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The respiration system
of mammals is made of
two successive tree structures.

The first structure is
a purely conductive tree in which oxygen
Is transported with air and
No oxygen is absorbed.




Conductive tree with 15 successive
bifurcations: 21° = 30,000 bronchioles?

Cast of human lung - Weibel




Each bronchiole is the opening of
a diffusion-reaction tree
of 8 generations in average: a pdlmonary acinus
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Convection/diffusion transition

Acinus Peclet number: 100,
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B.Sapoval, M. Filoche, E.R. Weibel, PNAS 99: 10411 (2002) 4




The mathematical frame

At the subacinus entry:
Diffusion source

- |In the alveolar air:
Steady diffusion obeys Fick's law

« At the air/blood interface:
Membrane of permeability W,,

The real boundary condition:

]02 = Jn

Robin or Fourier BC:




Consider an irregular surface of
area A and diameter L,. How do we
know if there is screening or not?
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By comparing the conductance to reach the surface
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*if Yieach™ Yeross the surface works uniformly
- if Yeacn< Ycross € less accessible regions are not reached,

transport is limited by diffusion, there is diffusion screening.



Consider an irregular surface of L
area A and diameter L,. How do we A
know if there is screening or not?

By comparing the conductance to reach the surface

Y eacn~ D.LaWith the conductance to cross it Y.~ W.A
o if Yieach™ Yeross the surface works uniformly
* if Yieacn< Yeross the less accessible regions are not reached,

there 1S strong diffusion screening.

Y =Y

reach Cross

crossover when:

or AlL,~DIW = A




More generally this notion permits the comparison of
bulk Laplacian and surface processes with
morphology.

A i1s the ratio of the bulk transport coefficient
to the surface transport coefficient

Here A = D/IW
Heterogeneous catalysis: A = D/R (reactivity)
Electrochemistry: A = (electrolyte conduct. / surface conduct.)

NMR relaxation: A = D/W (spin permeability proportional to the surface
spin relaxation rate)

Single phase porous flow A = hydraulic permeability/ surface permeability

Heat transport ...



.if AIL, < A the surface works uniformly

- if AIL,> A the less accessible regions
are not reached,
there exists diffusion limitations

The crossover is obtained for:

Y reach Y cross => A/, LA ~ A

SO what is A/L, ?7?7




What is the geometrical (here
morphological) significance of the length A/
La=L,?

L, is the perimeter of
an “average planar cut” of the surface.

Examples:
Sphere: A=4aR?; L,=2R; A/L,=2xR.

Cube: A=6a?; L,=a; A/L,= 6a.

Self-similar fractal with dimension d: A=/2(L/)?, L,=L; A/
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Experiment ...




For an irregular surface A/L, is the total length
of a planar cut.

In the acinus case: length the red curve. A/L,= L,
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Permeability W,, for O,?

W,, = (O, solubility).(0, diffusivity in water)/(membrane thickness)

For the human 1/8 sub-acinus and oxygen in air:

A= 8.63 cm?
{LA= 0.29 cm " L,~30cm

A =L,

D= 0.2cm?s _
A =28 cm
{WM =0.79 102 cm s?




This is true of other mammals :

Mouse| Rat | Rabbit {Human
Acinus 0.41 1.70 3.40 23.4
volume
(10-3cm3)
Acinus 0.42 1.21 1.65 8.63
surface
(cm?)
Acinus 0.074 0.119 0.40 0.286
diameter(cm)
Acinus 56 10.2 11.0 30
perimeter,
L,(cm)
Membrane 0.60 0.75 1.0 1.1
thickness (u.
m)
A (cm) |15.2 |189 |25.3 |27.8

B. Sapoval, Proceedings of “Fractals in Biology and Medecine”, Ascona, (1993).
B.Sapoval, M. Filoche, E.R. Weibel, Proc. Nat. Acad. Sc. 99: 10411 (2002).
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THE FLUX &, OF A GAS X:

®, « K. (Acinar surface) . W, .AP y.n(A y)

FOR O,

n(A) IS THE ACINUS EFFICIENCY (< 1)

N,

~ Flux across the membrane [ W P, ds
Flux for infinite diffusivity WP S

K= FUNCTION (O, BINDING, DYNAMICS OF THE RESPIRATORY CYCLE)

n (£ 1) measures the equivalent fraction of the surface

which is active 21



Renormalized random walk:

The coarse-grained approach

Volumic tree-like Topological —
- twork
structure ‘ “skeleton” ‘ ree-like networ
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Random walk simulation on the
acinus real topology

Bulk diffusion: D ‘ Random walk on lattice: D=a?/2dt

Membrane permeability: I/ ‘ Absorption probability o:
W=ac/2dr(l-c) Wy  A=a(l-0)/0~a/o

Concentration C(x) ‘ Mean occupation of the site i <K,>

* On defines the efficiency by analogy between both models

_fWCdS - n-z (K,)s

WC,S (Ky) Y s

i
i




Acinus efficiency

Human subacinus:
L=6/; A=600/

!

At rest
n =40%

At exercice
N =85%

10°
N =85%
n =40%
n
10™
A O
o)
o

¢ ¢ 3x3x3 EX
< 3x3x3 BB
AA 4x4x4 EX
A 4x4x4 BB
0 5x5x5 BB
O 6x6x6 BB

10 10
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The efficiency can be computed form the
morphometric data on 8 real sub-acini

\ r

N Z3
\\\\ //// 9
. ACINUS No.3

3

B. Haefeli-Bleuer, E.R. Weibel, Anat. Rec. 220: 401 (1988) 5




Efficiency of real acini
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At rest the efficiency is 33%.

Not optimal from
the physical point of view

At maximum exercise
the efficiency is 90%.

It is near optimality from
the physical point of view




Does the randomness of the acinar
tree really plays a role?

Comparison between the flux in an average symmetrized

acinus and the real acinus of Haefeli-Bleuer and Weibel:
Exact analytical calculation of a finite tree:

No difference:

The symmetric dichotomic
model of Weibel is sufficient
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D. Grebenkov, M. Filoche, and B. Sapoval, Phys. Rev. Lett. 94, 050602-1 (2005)
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Dependance of the efficiency on the
size of the diffusion cell
co, 0,

In the screening !
regime: :

Efficiency 7}

efficiency increases
with
A =D/W

e
-

Entire acinus

Illllll L lIIIIIII 1 Lo
1000 10*

and decreases with
the size of the T
. . A/Y
diffusion cell /




Here is the first
magic of this
diffusion reaction
tree

* In the strong screening
regime:

 The efficiency is inversely proportional to
the size of the surface of the system




Pulmonary diseases: mild emphysema

« considered as a loss of surface »

® o« K. (Acinar surface) . W.AP . n(A)

l Y

may remain asymptomatic at rest

(same for O, and CO,)




Here is the second

magic of this

diffusion reaction |
tree

* |n the strong screening
regime:

The efficiency is proportional o A i.e.
inversely proportional to the permeability




Pulmonary diseases: edema

« considered as a deterioration of the
membrane permeability »

® o« K. (Acinar surface) . W.AP . n(A)

w|l  a-ow| a)l

independent of the permeability 1
third magic




Pulmonary edema

Total oxygen
flux Flux at maximum exercise

EXEIrCISE )
(95% of the max)

Flux at rest

rest ——————)
(33% of the max)

RO R Membrane resistance

rest C

(33% of the max)

Severe edema region




Pulmonary diseases: mild COPD or asthma

« Considered as a reduction of
the diameter of the last bronchioles.
If the acinus inflation is kept constant by
muscular effort
the entrance velocity U increases »

The efficiency increases:
mild forms may remain asymptomatic.




At rest the efficiency is 33%.

Not optimal from
the physical point of view but robust!

At maximum exercise
the efficiency is 90%.

It is near optimality from
the physical point of view

but fragile!




*New-borns have small acini (Osborne et al., 1983):
their efficiency is close to 1.

They cannot gain efficiency during “exercise” (crying)
by breathing more rapidly: cyanosis.
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Figure 8. Decrease in free, that is, “dry,” alveolar surface area with the
increase in alveolar edema fluid.
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Upper Bronchial Tree
Hydrodynamics:

Trachea and
/

bronchi

— Generations 0 to 5

Inertial effects on the flow

distribution
In the upper bronchial tree




Hydrodynamics
of the
intermediate
bronchial tree:

Bronchioles

— (Generations 6 to 16

Stokes regime
—— where Poiseullle
law can be used




Poiseuille regime corresponds to small fluid velocity.

(Jean Louis Marie Poiseuille, medical doctor, 1799-1869. He was interested in
hemodynamics and made experiments with small tubes from which he founded
hydrodynamics. He first used mercury for blood pressure measurement).

/
P

P - P =R ®

R= (w/2m)(L/D%)

u: fluid viscosity

(symmetry between inspiration and expiration)




Simple dichotomic tree

)

U
80 86

b0 00 00 00

Génération 1 Génération 1+1

O —— Co
homothety,
ratio h;




D
D >

Tree with n+71 generations Q:}
oo @
(R,V) Q)
hl h2

The tree resistance can be written :

N S
2n  AR’h  2"R.h

R, =R| 1+

Its total volume is :

v, =V(+20 + 410 +..+ 2" k)

We want to minimize Req with the constraint Veq < Q

0o 00 00 00

Ny

S




There exists a Lagrange multiplicator such that :VReq = AV Veq

oR, .oV,
Hence : T=A—2 Vi=1l,..,n
oh. oh.

l l

After solving this system we obtain :

| i
h1=(9"v)3 and h,.=(l)3= 0.79... fori=2,...n
2nV 2

Hess (1914) Murray (1926): One single bifurcation for blood




The best bronchial tree:

The fractal dimension is

D.= In2/In(1/h) =3
—=>space filling.

But its total volume V) = V,[1 + =N (2h3)r]

or the total pressure drop APy= R, ®[1 + =N (2h3)P]

increases to infinity with N.

This increase is however slower for the value h =2 (19
which can be considered as a critical value.




But, even for h = 2 -(73) the sum diverges: it is not

possible to obtain a non-zero flux from a finite pressure
drop for an infinite tree.

For large N, any h < 2 ("3 creates an exponentially large
resistance and D;< 3.

For large N, any h > 2 -("/3) creates an exponentially large
volume and D;> 3.

"MAMMALS CANNOT LIVE IN THE
THERMODYNAMIC LIMIT”

B. Mauroy, M. Filoche, E. Weibel and B. Sapoval,
The best bronchial tree may be dangerous,
Nature, 677, 663 668 (2004).




The ‘Mandelbrot tree’ can be really space
filling from a geometrical point of view but
cannot work from a physical point of
view.




Where is the magic?

0O —

1 —_—
R=L/D4 > .
3 —_—

The resistance of
the zones are the same



Where is the magic?

Time for the flow 0 —

to cross a given .
generation 1
2 — .
to, t1, t2, t3, 3 —

Optimality: you want to minimize the transit time
T=1, +t, +t, +t3,. ..




Where is the magic? o __.

Collage argument: 1 —
choose the smallest 2
t =V /L, V. =d /S 3 —

1:n+1 = Vn+1/Ln+1’ Vn+1=(I)n+1/Sn+1= (Dn/28n+1

tn = 1:n+1 —_— I—n+1 = Ln/21/3




h=2-13 js a magic number ...

0O —

1- It can be found from a purely
cinematic argument 1
(transit time) 2
3 —

2- It can be found from a purely
physical argument
(Murray-Hess law)




h=2-13 js a magic number ...

0O —
3- It can be found from a purely
geometric argument: 1 —
space filling
2 —
For a dichotomic tree: 3

D,= In2/in(1/h) — | = 2(-1/Dp)
Point of view of evolution ...
several benefits




What about the real lungs ?
Generation 6 to 16

Real data of the human

0.95¢ 1 lung (Weibel), circles
0.9} o _® corresponds to diameters
o5 x| ratio and crosses to length

Homothety factor

o
0o
8]
<

X
3

X

| / o ratio.

0.8 © : :

Diameters and lengths do
075/ 1 no scale exactly in the

same fashion.

s 8 10 12 14 16
Generation Z

In that sense the lung is (slightly) self-affine but on average h
= 0.85 not far from 0.79.




The « optimal » tree correspond to
h=(1/2)13=0,79...

100
a0l human lung 18
>O
2 60t
©
= Critical
o A h value
40
v \ \
20r / \ 1
i
1
g S ——)

8.7 0.75 0.8 0.85
Homothety ratio



Human lung has a security margin for the
resistance, this authorizes geometrical variability
which is always present in living systems.

There is however a strong sensitivity of the
resistance to bronchia constriction.

The best from the physical point of view are the
most fragile: Athletes are the most fragile...




Anomalous transport: pathological situations
where the bronchioles diameters are diminished.

Mucous

membrana>
Mucous

membrane

/' irritation

Muscular wall
O Muscles
contractions

- Exercise induced broncho-spasm,
- Bronchiolitis,

— - Asthma,

- Allergenic reactions to pollen.




To model « more realistic » asthma, we assumed that
diameters and lengths have different reduction factors :

h,and h,.

During asthma, the diameter factor changes.

AP, R<I>(1+E h
p12 h

Another critical factor

IS obtained for h,

0.81 (it depends on h,

~ 0.85 In human

Normalised resistance

4
(symmetric) human lung ,/'

-

critical symmetric tree ;
critical asymmetric tree  /
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(asymmetric) human Iung_
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Diameter reduction factor (%)

langy).




Specific conclusions

The tree structure of the lung is close to physical optimality but has a
security margin to adapt its more important characteristic : its
resistance.

From a strictly physical point of view, minor differences between
individuals can induce considerable differences in respiratory
performances. (athletes)

The higher performances of athletes requires higher ventilation rates
to ensure oxygen supply. Higher flow rates must be achieved in
the given bronchial tree so that its geometry becomes dominant.




Athletes

Google: athlete asthma: 540,000
Google: sport asthma: 2,600,000




SUMMARY

Physical optimality of a tree is directly
related to its fragility so it cannot be the

sole commanding factor of evolution.

The possibility of regulation (adaptation)
can be essential for survival ... (Darwin).



EVOLUTION ? ? 7

What came first between these three
properties?

Energetic efficiency

Geometrical efficiency

Speed of delivery



A living organ must be fed by a space filling
system: geometry came first.

Two types of space filling systems:

- lattice (may be disordered): streets
- tree

Life appeared in water: first animals were
amphibious: viscous blood arterial tree.

Fractal here means optimized by natural
selection for viscous dissipation.



But, in fishes, the blood circulation is always
In the same direction.

The magic is, that once optimized for
dissipation, it is optimized for rapidity and
mammalian cyclic respiration






Do we have time to breathe through
an asymmetric tree?
Which asymmetric tree?

Flow f

Time

Maaqali Florens

http://arxiv.org/abs/1005. 1836




The real tree 1s asymetric
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A unified geometrical model of the bronchial tree

O Morphometric data: asymmetrical branched structure

(Majumdar, Alencar,Buldyrev, Hantos, Lutchen, Stanley, Suki PRL 2005)

hmin ‘ > hmax

| | I | I
(d) Human pmaj

Rmin
1.0
®
0.8 F fﬁ
Iol¢
I

—_
NN]
I
1

1

S 06t ]%U :
LT
A 0.4r .
= 09l | —>Every airway splits into two
S branches of different length
0.0 ' ' : | ' and diameter.
0 5 10 15 20 25 30
Generation, N
- Different airway sizes at generation g : P = Mo in (L +0X) X gaussian

hmax = hO,max (1 - GX) o




Geometrical model of the tracheobronchial tree
O Specific geometry of the proximal airways (L/D)

Q Level of asymmetry: parameter o

FABLE [: Model parameters

(hO,max)3 = (h0)3 (1+OL) Model Scaling ."n'.i-: izs.’ {2 Ratio L/ D DSV [ml.)

(Nomin)® = (ho)® (1-a) S 0 S Soss o
[
"D and Lo dismeter and length of the airway

- Measured systematic branching asymmetry in all airways (o = 36 %)

a Terminal airway: diameter of the terminal bronchioles D = 0.5 mm

- The number of generations differs according the pathway in the
tree: 10 to 23
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Comparison with anatomy
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Generation

Weibel (1963) distribution
of generations of
bronchia with
2mm diameter




Comparison with anatomy
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Time to breathe:

tOxygenation= t t t

insp. - “extrathoracic - “tracheobr.

2

C Asymmetric

Symmetric + fluctuations

t+ fluctuations

opoert ah o 8¢ Al %)
n

/

0.5 1 1.6
Coygeration lime (s}




Model of ventilation

1- Air flow entering each acinus is assumed uniform and constant
during inspiration.

2- Transit time from the entrance of the 3- Volume of fresh air delivered to the
mouth to the entrance of the acinus. acinus.

3000

05

1 15
Transit time (s)

2 0 2 4 6
Volume of Fresh Air (mms)




’:.? p — .;a':? 1] =+ x
Which asymmetry 0, ma; o1+ a)

he .o = hy (1 — o)
O All acini are ventilated during inspiration.
O Total ventilation (180 mL) is close to the average physiological data (220 mL).

O Proportion of acini with an oxygenation time smaller than 0.3 s (%)

N
o

N
=

Asymmetry level
measured in the human lung

—
sl

residence time smaller than 0.3 s (%)

©
£
2
£
o a=36%
E ;
S 210¢ : |
£ - Maximal asymmetry level
S o sl | | that allows to feed all acini
- :
00 10 20 30 40 50 60 70

Asymmetry level a (%)




Heterogeneity of ventilation

Q Volume of fresh air delivered by each 0 Volume of fresh air delivered to each
airway at generation 10 acinus

Volume of fresh air (log10(mL)) at generation 10 1800

1600
1400+
1200
1000

800}

600}
400}
200¢

0 2 4 6
Volume of Fresh Air (mms)

Conclusion: the ventilation heterogeneity is intrinsic of the lung structure.




3D Representation of the tracheobronchial tree

Q First level of 3D representation O 3D representation: volume of fresh air

delivered by each terminal airway (mm3)
- Asymmetric branching

- Branching angle: 180°

- Angle of rotation of the branching 2 e
planes: 90° ' :

ANN
AN




Comparison: model & real lung images

O Sagittal slice of the 3D representation

Distribution of polarized gas Volume of polarized gas (mm?3)
—60

(LKB, U2R2M, 1999)

- Similar level of heterogeneity of the gas distribution ...




Comparison: level of asymmetry

Q Volume of polarized gas (mm?3)

Symmetric branching with Gaussian
noise added to the geometrical structure

Asymmetric branching

- The level of heterogeneity of gas distribution increases with the level
of branching asymmetry.




Conclusion

a The branching structure of the lung leads to an
intrinsic heterogeneous distribution of the
ventilation (fresh air or inhaled polarized gaz).

o Lung imaging: intrinsic noise




