#### Thermodynamics of biological copying

#### Simone Pigolotti (UPC, Barcelona) Roma, 24/9/2013

with: Pablo Sartori (MPIPKS, Dresden)

# Biological copying



DNA duplication error rate  $\sim 10^{-9}$ 



translation error rate  $\sim 10^{-4}$ 





minimum error achieved in quasi-equilibrium -> very slow reaction

#### **DNA** duplication:

kT ~ 2.479 kJ/mol  $\Delta G$  ~ I -- I6 kJ/mol

minimum error from binding energies > 0.01 incompatible with observed value =  $10^{-9}$ 

# Proofreading

#### example: translation



high fidelity is achieved via complex multi-step reactions



### Kinetic Proofreading



proofreading step is non-discriminating but reduces the error

error rate  $> \left(e^{-\beta\Delta G}\right)^2$ 

proofreading is intrinsically dissipative

Hopfield, PNAS (1974)

#### Bennett's copolymerization model



Bennett, Biosystems (1979)

# Copolymerization model



Copying of a long polymer

 $k_{\pm}^{r/w}$  rates of binding/unbinding of right/wrong monomers







energy diagram - isoenergetic strains

Bennett, Biosystems (1979) Andrieux and Gaspard, PNAS (2008), Esposito et al. JSTAT (2010)

#### Enzymatic copy vs. copolymerization

|                     | enzymatic copy                   | copolymerization                                |
|---------------------|----------------------------------|-------------------------------------------------|
| $\Delta G$          | yes, determines minimum<br>error | no, copies are isoenergetic                     |
| minimum error limit | adiabatic                        | $\dot{S} \to \infty$                            |
| proofreading        | only dissipative step            | less dissipation with proofreading than without |

# The bigger picture

I want a copying pathway with

- low error
- low dissipation
- high copying velocity

How should I design it?

# Copolymerization





 $\begin{aligned} k_{+}^{r} &= \omega e^{\epsilon + \delta} & k_{-}^{r} &= \omega e^{\delta} \\ k_{+}^{w} &= \omega e^{\epsilon} & k_{-}^{w} &= \omega e^{\gamma} \end{aligned}$ 

master equation:

$$\frac{d}{dt}P(\cdots r) = k_{+}^{r}P(\cdots) + k_{-}^{w}P(\cdots rw) + k_{-}^{r}P(\cdots rr) - (k_{-}^{r} + k_{+}^{w} + k_{+}^{r})P(\cdots r)$$
  
$$\frac{d}{dt}P(\cdots w) = k_{+}^{w}P(\cdots) + k_{-}^{w}P(\cdots ww) + k_{-}^{r}P(\cdots wr) - (k_{-}^{w} + k_{+}^{w} + k_{+}^{r})P(\cdots w)$$

mean field solution:

$$\frac{\eta}{1-\eta} = \frac{\text{net increase wrong monomers}}{\text{net increase right monomers}} = \frac{k_+^w - k_-^w \eta}{k_+^r - k_-^r (1-\eta)}$$

# Copolymerization







-> mean field solution is exact

stochastic simulations  $\delta=2 \quad \gamma=3 \quad \epsilon=0.5$ 



$$\dot{S} = v\Delta S = v[(1-\eta)\epsilon + \eta(\epsilon - \gamma) + H(\eta)]$$

$$\dot{S}$$
 entropy production

- $\Delta S$   $\;$  entropy production per copied base  $\;$ 
  - v average copying velocity

$$H(\eta) = -\eta \ln(\eta) - (1-\eta) \ln(1-\eta)$$

# Results





adiabatic limit:

$$\eta \to e^{-\gamma}$$

dissipation per step and velocity vanish

highly dissipative limit:

$$\eta \to e^{-\delta}$$

dissipation per step and velocity diverge

physical region:

$$\min[e^{-\delta}, e^{-\gamma}] < \eta < \max[e^{-\delta}, e^{-\gamma}]$$

# Two distinct copying strategies



$$\min[e^{-\delta}, e^{-\gamma}] < \eta < \max[e^{-\delta}, e^{-\gamma}]$$

different tradeoffs in the two regions

#### Experimental comparison



the two copying machines operate in different regions

#### Intermediate states



I) eliminate intermediate states via steady-state condition

2) same ansatz as before

#### Example: two-steps copy



Solution:

$$\frac{\eta}{1-\eta} = \frac{(\mathrm{e}^{\delta} + \omega \mathrm{e}^{\bar{\epsilon} + \bar{\delta}})(\mathrm{e}^{\epsilon + \bar{\epsilon}} - \eta \mathrm{e}^{\gamma + \bar{\gamma}})}{(\mathrm{e}^{\gamma} + \omega \mathrm{e}^{\bar{\epsilon}})[\mathrm{e}^{\epsilon + \delta + \bar{\epsilon} + \bar{\delta}} - (1-\eta)\mathrm{e}^{\delta + \bar{\delta}}]}$$

P. Sartori and SP, in preparation



## Example: two-steps copy



3 regions:

I) adiabatic:  $\eta_{min} = e^{-\gamma - \bar{\gamma}}$ 2) fast:  $\eta_{min} = e^{-\delta}$ 3) "forward proofreading":  $\eta_{min} = e^{-\gamma - \bar{\delta}}$ 





## Proofreading



P. Sartori and SP, in preparation

# Proofreading





two one-step parallel reactions

copying with an intermediate step + proofreading

- the proofreading rates are characterized by  $\delta_p$  and  $\gamma_p$
- numerical minimization of the dissipation over the remaining parameters

# Proofreading models







proofreading is always kinetic
energetic copy + kinetic proofreading requires intermediate state

#### tRNA selection pathway



Zaher and Green, Cell (2009)

# Conclusions



- There are two different and separated regimes in stochastic copying: one based on energy barriers and one based on energy differences

- Reducing the error rate in the two regimes has different costs (more dissipation or less velocity)

- Experimental data suggest that both copying strategies are adopted in biology

- An analysis of more complex schemes shows how the strategies can be combined. Getting closer to realistic models