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kT ~ 2.479 kJ/mol
        ~ 1 -- 16 kJ/mol

Enzymatic copying model

> e���G �G = GEW �GER

minimum error from binding energies > 0.01

incompatible with observed value  = 10 -9
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DNA duplication:

minimum error achieved in quasi-equilibrium -> very slow reaction
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example: translation

high fidelity is achieved via 

complex multi-step reactions

from Reynolds et al. 

Nat. Rev. Microbiol. (2010)

Proofreading
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Kinetic Proofreading

error rate >
�
e���G

�2
proofreading step is non-discriminating but reduces the error

proofreading is intrinsically dissipative 
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Bennett’s copolymerization model

Bennett, Biosystems (1979)
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Bennett, Biosystems (1979)
Andrieux and Gaspard, PNAS (2008), Esposito et al. 

JSTAT (2010)

Copying of a long polymer

          rates of binding/unbinding of 
          right/wrong monomers      kr/w± transition diagram

energy diagram - isoenergetic strains
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P. Sartori and S. Pigolotti, PRL (2013)

Enzymatic copy vs. copolymerization

�G

Ṡ ! 1

enzymatic copy copolymerization

yes, determines minimum 
error

no, copies are isoenergetic

minimum error limit adiabatic

proofreading only dissipative step
less dissipation with 

proofreading than without
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The bigger picture

I want a copying pathway with

- low error
- low dissipation
- high copying velocity

How should I design it?
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Copolymerization

⌘

1� ⌘
=

net increase wrong monomers

net increase right monomers

=

kw+ � kw�⌘

kr+ � kr�(1� ⌘)

mean field solution:

d

dt
P (· · · r) = kr+P (· · · ) + kw�P (· · · rw) + kr�P (· · · rr)� (kr� + kw+ + kr+)P (· · · r)

d

dt
P (· · ·w) = kw+P (· · · ) + kw�P (· · ·ww) + kr�P (· · ·wr)� (kw� + kw+ + kr+)P (· · ·w)

master equation:

kr+ = !e✏+� kr� = !e�

kw+ = !e✏ kw� = !e�
write rates as Kramers rates:
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To find the steady state of this model, we first define the fluxes of addition of right and wrong monomers as:

Jr(&) = kr+P (&)� kr�P (&r)

Jw(&) = kw+P (&)� kw�P (&w) (2)

So that the steady state of the master equation can be compactly written as the following flux balance:

Jr(&)� Jr(&r)� Jw(&r) = 0

Jw(&)� Jr(&w)� Jw(&w) = 0. (3)
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FIG. 2: Pictures of animals

Since the errors are uncorrelated, we can make the ansatz that the probabilities P (&) depend on the number of
errors in the sequence as P (&) / (1� ⌘)Nr⌘Nw , where N

r

and N
w

are the number of right and wrong matches in the
sequence and ⌘ is the error rate, to be determined a posteriori. As the system is infinite and the probabilities P (&)
will turn out to be non-normalizable, we will focus in the following in calculating the error rate ⌘. Upon substitution,
the steady state conditions (3) simply becomes ⌘ = Jw(&)/[Jw(&) + Jr(&)], independent of &. Using the actual
expression for the fluxes (2) and invoking the ansatz once more, we finally arrive at an expression for the error in
terms of the rates:

⌘

1� ⌘
=

J
w

(&)

J
r

(&)
=

kw+ � kw�⌘

kr+ � kr�(1� ⌘)
. (4)

We can also write the average polymerization velocity, which is the rate of monomer attachment minus the average
removal rate:

v = kw+ � kw�⌘ + kr+ � kr�(1� ⌘). (5)

Together, Eqs. 4&6 provide an exact solution of the copolymerization model. Eq. 4 gives the error rate as a
function of the rates. This error-rate is preserved over all the chain and does not change as the chain grows. In the
front of the growing copolymer the error distribution is noisier, but this is simply due to the length distribution of
the polymer (see red lines in Fig. 3). Eq. 6 gives the growth velocity of the polymer. Other than this growth speed,
a polymer is clearly also subject to di↵usion due to the stochasticity of the binding and unbinding reactions. The
di↵usion constant is trivially given by:

D = kw+ + kw�⌘ + kr+ + kr�(1� ⌘). (6)

And produces an increasingly wide front of length distributions (see Fig.3, blue lines). As mentioned above, this is at
the origin of the noisiness in the error at the front.

It is clear that the copolymerization model solved in this section represents a very simplified description of biological
copying. Virtually all known biological copying reactions are made up of a number of intermediate mechano-chemical
steps, possibly interconnected in a complex way and often deviced to improve the copying fidelity (others, zaher).
It is worthwhile to remark that the same solution strategy followed in this section can be used to exactly solve any
generalization of this model in which a finite number of intermediate states (with arbitrary transitions among them)
are present. In the appendix VA this is explained in detail, and in following sections we will in fact study several
generalizations of the copolymerizzation model. But first let us proceed to analyze in detail the thermodynamics and
operational regimes of the copolymerzation model, which are the building blocks of more complex schemes.
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Copolymerization
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To find the steady state of this model, we first define the fluxes of addition of right and wrong monomers as:

Jr(&) = kr+P (&)� kr�P (&r)

Jw(&) = kw+P (&)� kw�P (&w) (2)
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Since the errors are uncorrelated, we can make the ansatz that the probabilities P (&) depend on the number of
errors in the sequence as P (&) / (1� ⌘)Nr⌘Nw , where N
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and N
w

are the number of right and wrong matches in the
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will turn out to be non-normalizable, we will focus in the following in calculating the error rate ⌘. Upon substitution,
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We can also write the average polymerization velocity, which is the rate of monomer attachment minus the average
removal rate:

v = kw+ � kw�⌘ + kr+ � kr�(1� ⌘). (5)

Together, Eqs. 4&6 provide an exact solution of the copolymerization model. Eq. 4 gives the error rate as a
function of the rates. This error-rate is preserved over all the chain and does not change as the chain grows. In the
front of the growing copolymer the error distribution is noisier, but this is simply due to the length distribution of
the polymer (see red lines in Fig. 3). Eq. 6 gives the growth velocity of the polymer. Other than this growth speed,
a polymer is clearly also subject to di↵usion due to the stochasticity of the binding and unbinding reactions. The
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And produces an increasingly wide front of length distributions (see Fig.3, blue lines). As mentioned above, this is at
the origin of the noisiness in the error at the front.

It is clear that the copolymerization model solved in this section represents a very simplified description of biological
copying. Virtually all known biological copying reactions are made up of a number of intermediate mechano-chemical
steps, possibly interconnected in a complex way and often deviced to improve the copying fidelity (others, zaher).
It is worthwhile to remark that the same solution strategy followed in this section can be used to exactly solve any
generalization of this model in which a finite number of intermediate states (with arbitrary transitions among them)
are present. In the appendix VA this is explained in detail, and in following sections we will in fact study several
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Ṡ = v�S = v[(1� ⌘)✏+ ⌘(✏� �) +H(⌘)]

Ṡ
�S

H(⌘) = �⌘ ln(⌘)� (1� ⌘) ln(1� ⌘)

entropy production

entropy production per copied base

Results

v average copying velocity

P. Sartori and SP, PRL (2013)
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To find the steady state of this model, we first define the fluxes of addition of right and wrong monomers as:
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Since the errors are uncorrelated, we can make the ansatz that the probabilities P (&) depend on the number of
errors in the sequence as P (&) / (1� ⌘)Nr⌘Nw , where N
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and N
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are the number of right and wrong matches in the
sequence and ⌘ is the error rate, to be determined a posteriori. As the system is infinite and the probabilities P (&)
will turn out to be non-normalizable, we will focus in the following in calculating the error rate ⌘. Upon substitution,
the steady state conditions (3) simply becomes ⌘ = Jw(&)/[Jw(&) + Jr(&)], independent of &. Using the actual
expression for the fluxes (2) and invoking the ansatz once more, we finally arrive at an expression for the error in
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We can also write the average polymerization velocity, which is the rate of monomer attachment minus the average
removal rate:

v = kw+ � kw�⌘ + kr+ � kr�(1� ⌘). (5)

Together, Eqs. 4&6 provide an exact solution of the copolymerization model. Eq. 4 gives the error rate as a
function of the rates. This error-rate is preserved over all the chain and does not change as the chain grows. In the
front of the growing copolymer the error distribution is noisier, but this is simply due to the length distribution of
the polymer (see red lines in Fig. 3). Eq. 6 gives the growth velocity of the polymer. Other than this growth speed,
a polymer is clearly also subject to di↵usion due to the stochasticity of the binding and unbinding reactions. The
di↵usion constant is trivially given by:

D = kw+ + kw�⌘ + kr+ + kr�(1� ⌘). (6)

And produces an increasingly wide front of length distributions (see Fig.3, blue lines). As mentioned above, this is at
the origin of the noisiness in the error at the front.

It is clear that the copolymerization model solved in this section represents a very simplified description of biological
copying. Virtually all known biological copying reactions are made up of a number of intermediate mechano-chemical
steps, possibly interconnected in a complex way and often deviced to improve the copying fidelity (others, zaher).
It is worthwhile to remark that the same solution strategy followed in this section can be used to exactly solve any
generalization of this model in which a finite number of intermediate states (with arbitrary transitions among them)
are present. In the appendix VA this is explained in detail, and in following sections we will in fact study several
generalizations of the copolymerizzation model. But first let us proceed to analyze in detail the thermodynamics and
operational regimes of the copolymerzation model, which are the building blocks of more complex schemes.
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Results
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Since the errors are uncorrelated, we can make the ansatz that the probabilities P (&) depend on the number of
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sequence and ⌘ is the error rate, to be determined a posteriori. As the system is infinite and the probabilities P (&)
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We can also write the average polymerization velocity, which is the rate of monomer attachment minus the average
removal rate:

v = kw+ � kw�⌘ + kr+ � kr�(1� ⌘). (5)

Together, Eqs. 4&6 provide an exact solution of the copolymerization model. Eq. 4 gives the error rate as a
function of the rates. This error-rate is preserved over all the chain and does not change as the chain grows. In the
front of the growing copolymer the error distribution is noisier, but this is simply due to the length distribution of
the polymer (see red lines in Fig. 3). Eq. 6 gives the growth velocity of the polymer. Other than this growth speed,
a polymer is clearly also subject to di↵usion due to the stochasticity of the binding and unbinding reactions. The
di↵usion constant is trivially given by:
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And produces an increasingly wide front of length distributions (see Fig.3, blue lines). As mentioned above, this is at
the origin of the noisiness in the error at the front.

It is clear that the copolymerization model solved in this section represents a very simplified description of biological
copying. Virtually all known biological copying reactions are made up of a number of intermediate mechano-chemical
steps, possibly interconnected in a complex way and often deviced to improve the copying fidelity (others, zaher).
It is worthwhile to remark that the same solution strategy followed in this section can be used to exactly solve any
generalization of this model in which a finite number of intermediate states (with arbitrary transitions among them)
are present. In the appendix VA this is explained in detail, and in following sections we will in fact study several
generalizations of the copolymerizzation model. But first let us proceed to analyze in detail the thermodynamics and
operational regimes of the copolymerzation model, which are the building blocks of more complex schemes.
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Two distinct copying strategies
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Experimental comparison

Pol     human DNA polymerase
studied in (Andrieux and Gaspard, 2008)
assuming isoenergetic strains (          )
result:

� = 0

T7 phage DNA polymerase

�

� ⇡ 14 � ⇡ 8

the two copying machines operate in different regions

for correct and incorrect incorporation are summarized in
Scheme 1 and Table 1.
Incorrect Nucleotide Binding and Incorporation. The

binding of a mismatched nucleotide leads to an increase in
fluorescence (Figure 3A), suggesting that the enzyme
recognizes a mismatch by adopting an alternative conforma-
tion. An equilibrium titration using dideoxy-terminated DNA
(Figure 4A) defined a net dissociation constant for mis-
matched nucleotide, Kd) 130( 0.8 µM. This value indicates
that the binding of the mismatched nucleotide is about 1000-
fold weaker than the binding of the correct nucleotide.
The time dependence of the conformational change

induced by the binding of a mismatched nucleotide is shown
at several concentrations in Figure 4B. Several aspects of
the kinetics are unusual. The observed curves best fit a sum
of two or three exponential terms; there is a rapid jump in
fluorescence, which is not resolved on this time scale; and
the magnitude of the jump increases with an increasing
nucleotide concentration. The observable, slower change in
fluorescence also increases in amplitude, but the rate appears
to decrease with an increasing nucleotide concentration. This
pattern is the kinetic signature of a series of thermodynami-
cally unfavorable isomerization steps following the formation
of a collision complex. We can fit the data globally by
computer simulation using KinTekSim to a model with three
isomerization steps, but the fit is not unique. The essential
conclusion is that ground-state binding of a mismatch is
followed by unfavorable isomerization steps, where the
reverse rate is greater than the forward rate and which
ultimately leads to a slow rate of incorporation, measured
to be 0.12 s-1 (ref 10 and data not shown). Unlike the case
for correct nucleotide binding, the net equilibrium constant
for the isomerization steps cannot be established accurately
because the isomerization is unfavorable, Kd,net ) Kd,1/(1 +
K2) and K2< 1. By curve fitting, we estimate the equilibrium
constant for the isomerization step (K2) to be approximately
0.5, and accordingly, we can compute the dissociation
constant for the collision complex to be Kd,1 ) 1.5 × 130 )
200 µM (Scheme 1). If the chemistry occurs only from the

state following the isomerization to form the H‚Dn‚dGTP
complex, then we predict that k3 ) 0.36 s-1 to account for
the observed rate, kcat ) K2k3/(1 + K2) ) 0.12 s-1 and K2 )
0.5. This computation is approximate because the value of
K2 is not known with certainty. Note that we use H‚Dn‚dGTP
to describe the altered enzyme structure formed after
mismatch binding to distinguish it from the state formed after
binding a correct base (F‚Dn‚dCTP).
We measured the rate of dissociation of the mismatched

nucleotide (dGTP) by following the fluorescence decrease
after mixing an enzyme‚DNAdd‚dGTP complex with a high
concentration of the correct nucleotide (dCTP). The results
are shown in Figure 4C and define a rate of 372 s-1. We
looked for but could not find a slower reaction. The rate of
dissociation was measured at various dCTP concentrations
and extrapolated to obtain the maximum rate of 420 s-1. One
might expect that the observed rate could be partially rate-
limited by the rate of dCTP binding and isomerization at
660 s-1. However, in this case, the observe fluorescence
change is expected to be a weighed sum of species reflecting
both the release of dGTP (H‚DNA‚dGTP f E‚DNA‚dGTP
f E‚DNA + dGTP) and the binding of dCTP (E‚DNA +
dCTP f E‚DNA‚dCTP f F‚DNA‚dCTP). A computer
simulation using KinTekSim (www.kintek-corp.com) con-
firms that a rate of dGTP release is accurately measured by
our method. We fit our data to a minimal model with a
forward rate of isomerization, k2 ∼ 220 s-1, a reverse rate
of k-2 ) 420 s-1, and K2 ∼ 0.5 as summarized in Scheme 1.
Fast dissociation of the mismatched nucleotide from the F‚
DNAdd‚dGTP ternary complex represents an important means
by which the polymerase increases fidelity.
Pathway and Free-Energy Profile. The kinetic data

collected from our fluorescence experiments provide impor-
tant new information to resolve the controversies surrounding
DNA polymerase fidelity. Thermodynamic measurements
show that the structural change preceding correct incorpora-
tion is favorable, leading to tight nucleotide binding and fast
incorporation. After the binding of a mismatch, the isomer-
ization is unfavorable and rapidly reversible to allow for the
dissociation of the mismatched nucleotide. More importantly,
the binding of a mismatched nucleotide leads to a different
conformational state for the E‚DNA‚nucleotide complex, and
the rate for the chemical step is reduced by 2000-fold,
suggesting suboptimal alignment of the catalytic residues.
For correct nucleotide incorporation, the initial, weak ground-
state binding (Kd) 28 µM) induces a conformational change
leading to tighter substrate binding (K2 ) 410), which is
slowly reversible (1.6 s-1) and, in turn, leads to a closed
active site, aligning the catalytic residues properly for fast
catalysis (Scheme 1). In contrast, a mismatched nucleotide
binds to the enzyme with a lower ground-state binding
affinity (Kd ) 200 µM). Once a mismatched nucleotide is
in the active site, the rate of the conformational change is
only slightly reduced but is unfavorable. The rapid reversal
of the isomerization step shifts the equilibrium toward the
open state and facilitates the rapid dissociation of the
mismatched nucleotide from the active site. Moreover, the
rearrangement of the recognition domain differs from that
induced by correct nucleotide binding. This altered pathway
for isomerization results in a misalignment of the catalytic
residues, thereby slowing the rate of the chemical step.

Scheme 1

Table 1: Kinetic Constants for Correct and Incorrect Nucleotide
Incorporationa

dNTP
Kd,1
(µM)

k2
(s-1)

k-2
(s-1)

k3
(s-1)

kcat/Km
(µM-1 s-1)

kcat
(s-1)

Km
(µM)

dCTP 28 660 1.6 360 22 230 10
dGTP 200 220 420 0.3 0.0008 0.1 130

E‚Dn + N {\}
k1

k-1
E‚Dn‚N {\}

k2

k-2
F‚Dn‚N98

k3 E‚Dn+1 + PPi

a Kinetic constants for correct (dCTP) and incorrect (dGTP) nucle-
otide binding and incorporation are listed and defined according to the
model shown in the table. Kinetic parameters kcat, kcat/Km, and Km were
calculated from the individual rate constants listed.

9680 Biochemistry, Vol. 45, No. 32, 2006 Tsai and Johnson

(Tsai and Johnson 2006)

� ⇡ 11

� log(⌘ ⇡ 10

�4
)
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V. APEENDICES

A. Solving an arbitrarily complex copolymerization model

The class is defined in the following way (a drawing would be very useful). There are main states and intermediate
states. Main states are of the form {rwrwrwrrr . . . } where r denotes a right match and w denotes a wrong match.
As usual, we use the short form & to denote a generic state of the chain.

In the copolymerization model, if we look at the transition diagram, one discovers that for example the state &r is
directly connected to three di↵erent states, namely &, &rr, and &rw. In the generalized version, we assume that the
same state is connected to these states and/or to a number of intermediate states between &r and the three tar get
states. We do not need to make any assumption on the number of such states. Moreover, these states can be connected
among them in an arbitrary way without a↵ecting the argument. The only thing we require is that intermediate states
between two main states, for example between & and &r, are either connected among them or with the two main
states. Clearly, this definition includes all the model we studied so far (the original copolymerization, proofreading
with and without intermediate state, multistep copying) but it is much more general.



 

   

FIG. 12: In this figure we can see an arbitrarily compelx extension of the copolymerization model. before a right monomer is
added, many intermediate steps are taken (depicted in purple in the network inside the dashed circle). These can be kinetic,
energetic or non-drisciminating. Alternative steps are taken to add a wrong monomer (orange network). This occurs recursively
when adding more and more monomers. Such models include proofreading and forward discrimination models here studied, as
well as most models in theliterature.

Let us begin by write the master equations for the generic states in which a right or a wrong have been succesfully
incorporated in the following way

d

dt
P (&r) = �r

+(&) + �r

�(&)� (k̃r� + k̃r+)P (&r)

d

dt
P (&w) = �w

+(&) + �w

�(&)� (k̃w� + k̃w+)P (&w) (27)

where we called �r

+(&) and�r

�(&) the overall rate of reaching the state &r from previous or successive states re-
spectively. We remark that the �’s are sum of terms, each proportional to the probability of states in the chain.
We also defined k̃r� and k̃r+ as the overall rates of leaving state P (&r) by either undoing the last monomer or by
progressing respectively, and similarly for &w. At steady state, it is then natural to define the fluxes of incorporation
of right/wrong monomers

J
r

(&) = �r

+(&)� k̃r�P (&r) = k̃r+P (&r)� �r

�(&)

J
w

(&) = �w

+(&)� k̃w�P (&w) = k̃w+P (&w)� �w

�(&). (28)

Intermediate states

1) eliminate intermediate states via steady-state condition
2) same ansatz as before
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III. DOUBLE-COPYING

In this section we consider a double copying scheme in which after a first discriminating step, a subsequent one
occurs. This type of schemes have been sometimes referred to in the biological literature as induced fit, and as we
will show provide an alternative to proofreading schemes for reducing the error beyond the energetic limit. They
naturally occur on several scenarios, and in particular as the last step before proofreading in translation of XXX. In
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Fig. ?? we see the network topology which corresponds to a double copying scheme. It consists of two copying step
in series. Before adding the right or wrong monomer and reaching the states &r or &w, the system has to go through
the intermediate states &r̄ or &w̄ respectively. The state & is connected to &r̄ or &w̄ by the standard rates k and k
respectively. And the intermediate states &r̄ or &w̄ are connected to &r̄ and &w̄ by k and k.

This model can be solved using the general approach explained in detail in the appendix ??, and the key calculations
are provided in the appendix ??. The solution again consists in obtaining the error rate as a function of the kinetic
rates. This is given by:
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The velocity is easy to calculate, and since the flux in each branch is conserved at the steady state, is simply given
by:

v = (15)

To understand the operational regimes of this model from a thermodynamics point of view, we reparametrize the
rates with thermodynamic quantities following the free energy landscape shown in Fig. ??. Using Kramer’s rule, it
is straightforward to obtain

k̄r+ = !⇤e✏
⇤+�

⇤
; k̄r� = !⇤e�

⇤
; k̄w+ = !⇤e✏

⇤
; k̄w� = !⇤e�

⇤
(16)

The interpretation of the parameters in these rates is analogous to that of the standard copyign rates. That is ✏̄� �̄
and ✏̄ are the chemical drivings for wrong and right monomer incorporations in the second step, �̄ is the second kinetic
discrimination factor and !̄ is the characteristic time-scale of this reaction. In addition to these rates, we keep the
definitions of the standard copying rates given by Eq. X. It is important to note that the entropy production rate
can be again written in the compact form of a standar dcopying mechanism. That is,

Ṡ = v�S = v(hWi+H) � 0. (17)

Where now however the averaging of the chemical driving is done over both reactions on each pathway, that is
hWi = (1� ⌘)(✏+ ✏̄) + ⌘(✏� � + ✏̄� �̄).

With this in hand, we can obtain an expression for the error in terms of the physical parameters:

⌘

1� ⌘
=

(e� + !e✏̄+�̄)(e✏+✏̄ � ⌘e�+�̄)

(e� + !e✏̄)[e✏+�+✏̄+�̄ � (1� ⌘)e�+�̄]
(18)
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This equation is key in analyzing the operating regimes of this copying scheme depending on the discrimination
factors. As we will show, there are three operating regimes depending on whether the first and second step are kinetic
or energetic.

FIG. 8: Copying in the presence of an intermediate state. (a) Transition diagram. (b) Energy diagram.

These operational regimes are summarized in Fig. ??, and are the kinetic lock regime, the energetic regime, and
the forward proofreading regime. The kinetic lock regime does not allow for cooperative error reduction, the minimal
error is determined by the discrimination of only one (indeed, the first) of the discriminating steps. The energetic

regime is a trivial combination of two energetic discriminating steps, adding two subsequent energy gaps is equivalent
in the adiabatic limit to adding one gap which totals the sum of the two former. The forward proofreading regime
is a combination of an energetic and a kinetic discrimination steps only possible when the time-scales of the steps
are separated, it allows for error reduction below the limit imposed by the energetic di↵erence and thus constitutes a
genuinely error correction scheme. We now explain these regimes in detail.

• Energetic regime, energetic-energetic: A trivial regime is that in which both reactions operate in the energetic
regime. That is, the energy di↵erence between right and wrong monomer incoporations is higher than the barrier
di↵erence: � > � and �̄ > �̄. In this regime it is clear that the minimum error is obtained in a quasi-static
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discrimination factor and !̄ is the characteristic time-scale of this reaction. In addition to these rates, we keep the
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Solution:

P. Sartori and SP, in preparation
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This equation is key in analyzing the operating regimes of this copying scheme depending on the discrimination
factors. As we will show, there are three operating regimes depending on whether the first and second step are kinetic
or energetic.
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These operational regimes are summarized in Fig. ??, and are the kinetic lock regime, the energetic regime, and
the forward proofreading regime. The kinetic lock regime does not allow for cooperative error reduction, the minimal
error is determined by the discrimination of only one (indeed, the first) of the discriminating steps. The energetic

regime is a trivial combination of two energetic discriminating steps, adding two subsequent energy gaps is equivalent
in the adiabatic limit to adding one gap which totals the sum of the two former. The forward proofreading regime
is a combination of an energetic and a kinetic discrimination steps only possible when the time-scales of the steps
are separated, it allows for error reduction below the limit imposed by the energetic di↵erence and thus constitutes a
genuinely error correction scheme. We now explain these regimes in detail.

• Energetic regime, energetic-energetic: A trivial regime is that in which both reactions operate in the energetic
regime. That is, the energy di↵erence between right and wrong monomer incoporations is higher than the barrier
di↵erence: � > � and �̄ > �̄. In this regime it is clear that the minimum error is obtained in a quasi-static
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FIG. 11: Dissipation (a) and velocity (b) of copying as a kinetic proofreading pathway is chemically driven given a strong
driving of the standard copying pathway. For small driving of KP the error is around ⇠ 10�4, the dissipation is ⇠ 10 and the
copying speed very high ⇠ 106. This corresponds to a standard kinetic copying. As proofreading gets activated the error gets
reduced, the total dissipation grows and the velocity of polymerization decreases. Eventually, as the critical error ⇠ 10�8 is
approached the dissipation diverges as the system operates very far from equilibrium, yet the copying speed goes to zero. this
corresponds to a regime in which most copies have to be undone, and so it takes a long time (small speed) to add a monomer.

C. KP without an intermediate state: Bennett’s model

Do the same

D. Other stu↵

We can now fix all the copying parameters and see the excess dissipated chemical energy as a function of the error
(in this plot, considering all energetic barrios to be null).

Notice that for no proofreading driving adding a proofreading reaction produces a leak of the copy flow, and so
the error increases, as the proofreading driving grows to counteract the entropic driving, this leaking is reduced
(that is, v

p

! 0). Once the leaking is taken to zero the proofreading reaction is dissipating to erase all the errors
(that is, ✏

p

� H), and it begins producing a net backwards flux. This circulation is indeed the main characteristic
of proofreading. After the transition, the error starts getting reduced beyond the copying error, and the trend is
exponential. This exponential tradeo↵ between the error of copying, the proofreading speed, and its associated
dissipation, reminds us of the ESA:

⌘ = ⌘0e
�↵hWip (26)

We will now show that v
p

< 0 implies that h�Si
p

> 0, and so in the regime where KP produces a net erasure of
information it must satisfy a Landauer type inequality. This means that when
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Increasing (backward) driving of proofreading

low error limit of proofreading: 
high dissipation per step, vanishing velocity

P. Sartori and SP, in preparation
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IV. MULTISTEPPING IN PARALLEL: KINETIC PROOFREADING

A. Some general remarks about kinetic proofreading

We will see that proofreading schemes can generically be understood to obey the following thermodynamic relation:

Ṡ = v�S = v
c

(hWi
c

+H)� v
p

(hWi
p

�H) (19)

Where, as usual H corresponds to the Shannon entropy of the copolymer; hWi
c/p

average work performed through
the copying and proofreading pathways respectively, and v

c/p

are the copying and proofreading speeds respectively.
We will show that proofreading strategies can only reduce the error beyond the standard copying limit in a regime

where it creates a backwards flow, and so with the sign convention proposed here v
p

< 0. We will show that in
this regime the average entropy production per monomer proofread, h�Si

p

= hWi
p

� H obeys a second-law type
inequality, h�Si

p

� 0. As already introduced in the first section, this means that proofreading can be understood as
obeying a Landauer erasure principle

hWi
p

� H (20)

Which shows that, as originally proposed by Bennett, an e↵ective Kineitc Proofreading scheme is intrinsically dissi-
pative as it has to remove the information encoded in the incorporated errors.

Another ”myth” about KP is that it costs time. that one needs to wait for proofreading to be e↵ective. this is not
true, since proofreading operates by kinetic discrimination, the error is always reduced the faster it becomes.

B. KP without an intermediate state: Bennett’s model

Branching trees and Energy landscapes Model derivation and solutions
We choose the same copying rates of the standard copying scheme, see Eq.(7). Further, we introduce proofreading

rates which are analogously characterized by a kinetic and energetic proofreading discrimination factors (�
p

and �
p

), a
backward driving ✏

p

, and an additional time-scale !
p

. In the case of proofreading, we define the driving in the backward
right additions, that is k̃r�/k̃

r

+ = e✏p . The kinetic discrimination is also backwards, and so k̃w�/k̃
r

� = e�p . Finally, the

energetic discrimination is reflected in a higher backward driving of wrong bases, such that k̃w�/k̃
w

+ = e✏p+�p . One can
then write the proofreading rates as

k̃r� = !
p

e✏p��p ; k̃r+ = !
p

e��p ; k̃w� = !
p

e✏p ; k̃w+ = !
p

e��p . (21)
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FIG. 9: Here we see the branching tree for a copying schemes which include intermediate states

With these rates and using that the original copying formula still holds for the coarse grained rates (sum of the
copying and proofreading rates), it is straightforward to get:

⌘

1� ⌘
=

e✏ + re��p � ⌘(e� + re✏p)

e✏+� + re��p � (1� ⌘)(e� + re✏p��p)
(22)

parallel reaction with a backward driving
(preferencially removing wrong monomers)

Error without proofreading
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Proofreading

two one-step parallel reactions copying with an intermediate step +
proofreading

- the proofreading rates are characterized by       and

- numerical minimization of the dissipation over the remaining parameters

�p �p
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Proofreading models

1) proofreading is always kinetic
2) energetic copy + kinetic proofreading requires intermediate state
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monitored using the environmentally-sensitive fluorescence
analog mant-dGTP. This structural change (referred to as
GTPase activation) appears to limit the rate of the subsequent
chemical step of GTP hydrolysis (kGTP). The fact that k3 limits
GTP hydrolysis allowed researchers to follow GTP hydrolysis
as a reporter of this key conformational rearrangement (Rodnina
et al., 1995). Several other steps can also be inferred following
initial tRNA selection, including inorganic-phosphate release
(kPi), rearrangement of EF-Tu into a GDP-bound state (k4), and
the irreversible dissociation of EF-Tu from the aa-tRNA (k6).
These latter steps, however, do not appear to be critical features
for understanding discrimination during tRNA selection (Pape
et al., 1999).

Initial views of the proofreading model for tRNA selection
would have predicted that the GTPase activation step (k3) of
the selection pathway proceeds at a constant rate, serving as
an ‘‘internal clock’’ (Thompson, 1988). Discrimination in this situ-

ation arises simply from differences in the dissociation rates
between cognate and near-cognate tRNAs. In direct conflict
with this prediction, several critical studies by Rodnina and
colleagues demonstrated that the rate of GTPase activation
strongly depends on the properties of the decoding helix (pairing
interaction between the codon and the anticodon). For example,
k3 is 120-500 s-1 for the cognate species and 0.06-1.3 s-1 for the
near-cognate (Gromadski et al., 2006; Gromadski and Rodnina,
2004a; Pape et al., 1999). As it turns out, these differences in
forward reaction rate constants are most essential in ensuring
fidelity during the initial tRNA selection phase.
Following the dissociation of EF-Tu, the selection pathway

reaches the critical branch point known as proofreading where
the tRNA either moves into the A-site (accommodation, k5) of
the large ribosome subunit and participates in peptidyl transfer
(kpep), or dissociates from the ribosome (rejection, k7). Strikingly,
the same kinetic study by Rodnina and colleagues that identified

Figure 2. The tRNA Selection Pathway
Pre-steady state kinetic data from experiments performed in the absence of an exit (E)-site tRNA (reviewed in Rodnina et al., 2005) provide a step-wise view of the

tRNA selection process. Predicted correlated Förster resonance energy transfer (FRET) values indicating distinct intermediate ribosome states are noted below

each intermediate (Blanchard et al., 2004a). Green arrows indicate reaction rates that are accelerated for cognate tRNAs, whereas red arrows indicate reaction

rates that are higher for near-cognate tRNAs. The initial binding step in tRNA selection, governed by the rate constants k1 and k-1, is a codon-independent reaction

between the ternary complex and the ribosome. The codon-recognition step is codon dependent and governed by the rate constants k2 and k-2. The active site of

the elongation factor EF-Tu undergoes a conformational change at the GTPase activation step that is governed by k3 and k-3. This step is pivotal for establishing

the irreversible step essential to proofreading and appears to limit the rate of GTP hydrolysis (kGTP). The dissociation of EF-Tu brings the selection process to the

proofreading stage where the tRNA either moves into the aminoacyl (A) site (accommodation) for peptidyl transfer or dissociates from the ribosome (rejection).

Accommodation is regulated by the rate constant k5 and depends on codon-anticodon interactions. We note that the occupancy and the role of the E-site tRNA

following the codon-recognition intermediate are controversial and as such, the E-site tRNA is shown in a lighter color subsequent to this stage.

750 Cell 136, 746–762, February 20, 2009 ª2009 Elsevier Inc.

Zaher and Green, Cell (2009)

tRNA selection pathway
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Conclusions

- There are two different and separated regimes in 
stochastic copying: one based on energy barriers 
and one based on energy differences

- Reducing the error rate in the two regimes has 
different costs (more dissipation or less velocity)

- Experimental data suggest that both copying 
strategies are adopted in biology

- An analysis of more complex schemes shows how 
the strategies can be combined. Getting closer to 
realistic models
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