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The respiration system  
of mammals is made of  

two successive tree structures. 

The first structure is 
 a purely conductive tree in which oxygen  

is transported with air and  
no oxygen is absorbed. 



Conductive tree with 15 successive
 bifurcations: 215 = 30,000 bronchioles? 

Rat 

Rat Human 
Cast of human lung - Weibel 



Each bronchiole is the opening of 
 a diffusion-reaction  tree  

of 8 generations in average: a pulmonary acinus 

Cut of an acinus 
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Acinus Peclet number: 

Pa > 1  transport by convection 
Pa < 1  transport by diffusion 

Convection/diffusion transition 

At rest At exercice 

B.Sapoval, M. Filoche, E.R. Weibel, PNAS 99: 10411 (2002) 
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Pa (Z ) =
U(Z )(Z − Zmax )λ

DO2,air



The mathematical frame 

•  At the subacinus entry: 
Diffusion source  

•  In the alveolar air: 
Steady diffusion obeys Fick's law 

•  At the air/blood interface: 
Membrane of permeability WM 
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The real boundary condition:: 
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Robin or Fourier BC: 



Consider an irregular surface of  
area A and diameter LA. How do we
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Yreach~ D.LA with the conductance to cross it Ycross ~  W.A 
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transport is limited by diffusion, there is diffusion screening. 



Consider an irregular surface of  
area A and diameter LA. How do we
 know if there is screening or not? 

LA 

By comparing the conductance to reach the surface  
Yreach~ D.LA with the conductance to cross it Ycross ~  W.A 

•  if  Yreach> Ycross  the surface works uniformly 

•  if  Yreach< Ycross  the less accessible regions are not reached, 
 there is strong diffusion screening. 

Yreach = Ycross  

or A/LA ≈ D/W = Λ

crossover when: 



More generally this notion permits the comparison of
 bulk Laplacian and surface processes with

 morphology. 

Here Λ = D/W 

Heterogeneous catalysis: Λ = D/R (reactivity) 

Electrochemistry: Λ = (electrolyte conduct. / surface conduct.) 

NMR relaxation: Λ = D/W (spin permeability proportional to the surface
 spin relaxation rate) 

Single phase porous flow Λ = hydraulic permeability/ surface permeability 

Heat transport … 

Λ is the ratio of the bulk transport coefficient  
to the surface transport coefficient




•  if  A/LA < Λ the surface works uniformly 

•  if  A/LA > Λ the less accessible regions  
are not reached,  

there exists diffusion limitations 

So what is A/LA ???  

Yreach = Ycross => A/LA ≈ Λ


The crossover is obtained for: 



What is the geometrical (here 
morphological) significance of the length A/

LA=Lp ?  

Lp is the perimeter of  
an “average planar cut” of the surface. 

Examples: 

Sphere: A=4πR2;  LA=2R;  A/LA=2πR.  

Cube: A=6a2;  LA ≈ a;  A/LA≈ 6a. 

Self-similar fractal with dimension d:  A=l2(L/l)d, LA=L; A/
LA= l(L/l) d-1 … (Falconer). 



Experiment … 



For an irregular surface A/LA is the total length 
 of a planar cut. 

In the acinus case: length the red curve. A/LA = Lp 



For the human 1/8 sub-acinus and oxygen in air: 

LP ≈ 30 cm 

Λ  = 28 cm 

A =  8.63 cm2 

LA =  0.29 cm 

D =  0.2 cm2 s-1 

WM = 0.79 10-2 cm s-1 

Λ  ≈ LP ! 

Permeability WM for O2? 

WM = (O2 solubility).(O2 diffusivity in water)/(membrane thickness) 



 Mouse     Rat  Rabbit Human 
Acinus
 volume
 (10-3 cm3) 

  0.41 1.70 3.40 23.4 

Acinus
 surface 
 (cm2) 

  0.42 1.21 1.65 8.63 

Acinus
 diameter(cm) 

  0.074 0.119 0.40 0.286 

Acinus
 perimeter,
 Lp(cm) 

5.6 10.2 11.0 30 

Membrane 

thickness (µ.
 m) 

 0.60 0.75 1.0 1.1 

Λ (cm) 15.2 18.9 25.3 27.8 

This is true of other mammals : 

B. Sapoval, Proceedings of  “Fractals in Biology and Medecine”, Ascona, (1993). 
B.Sapoval, M. Filoche, E.R. Weibel, Proc. Nat. Acad. Sc. 99: 10411 (2002). 
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ηO2
=

Flux across the membrane
Flux for infinite diffusivity

=
W PO2

ds∫
W P0 Sac

Φ X ∝ K . (Acinar surface) . W X . ΔP X . η(Λ X) 

THE FLUX ΦX OF A GAS X : 

η(Λ) IS THE ACINUS EFFICIENCY (≤ 1)  

K= FUNCTION (O2 BINDING, DYNAMICS OF THE RESPIRATORY CYCLE) 

FOR O2 

η (≤ 1) measures the equivalent fraction of the surface
 which is active 



Renormalized random walk: 
The coarse-grained approach 

Tree-like network Topological 
“skeleton” 

Volumic tree-like
 structure 



Bulk diffusion: D  Random walk on lattice: D=a2/2dτ 

Membrane permeability: W Absorption probability σ: 


Concentration C(x)   Mean occupation of the site i <Ki>


Random walk simulation on the  
acinus real topology 

W = aσ /2dτ(1- σ)  
 Λ=a(1-σ)/ σ ≈ a/σ


•   On defines the efficiency by analogy between both models 

SWC
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∑

∑
=η

i i0

i ii

sK
sK 



24 

Acinus efficiency 

η = 40% 
η = 85%
Human subacinus: 

L=6 ;  Λ=600"

At rest 
η = 40% 

At exercice 
η = 85% 



25 B. Haefeli-Bleuer, E.R. Weibel, Anat. Rec. 220: 401 (1988) 

The efficiency can be computed form the
 morphometric data on 8 real sub-acini  
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<η >=33%(Ο2)


Efficiency of real acini 

 At EXERCISE <η(Ο2)> = 85%

O2 



At rest the efficiency is 33%. 
Not optimal from  

the physical point of view 

At maximum exercise
 the efficiency is 90%. 

It is near optimality from  
the physical point of view 



Does the randomness of the acinar
 tree really plays a role?  

D. Grebenkov, M. Filoche, and B. Sapoval, Phys. Rev. Lett. 94, 050602-1 (2005) 

Comparison between the flux in an average symmetrized
 acinus and the real acinus of Haefeli-Bleuer and Weibel:  

Exact analytical calculation of a finite tree: 

No difference: 
The symmetric dichotomic  

model of Weibel is sufficient  



Dependance of the efficiency on the
 size of the diffusion cell 

In the screening
 regime: 

efficiency increases
 with 

Λ = D/W 

and decreases with 
the size of the
 diffusion cell 

CO2 O2 



Here is the first
 magic of this

 diffusion reaction
 tree 

•  In the strong screening 
regime: 

•  The efficiency is inversely proportional to
 the size of the surface of the system 



Pulmonary diseases: mild emphysema 

« considered as a loss of surface » 

Φ ∝ K . (Acinar surface) . W . ΔP  . η(Λ) 

may remain asymptomatic at rest 

(same for O2 and CO2) 



Here is the second
 magic of this

 diffusion reaction
 tree 

•  In the strong screening 
 regime: 
The efficiency is proportional to Λ i.e.

 inversely proportional to the permeability 



Pulmonary diseases: edema 

 «  considered as a deterioration of the 
 membrane permeability » 

Φ ∝ K . (Acinar surface) . W . ΔP  . η(Λ) 

Λ = D/W η(Λ)
W 

independent of the permeability ! ! ! 
            third magic 



Total oxygen 
 flux 

Membrane resistance 

Severe edema region 

rest 
(33% of the max) 

 Pulmonary edema  
Flux at maximum exercise 

Flux at rest 

R0 Rc rest 
(33% of the max) 

exercise 
(95% of the max) 



Pulmonary diseases: mild COPD or asthma 

 « Considered as a reduction of  
the diameter of the last bronchioles.  

If the acinus inflation is kept constant by
 muscular effort  

the entrance velocity U increases » 

The efficiency increases: 
mild forms may remain asymptomatic. 



At rest the efficiency is 33%. 
Not optimal from  

the physical point of view but robust! 

At maximum exercise
 the efficiency is 90%. 
It is near optimality from  
the physical point of view  

but fragile! 



• New-borns have small acini (Osborne et al., 1983):  
their efficiency is close to 1.  

They cannot gain efficiency during “exercise” (crying) 
 by breathing more rapidly: cyanosis.  





A magic bronchial 
 tree ? 



Trachea and
 bronchi 

Generations 0 to 5 

Upper Bronchial Tree 
Hydrodynamics: 

Inertial effects on the flow 

 distribution 
 in the upper bronchial tree 



Generations 6 to 16 

Stokes regime
 where Poiseuille
 law can be used 

Bronchioles 

Hydrodynamics 
of the 

intermediate 
bronchial tree: 



Poiseuille regime corresponds to small fluid velocity. 
(Jean Louis Marie Poiseuille, medical doctor, 1799-1869. He was interested in

 hemodynamics and made experiments with small tubes from which he founded
 hydrodynamics. He first used mercury for blood pressure measurement). 

flux Φ 

P1 P0 

P1 P0 - = R. Φ 

R= (µ/2π)(L/D4) µ: fluid viscosity 

(symmetry between inspiration and expiration) 



homothety, 
ratio hi 

Génération i Génération i+1 

.... 

Simple dichotomic tree 



The tree resistance can be written : 
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Its total volume is : 

We want to minimize        with the constraint eqR

Tree with n+1 generations 
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The best bronchial tree: 
The fractal dimension is   

Df =  ln2/ln(1/h) =3  

 space  filling. 

But its  total volume  VN = V0 [1 + Σ1
N (2h3)p] 

or the total pressure drop ΔPN = R0 Φ [1 + Σ1
N (2h3 )-p ]   

increases to infinity with N. 
This increase is however slower for the value h =2 -(1/3)

 which can be considered as a critical value. 



“MAMMALS CANNOT LIVE IN THE
 THERMODYNAMIC LIMIT” 

B. Mauroy, M. Filoche, E. Weibel and B. Sapoval,   
The best bronchial tree may be dangerous,   
Nature, 677, 663_668  (2004). 

But, even for h = 2 -(1/3) the sum diverges: it is not 
possible to obtain a non-zero flux from a finite pressure 
drop for an infinite tree. 

For large N, any h < 2 -(1/3) creates an exponentially large 
resistance and Df < 3. 

For large N, any h > 2 -(1/3) creates an exponentially large 
volume and Df > 3.  



The ‘Mandelbrot tree’ can be really space
 filling from a geometrical point of view but

 cannot work from a physical point of
 view. 



Where is the magic? 

R=L/D4 

0 

2 
3 

1 

The resistance of 
the zones are the same 



Where is the magic? 

0 

2 
3 

1 
Time for the flow 
 to cross a given  

generation 

t0, t1, t2, t3,… 

Optimality: you want to minimize the transit time 
T= t0 +t1 +t2 +t3,… 



Where is the magic? 0 

2 
3 

1 Collage argument: 
choose the smallest 

tn = Vn/Ln, Vn=Φn/Sn 

tn+1 = Vn+1/Ln+1, Vn+1=Φn+1/Sn+1= Φn/2Sn+1 

tn = tn+1 Ln+1 = Ln/21/3
 



h = 2 -(1/3) is a magic number … 

0 

2 
3 

1 
1- It can be found from a purely 

cinematic argument 
(transit time) 

2- It can be found from a purely 
physical argument 
(Murray-Hess law) 



h = 2 -(1/3) is a magic number … 
0 

2 
3 

1 
3- It can be found from a purely 

geometric argument: 
space filling 

For a dichotomic tree: 

Df =  ln2/ln(1/h) h = 2(-1/Df) 
Point of view of evolution …  

several benefits 



What about the real lungs ?
 Generation 6 to 16 

Real data of the human
 lung (Weibel), circles
 corresponds to diameters
 ratio and crosses to length
 ratio. 

In that sense the lung is (slightly) self-affine but on average h 
= 0.85 not far from 0.79.  

Diameters and lengths do 
no scale exactly in the 
same fashion. 



The « optimal » tree correspond to  
h = (1/2)1/3 = O,79… 

human lung 

The human lung corresponds to 0,85 



Human lung has a security margin for the
 resistance, this authorizes geometrical variability

 which is always present in living systems. 

There is however a strong sensitivity of the
 resistance to bronchia constriction.  

The best from the physical point of view are the
 most fragile: Athletes are the most fragile… 



Mucous
 membrane 

Muscular wall 

Mucous
 membrane

 irritation 

Muscles
 contractions 

- Asthma,  
- Exercise induced broncho-spasm, 
- Bronchiolitis, 
- Allergenic reactions to pollen. 

Anomalous transport: pathological situations  
where the bronchioles diameters are diminished. 
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To model « more realistic » asthma, we assumed that
 diameters and lengths have different reduction factors :  

hd and hl. 

During asthma, the diameter factor changes.  

Another critical factor
 is obtained for hd :

 0.81 (it depends on hl
 ~ 0.85 in human

 lung). 



Specific conclusions 

The tree structure of the lung is close to physical optimality but has a
 security margin to adapt its more important characteristic : its
 resistance. 

From a strictly physical point of view, minor differences between
 individuals can induce considerable differences in respiratory
 performances. (athletes) 

The higher performances of athletes requires higher ventilation rates
 to ensure oxygen supply. Higher flow rates must be achieved in
 the given bronchial tree so that its geometry becomes dominant. 



Athletes 

Google: athlete asthma: 540,000 
Google: sport asthma: 2,600,000 



SUMMARY 

Physical optimality of a tree is directly
 related to its fragility so it cannot be the
 sole commanding factor of evolution. 

The possibility of regulation (adaptation)
 can be essential for survival … (Darwin). 



    EVOLUTION ? ? ?  

What came first between these three
 properties? 

Energetic efficiency  

Geometrical efficiency  

Speed of delivery 



A living organ must be fed by a space filling
 system: geometry came first. 

Two types of space filling systems: 
- lattice (may be disordered): streets 
- tree 

Life appeared in water: first animals were
 amphibious: viscous blood arterial tree.  

Fractal here means optimized by natural
 selection for viscous dissipation. 



But, in fishes, the blood circulation is always
 in the same direction. 

The magic is, that once optimized for
 dissipation, it is optimized for rapidity and
 mammalian cyclic respiration 





Do we have time to breathe through 
an asymmetric tree? 

Which asymmetric tree?  

Magali Florens 

66 

Flow 

Time 

http://arxiv.org/abs/1005.1836  



The real tree is asymetric 



hmin hmax 

  Morphometric data: asymmetrical branched structure  

Every airway splits into two 
branches of different length 

and diameter. 

 Different airway sizes at generation g : 

(Majumdar, Alencar,Buldyrev, Hantos, Lutchen, Stanley, Suki  PRL 2005) 

A unified geometrical model of the bronchial tree 
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min 0,min

max 0,max

(1 )
(1 )

h h X
h h X

σ

σ

= +

= −

X gaussian 
σ 



  Level of asymmetry: parameter α  

(h0,max)3 = (h0)3 (1+α) 
(h0,min)3 = (h0)3 (1-α) 

1/3max01/3min0(1)(1)hhhhαα=+=−

Geometrical model of the tracheobronchial tree 

  Specific geometry of the proximal airways (L/D) 

333maxmin0hhh+=

  Terminal airway: diameter of the terminal bronchioles D = 0.5 mm  

 The number of generations differs according the pathway in the 
tree: 10 to 23 

 Measured systematic branching asymmetry in all airways (α = 36 %) 

69 



Comparison with anatomy 

Weibel (1963) distribution 
 of generations of  

bronchia with 
2mm diameter 



Comparison with anatomy 

Horstfield (1971) distribution 
 of generation of  

bronchia with  
0.7 mm diameter 



Time to breathe: 

toxygenation= tinsp. - textrathoracic - ttracheobr. 

Symmetric 
 + fluctuations 

Asymmetric 
 + fluctuations 

c 



Model of ventilation 
1- Air flow entering each acinus is assumed uniform and constant 
during inspiration.  

2- Transit time from the entrance of the 
mouth to the entrance of the acinus. 

3- Volume of fresh air delivered to the 
acinus. 
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Which asymmetry 

  All acini are ventilated during inspiration. 

  Total ventilation (180 mL) is close to the average physiological data (220 mL). 

 Maximal asymmetry level 
that allows to feed all acini 

  Proportion of acini with an oxygenation time smaller than 0.3 s (%) 

74 



Heterogeneity of ventilation  

 
 Conclusion: the ventilation heterogeneity is intrinsic of the lung structure. 

  Volume of fresh air delivered to each 
acinus 

  Volume of fresh air delivered by each 
airway at generation 10 

75 



3D Representation of the tracheobronchial tree 

  First level of 3D representation  

  Asymmetric branching   

  Branching angle: 180° 

  Angle of rotation of the branching 
planes: 90° 

  3D representation: volume of fresh air 
delivered by each terminal airway (mm3)  
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Comparison: model & real lung images   

  Sagittal slice of the 3D representation 

Volume of polarized gas (mm3) Distribution of polarized gas  

(LKB, U2R2M, 1999) 

 Similar level of heterogeneity of the gas distribution …  

77 



Comparison: level of asymmetry 

Asymmetric branching  
Symmetric branching with Gaussian 

noise added to the geometrical structure  

 The level of heterogeneity of gas distribution increases with the level 
of branching asymmetry. 

  Volume of polarized gas (mm3) 
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Conclusion 

  The branching structure of the lung leads to an 
intrinsic heterogeneous distribution of the 
ventilation (fresh air or inhaled polarized gaz).  

  Lung imaging: intrinsic noise 
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