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  1. what1. what’’s the applicability of Richardson model?s the applicability of Richardson model?

  2. what2. what’’s the origin of extreme events in pair dispersion?s the origin of extreme events in pair dispersion?

  3. what about the inertial particles separation distribution?3. what about the inertial particles separation distribution?

Richardson diffusive model requires:Richardson diffusive model requires:
••  fastfast decorrelation  decorrelation of the velocityof the velocity
              to adopt a diffusive-like               to adopt a diffusive-like eqeq..

•• a single critical exponent for velocity a single critical exponent for velocity
fluctuationsfluctuations
                            to have global time self-similarityto have global time self-similarity

••  infinite scaling rangeinfinite scaling range
                          to have asymptotic solution validto have asymptotic solution valid

How pairs of tracers separate in turbulent flows ?How pairs of tracers separate in turbulent flows ?

3D turbulent flows have none of these requirements3D turbulent flows have none of these requirements



Applications

At small diffusivities κ

Eulerian approach Lagrangian approach



Time scales in diffusion
Diffusion is a macroscopic behaviour emerging at long times t > tMac
from many different microscopic ones. It requires: 

tmic
time of microscopic

forces

tMac
observation time

 
τcor

If correlation time is long (no time separation), deviations appear:

Standard diffusion

Anomalous diffusion Fokker-Planck eq.
Stretched exp PDF

Diffusion equation, Gaussian PDF

If self-similarity of the diffusion process is lost:

Strong Anomalous 
No diffusive-like eq.

<< <<



Richardson Law (1926) for
isotropic & homogeneous flows

scale-dependent eddy diffusivity

Richardson distribution is 
non-Gaussian but self-similar

• Second order moment: superdiffusive
 Constant “g” is assumed universal

The PDF to observe a pair with 
distance R satisfies a diffusion eq.

• High order moments

Proc. Roy. Soc. A 756, 1926



Richardson PDF vs. Kolmogorov-Obukhov theory 

If local correlation time τ(R) is so short that rel. separation have not much
changed:

We used  self-similar 
Kolmogorov scaling: 

ε = the mean kinetic energy dissipation

 In the inertial range of scales with IF cut-off --> 0, and UV cut-off to ∞



Richardson’s approach is exact for the evolution of a particle pair in a
stochastic self-similar and delta-correlated in time, incompressible
velocity field, ex. Kraichnan model:

More generally Falkovich, Gawedzki, Vergassola RMP (2001)

• Asymptotic solution for ξ≠2 : stretched exponential  

• Asymptotic solution for ξ=2 : log-normal  



HINTS
Turbulent dispersion is non stationary  & with variable increments,
correlating on all scales…very far from standard diffusion

Can we quantify how wrong is to assume a diffusion approach?

• Velocity fluctuations at scale R:

• Typical time scale associated:

• Lagrangian time along  traject. :

For diffusive approach to be valid 

In d=3 turbulence Ps≈ 1, and Kolmogorov type of scaling is the 
borderline case where diffusion approach breaks down…

Sokolov, PRE (1999)



Probls: infinite speed propagation & time locality

• Richardson diffusive approach P(R,t) > 0 at any R at time t….
 Telegrapher eq. is the simplest generalization with 
 constant bounded speed (persistent random walk) 

Masoliver, Weiss Eur. J. Phys. (1996)

τ=0, D0/ τ ->∞

τ=∞, D0/ τ -> 0 

• Altern., Fokker-Planck eq. can be modified to include time
non-locality of diffusive contribution & cure infinite speed

Ilyin, Procaccia, Zagorodny CMP (2013)

• Note also that any diffusivity kernel

 



Laboratory experiments of pair dispersion :
3d isotropic and homogeneous turbulence

Richardson diffusive approach is wrong, but a non-markovian model is not
yet there.
Let’s look at data…

Ouellette et al.,  NJP 2006

Reλ ≈ 800

The <R2 > = g ε t3  is hardly observed, 
Richardson PDF is observed in a narrow range



Numerical simulations vs experiments

0.8 ≤ g ≤1.8Stochastinc models
(Borgas & Sawford)

2.42Theory LDHI
(Kraichnan)

0.5Experiment 3D
(Ott Mann)

0.5Numerics 3D
(Boffetta Sokolov,…)

Richardson
universal g

Model

Reλ ≈ 300

Numerical simulations are 
competitive for Lagrangian Turb.

They  show a discrete agreement with 
Richardson model. 

Biferale et al.,  PoF 2005



POINT SOURCE EMISSION
Navier-Stokes eqs. in a cubic domain 10243 resolution, periodic BC.
Self-similarity of the flow is broken: Multifractal Statistics

Flow is seeded with 1011  pairs
emitted from many point sources.



Slowest and fastest separation events
Fast separating pairsSlowly separating  pairs

P(r,t)

• Exponential-like tails with a sharp
drop at a cut-off separation rc(t).

• This cut-off scale is the signature of
tracers pairs experiencing a
persistent high relative velocity,
which is limited by Urms

• Presence of a peak at sub-diffusive
separations at every time.

• This behavior is due to emissions
that do not separate efficiently in
the flow (Lyapunov exponent
fluctuates and can become very
small).



Comparison with Richardson’s PDF

Strong departures from
the ideal self-similar
Richardson distribution

Deviations due to finite Reynolds effects,
multifractality, temporal correlations

L. Biferale et al.
2005

N. T. Ouellette et al. 2006

r0 = 0 – 1 mm < 40 η

Batchelo
r



Eddy-Diffusivity Model with IF & UV cut-offs
Integrate Richardson equation using an Effective Turbulent Eddy-Diffusivity
that takes into account the small and large scale behaviours



Model - NS comparison

rn= r / <r2>1/2

At small & large separation,
model goes in the correct direction,
but it is not enough.

Deviations from Gaussianity at small 
Separations & Time Correlations at 
large R NEED to be modeled also. 

Scatamacchia et al., PRL (2012)



Exit time statistics

R

t

R0 2R0 4R0

Measure statistics of time lag Tρ(R) needed to have
pair distance growing from r0=R0  to  rn = ρn R0. 
An asymptotic exit time PDF can be obtained from
the Richardson distribution.

Boffetta Sokolov, PRL 2002

Exit time PDF : rn=10 η and rn+1=50 η Exit time PDF : rn=2 η and rn+1=10 η



POINT SOURCE EMISSION HEAVY
PARTICLES



Modeling Relative Separations of Inertial
Particles

R0, ΔR0V

R(t), ΔRV

Lagrangian framework

Bec Bec et al. JFM 645 ( 2010); et al. JFM 645 ( 2010); Bec Bec et al. JFM 646( 2010)et al. JFM 646( 2010)



Heavy particles stationary mass
distribution

Inertial particles dynamics possess a singular measure in phase space.
By large-deviation formalism for dissipative dynamical systems,
the moments of mass distribution at separation r < η:

r

Generalised Fractal  Dimensions



Heavy particles stationary velocity
distribution

Velocity statistics is due to the competition
of smooth fluctuations with quasi-singular events
(caustics) of very large velocity fluctuations at 
close points  

PDF of rescaled 
velocity differences



HEAVY PAIRS SEPARATION PDF
from localised source

preferential concentration Behaviour at small separations

~ R2

tracers

Heavy ~at small separations like tracers in 
rough & compressible Kraichnan flow

3τη 80τη



HEAVY PAIRS SEPARATION PDF
 from localised source

Behaviour at large separations

Heavy ~ for small Stokes, heavy pairs separation dynamics
relaxes onto the tracers one.

For large Stokes, inertia prevents very large separations (i.e.
intermittency is depleted)

3τη 80τη



Emergence of caustics:
PDF of velocity differences

Behaviour conditioned on small separations

Behaviour conditioned on large separations



Conclusions
TRACERS
For tracers dispersion, 
big violation to Richardson model are detectable 

Finite size effects can be included
But they are not sufficient

Gaussianity hypothesis at the base of Deff(R) can
not capture stretching rate fluctuations
responsible of slowly separating pairs.

Temporal correlations (including those associated
to intermitent behaviours) are still a critical point 
to describe fast separating pairs. 
(see e.g. Bitane, Homann, Bec PRE 2012)

INERTIAL PARTICLES

No reference theory, just observations
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Diffusion process: basic
x -1     x        x+1     1D random walk: simplest case

In the continuous limit, Δt -->  0   and Δx --> 0, with D0 = Δx2/2Δt

Gaussian solution
Diffusive flux depends on
gradient particle number density 



Inverse Exit time moments & Eulerian intermittency

From exit-time PDF, we can measure moments dominated by
fast separating pairs:

Using Multifractal formalism for Eulerian statistics: 
Parisi Frisch 1985; Paladin Vulpiani 1987

Eulerian velocity intermittency
clearly affects the way particles
separate


