmanchein@gmail.com
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check of the performance of the method



Pikovsky map

C(n) ∼ n−1/(z−1)



Large deviations estimates
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Pikovsky map in the regime of integrable 
correlations
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by analyzing the distribution of Lyapunov exponents closer
to zero in logarithmic scale it is possible see how the distri-
bution obeys a power-law decay with time.

As a final remark we point out that, though large deviation
estimates such as Eq. !5" are symmetric with respect to the
asymptotic phase average, from a physical point of view it is
quite natural to focus the interest on the small instability
branch, as it is precisely anomalous proliferation of almost
stable segments of trajectories that induces transition from
exponential to power-law decay of temporal correlations.

B. Two-dimensional systems: a family of area-preserving
maps

The second dynamical system we consider is a family of
area-preserving maps on the two torus #−! ,!"2, depending
on two parameters " and #,

M!",#":$yn+1 = yn + f!xn" mod 2!

xn+1 = xn + yn+1 mod 2!
,% !8"

where f!xn" is defined by

f!xn" = #xn − !1 − ""sin!xn"&#. !9"

A map of this family was introduced in #23&, and different
features were analyzed in #24–27&: we recall a few of the
relevant properties. When "$0 the map is hyperbolic, while
for "=0 the fixed point at !0,0" becomes parabolic: in such a
case dynamics close to the fixed point depends on the value

of #, which plays the role of an intermittency parameter:
correspondingly the decay of correlations is exponential in
the former case, while in the latter a power law is expected,
with an exponent depending on #. In #27& the following law
was proposed:

C!n" ' n−3!#+1"/!3#−1"; !10"

in the case #=1 a rigorous bound is proven #26&
(C!n"(%n−2 #while Eq. !10" predicts an exponent −3&.

Our numerical experiments encompass both regimes: in
Fig. 4!a" a hyperbolic parameter choice leads to an exponen-
tial decay rate for M&̃!n", while in the intermittent case a
power law is observed, with an exponent in agreement with
Eq. !10" #see Fig. 4!b"&. In this case the numerical results
were obtained by using 106 and 108 initial conditions uni-
formly distributed in the phase space, respectively.

The case reported in Fig. 4!b" allows to scrutinize the
numerical virtues of our approach with alternative methods
!that were employed in #27&": it provides estimates as sharp
as the analysis of return time statistics !by employing how-
ever much less initial conditions", while it outperforms direct
computation of correlations.

C. Ensemble of modified standard maps

The last case we present concerns a general issue, namely
whether universality properties are exhibited for Hamiltonian
systems with a hierarchical !mixed" phase space. This is a
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FIG. 2. !Color online" Decay of M&̃!n" for system !6" with
z=2.0, for different cutoffs &̃, where the red !gray" curve is a re-
gression fit of power-law decay with exponent '=1.
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FIG. 3. !Color online" Distribution of Lyapunov exponents
Pn!&n" for map !6" with z=2.0. Inset: a magnification of Pn!&n" is
shown in logarithmic scale. The distribution of Lyapunov exponents
closer to zero show a polynomial decay with time.
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FIG. 4. !Color online" Decay M&̃!n" !symbols" together with a regression fit !full lines" for map !8" with !a" "=0.5 and #=1 !exponential
rate decay 0.87(0.01" and !b" "=0 and #=1 !polynomial rate decay 3.05(0.05". Both fits were done by starting at n=3000.
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2d parabolic map

yn+1 = yn + f(xn) mod 2π,
xn+1 = xn + yn+1 mod2π,

f(xn) = [xn − (1− ε) sin(xn)]γ



Conclusions (if any)

The study of correlations for weakly chaotic 
systems is still a hard problem

Large deviations represent a mathematically 
sound approach to such a problem, and a 
numerically robust procedure


