

Instability of Life:

Unstable, yet Diverse:

Very very long history:

Lots of Contingencies →luck important

Separation of Timescales →punctuations

Its all about cycles:

$1 \rightarrow 2 \rightarrow 1 \rightarrow 2$: Equilibrium

Competition and Diversity:

Cycles

(with J.Mathiesen, N.Mitarai & A.Trusina)

A Red-Queen race

(with Jan Haerter)

Lotka-Volterra quations

$$\dot{X}_i = \sum_j \Gamma_{ij} X_i X_j - \sum_j \Gamma_{ji} X_j X_i$$

Becomes unstable when number of species increase (R. May 1973). Evolving such network \rightarrow Collapse of Diversity \rightarrow 2 species

Sustainability of high diversity?

Fig. 1. Photograph of a crustose lichen community on a rock in an alpine environment (at 1300m altitude, Jotunheimen, Norway).

(Crustose) Lichen anatomy

- composite organisms of fungi and green algae
- fungal keep the overall organism coherent
- glows slowly (~0.1mm/year)
- •Spores disperse on a global scale with winds

Fossils records suggest that fungi developed symbiotic partnerships with photoautotrophs before the evolution of vascular plants. As old as ~ 600 mil years

- Compete for space
- Stand-offs
- Rare invasion ("Predation")

Model:

Space (2-dimentional lattice) and interaction matrix.

Each site can carry at most one species

 $\Gamma(s,s')$ is set to 1 with **probability** γ 0 otherwise

> cf. Jackson and Buss (1975) Similar model for coral reef

- A simple lattice model with
 - Competitions
 - Extinction and Rare immigration / speciation

- Phase transition to stable high diversity state
 - Self-organization of spatial distribution

(EFFECTIVELY) ONE PARAMETER MODEL!

2-dimensional latice model

 At each invasion attempt, choose a site (try to attack) and its neighbor (to be attacked) randomly

Each site can carry at most one species

Model: speciation

New species introduced at rate $\alpha \rightarrow 0$

Model: Randomly assigned interaction network with prob. γ

 "predation" interaction between species pre-assigned fixed throughout the simulation

 $\Gamma(s,s')$ is set to

1 (s can eat s') with **probability** γ 0 with probability 1- γ

Arrows: From "predator" to "pray"

10/9/13

 \rightarrow

 $\alpha=0.1, \gamma=0.1$

- Only part of interaction network is active.
- Small patches are always created.

γ=0.1, α=0.1

Snap shots at high diversity state: many patches are formed; create niches for each other

L=1200

NB: L=100 does not work: Patches percolate

Patches are important!

Diversity Patches

Patchiness = heterogenety, can be self organized

Patch size distribution: Patches replaced with new species -> High diversity

Note that the maximum patch size is much smaller than system size.

How to make patches: Cyclic relationship?

Cycle 3 give long lasting oscillation but leaves no patche

Dynamics gives complex pattern, and population oscillate for a long time, but... 10/9/13

Noise results in extinction, and it can leave only one patch

Cycle 4 and larger can leave patches

Dynamics gives complex pattern

Noise results in extinction, But multiple species and patches can be left

How to make patches: Cyclic relationship?

Β

Cycles → Patchiness → Diversity:

Model lessons

→Merge allopatric and sympatic speciation,
 by self organized heterogenety:
 cycles →patchiness →speciation

→Species ``fitness" given solely by local environment, use in large scale evolution model →

Together with:

Joachim Matthiesen

Namiko Mitarai

Ala Trusina

Phage/Bacteria rules the world:

Human biomass0.250 Giga tonsAntarctic krill biomass0.500 Giga tonsBacterial biomass1000 Giga tonsRef: Whitman, PNAS 1998.

1% of bacteria close to sea surface → dynamics
90 gigaton carbon recycled per year from sea surf.
220 Gigaton biological carbon recycling per year
Atmosphere have 750 gigaton carbon
Deep oceans have 38.000 gigaton carbon

Phage-Bacteria systems:

Network from Flores et al (2012), data from Moebus (1980)

B=succeptible R=partially resistant P=phage

$$\begin{aligned} \frac{dB}{dt} &= B \cdot (1 - (B + R)) - \alpha \cdot B - B \cdot \eta P \\ \frac{dR}{dt} &= g \cdot R \cdot (1 - (B + R)) - \alpha \cdot R - (1 - r) \cdot R \cdot \eta P \\ \frac{dP}{dt} &= \beta \cdot B \cdot \eta P + \beta \cdot (1 - r) \cdot R \cdot \eta P - \delta \cdot P \end{aligned}$$

Agent based updating on lattice

many phages, many immunities:

+Gain and loss of immunities (CRISPR-model):

This gain-rate is set to 0.1 As our unit is 100.000 bacteria in One colony. Removal of one phage immunity with probability μ 'at bacterium duplication.

(this loss-rate is self organized)

→ Diversity (in a Red-Queen race):

Red: One phage type Grey: All other Phage types

Black (0) to Blue to Green: Bacteria with increasing number of immunities

Without space→ immunities meaningless

(little chance to meet same phage again)

Cycles & Red-queen:

Bacteria= $B \rightarrow R \rightarrow P$

Together with:

Jan Haerter

Together with:

Joachim Matthiesen

Namiko Mitarai

Ala Trusina

Jan Haerter