EXTREME DEVIATIONS IN TURBULENT PAIR DISPERSION

Alessandra S. Lanotte

CNR-ISAC Lecce, Italy

In collaboration with: Luca Biferale (Univ. Tor Vergata, Rome) Riccardo Scatamacchia (Univ. Tor Vergata, Rome) Federico Toschi (Eindhoven Technical Univ., The Netherlands)

Giovanni Paladin Memorial 2013, 25 September

How pairs of tracers separate in turbulent flows ?

 (1, t) Richardson diffusive model requires:
 fast decorrelation of the velocity to adopt a diffusive-like eq.

• a single critical exponent for velocity fluctuations

to have global time self-similarity

infinite scaling range

to have asymptotic solution valid

3D turbulent flows have none of these requirements

- 1. what's the applicability of Richardson model?
- 2. what's the origin of extreme events in pair dispersion?
- 3. what about the inertial particles separation distribution?

Applications

At small diffusivities $\boldsymbol{\kappa}$

Eulerian approach

$$\partial_t c + \mathbf{u} \cdot \nabla c = \kappa \nabla^2 c + S$$

$$< c(\mathbf{x}, t) > =$$

Lagrangian approach
$$\frac{d\mathbf{X}}{dt} = \mathbf{u}(\mathbf{X}, t) + \sqrt{2\kappa} \eta(t)$$
$$\int_{s \le t} \int_{V} p(\mathbf{X} = \mathbf{x}, t | \mathbf{Y}, s) S(\mathbf{Y}, s) d\mathbf{Y} ds$$

$$< c(\mathbf{x_1}, t)c(\mathbf{x_2}, t) > =$$

 $\int_{s_1 \le t} \int_{s_2 \le t} \int_V \int_V p_2(\mathbf{X_1} = \mathbf{x_1}, \mathbf{X_2} = \mathbf{x_2}, t | \mathbf{Y_1}, \mathbf{Y_2}, s) S(\mathbf{Y_1}, s_1) S(\mathbf{Y_2}, s_2) d\mathbf{Y_1} ds_1 d\mathbf{Y_2} ds_2$

Time scales in diffusion

Diffusion is a macroscopic behaviour emerging at long times $t > t_{Mac}$ from many different microscopic ones. It requires:

Strong Anomalous
$$\langle \Delta x^{2q} \rangle \simeq D_{\zeta} \Delta t^{\zeta(q)} \qquad \zeta(2q) \neq 2\zeta(q)$$

No diffusive-like eq.

Richardson Law (1926) for isotropic & homogeneous flows

The PDF to observe a pair with distance R satisfies a *diffusion* eq.

$$\frac{\partial P(R,t)}{\partial t} = \frac{1}{R^{d-1}} \left[\frac{\partial}{\partial R} R^{d-1} D_{Ric}(R) \frac{\partial}{\partial R} P(R,t) \right]$$

Richardson distribution is non-Gaussian but self-similar $P(R,t) \simeq \frac{R^2}{t^{9/2}} \exp(-CR^{2/3}/t)$

 Second order moment: superdiffusive Constant "g" is assumed universal

$$\langle R^2(t) \rangle = g \, \epsilon \, t^3$$

High order moments

$$\langle R^{2q}(t)\rangle = g_{2q}\,\epsilon^q\,t^{3q}$$

scale-dependent eddy diffusivity

 $D_{Ric}(\mathbf{R},t) \simeq R^{4/3}$

 $\mathbf{R}(t) = \mathbf{X_1}(t) - \mathbf{X_2}(t)$

 $u_1(\mathbf{X}_1,t)$

R(t)

 $u_2(X_2, t)$

Proc. Roy. Soc. A 756, 1926

Richardson PDF vs. Kolmogorov-Obukhov theory

 $D_{Ric}(R,t) \equiv \frac{1}{2} \frac{d}{dt} \langle \mathbf{R}^2 \rangle \equiv \langle \delta_R \mathbf{u}(\mathbf{R},t) \cdot \mathbf{R}(t) \rangle \equiv \int_0^t \langle \delta_R \mathbf{u}(\mathbf{R}(t),t) \delta_R \mathbf{u}(\mathbf{R}(s),s) \rangle ds$

If *local correlation time* $\tau(R)$ *is* **so short** that rel. separation have not much changed:

$$D_{Ric}(R,t) \simeq \tau(R) \langle \delta_R \mathbf{u}(\mathbf{R}(t),t)^2 \rangle = k_0 \epsilon^{1/3} R^{4/3}$$

We used **self-similar** Kolmogorov scaling: $\langle \delta_r \mathbf{u}(\mathbf{r}_{\parallel})^2 \rangle \propto \epsilon^{2/3} r^{2/3}; \quad \tau_r \propto (r^2/\epsilon)^{1/3}$ ϵ = the mean kinetic energy dissipation

In the inertial range of scales with IF cut-off --> 0, and UV cut-off to ∞

$$P(R >> R_0, t >> t_0) = \frac{A}{\epsilon^{3/2} t^{9/2}} \exp\left(-\frac{9R^{2/3}}{4k_0 \epsilon^{1/3} t}\right)$$

More generally

Richardson's approach is exact for the evolution of a particle pair in a stochastic self-similar and delta-correlated in time, incompressible velocity field, ex. Kraichnan model:

$$D_{\parallel}(R) \propto R^{\xi} ~~0 \leq \xi \leq 2$$

• Asymptotic solution for $\xi \neq 2$: *stretched exponential*

$$P(R,t) \approx \frac{C R^2}{\langle R^2 \rangle^{3/2}} \exp\left[-b \left(\frac{R}{\langle R^2(t) \rangle^{1/2}}\right)^{2-\xi}\right] \qquad \langle R^2(t) \rangle \simeq t^{2/(2-\xi)}$$

• Asymptotic solution for $\xi = 2$: *log-normal*

$$P(R,t|R_0,0) \propto \exp\left[-rac{[\ln(R/R_0) - \lambda(t-t_0)]^2}{4\Gamma(t-t_0)}
ight] \qquad < R^2(t) > = R_0^2 \, e^{(2\lambda + 4\Gamma)t}$$

HINTS

Turbulent dispersion is **non stationary** & with **variable increments**, correlating on all scales...very far from standard diffusion

Can we quantify how wrong is to assume a diffusion approach?

- Velocity fluctuations at scale R:
- Typical time scale associated:
- Lagrangian time along traject. :

$$\delta_R u(R) \approx U_0 \left(\frac{R}{L_0}\right)^{1/3}$$
$$\tau(R) \approx T_0 \left(\frac{R}{L_0}\right)^{2/3}$$

$$\tau_{Lag}(R) \approx \frac{R}{\delta_R u(R)} \approx \frac{R_0^{1/3}}{U_0} R^{2/3}$$

For diffusive approach to be valid

$$Ps = \frac{\tau(R)}{\tau_{Lag}(R)} \approx \frac{T_0 U_0}{R_0} << 1$$

In d=3 turbulence **Ps** \approx **1**, and Kolmogorov type of scaling is the borderline case where diffusion approach breaks down...

Probls: infinite speed propagation & time locality

Masoliver, Weiss Eur. J. Phys. (1996)

 Richardson diffusive approach P(R,t) > 0 at any R at time t.... Telegrapher eq. is the simplest generalization with constant <u>bounded speed</u> (persistent random walk)

$$\tau \frac{\partial^2 P(R,t)}{\partial t^2} + \frac{\partial P(R,t)}{\partial t} = D_0 \frac{\partial^2 P(R,t)}{\partial R^2}$$

• Altern., Fokker-Planck eq. can be modified to include time non-locality of diffusive contribution & cure infinite speed

$$\frac{\partial P(R,t)}{\partial t} = \int_0^t K(t-s) \left[\frac{1}{R^{d-1}} \frac{\partial}{\partial R} R^{d-1} \frac{\partial}{\partial R} P(R,s) \right] ds$$

Ilyin, Procaccia, Zagorodny CMP (2013)

Note also that any diffusivity kernel

 $D_{\parallel}(R,t) \propto R^{\alpha} t^{\beta}, \quad 3\alpha + 2\beta = 4$

$$ig \langle R^2
ight \propto t^3$$
 $P(R,t) \propto rac{AR^2}{(\epsilon^{1/3}t)^{3(eta+1)/(2-lpha)}} \exp\left(-C \, rac{R^{2-lpha}}{t^{1+eta}}
ight)$

Laboratory experiments of pair dispersion : 3d *isotropic and homogeneous* turbulence

Richardson diffusive approach is *wrong*, but a non-markovian model is not yet there. Let's look at data... $\frac{\overline{f(H_z) \ R_\lambda \ u'_{\epsilon}(ms^{-1}) \ u'_{\epsilon}(ms^{-1}) \ \epsilon(m^2s^{-3}) \ \eta(\mu m) \ L/\eta \ \tau_{\eta}(ms) \ T_L/\tau_{\eta} \ FPS \ \delta t \ (ms) \ \tau_{\eta}/\delta t}{\frac{0.30 \ 200 \ 0.039 \ 0.026 \ 7.09 \times 10^{-4} \ 192 \ 365 \ 368 \ 51 \ 1000 \ 1.00 \ 37}{1000 \ 1.00 \ 37}}$

			- (/			- // ()	- 1.7 - 4			-47
200	0.039	0.026	7.09×10^{-4}	192	365	36.8	51	1000	1.00	37
240	0.056	0.038	2.03×10^{-3}	146	479	21.3	61	1600	0.625	34
290	0.083	0.054	6.26×10^{-3}	111	630	12.3	74	3000	0.333	37
350	0.121	0.080	2.01×10^{-2}	84	830	7.11	88	5000	0.200	36
415	0.181	0.116	6.17×10^{-2}	64	1090	4.12	106	9000	0.111	37
500	0.262	0.169	0.196	49	1433	2.39	127	27000	0.037	65
690	0.487	0.315	1.24	30	2337	0.897	176	27000	0.037	24
815	0.669	0.440	3.39	23	3087	0.544	208	27000	0.037	15
	200 240 290 350 415 500 690 815	200 0.039 240 0.056 290 0.083 350 0.121 415 0.181 500 0.262 690 0.487 815 0.669	200 0.039 0.026 240 0.056 0.038 290 0.083 0.054 350 0.121 0.080 415 0.181 0.116 500 0.262 0.169 690 0.487 0.315 815 0.669 0.440	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

The $\langle R^2 \rangle = g \ \epsilon \ t^3$ is hardly observed, Richardson PDF is observed in a narrow range

Numerical simulations vs experiments

Model	Richardson universal g
Numerics 3D (Boffetta Sokolov,)	0.5
Experiment 3D (Ott Mann)	0.5
Theory LDHI (Kraichnan)	2.42
Stochastinc models (Borgas & Sawford)	0.8 ≤ g ≤1.8

Numerical simulations are competitive for Lagrangian Turb.

They show a discrete agreement with Richardson model.

POINT SOURCE EMISSION

Navier-Stokes eqs. in a cubic domain 1024³ resolution, periodic BC. Self-similarity of the flow is broken: Multifractal Statistics

 ζ_q

$$\langle [\delta_r u(r)]^q \rangle \approx c_q r^{\zeta_q}, \quad \zeta_{2q} < 2$$

$$\langle [\delta_r u(r)]^3 \rangle = -\frac{4}{5}\epsilon r$$

Flow is seeded with 10¹¹ pairs emitted from many point sources.

$$\frac{d\mathbf{X}}{dt} = \mathbf{u}(\mathbf{X}, t)$$

Slowest and fastest separation events

Slowly separating pairs

Fast separating pairs

- Presence of a peak at sub-diffusive separations at every time.
- This behavior is due to emissions that do not separate efficiently in the flow (Lyapunov exponent fluctuates and can become very small).

- Exponential-like tails with a sharp drop at a cut-off separation $r_c(t)$.
- This cut-off scale is the signature of tracers pairs experiencing a persistent high relative velocity, which is limited by U_{rms}

Comparison with Richardson's PDF

Deviations due to finite Reynolds effects, multifractality, temporal correlations

Eddy-Diffusivity Model with IF & UV cut-offs

Integrate Richardson equation using an Effective Turbulent Eddy-Diffusivity that takes into account the small and large scale behaviours

$$\partial_t P(R,t) = \frac{1}{R^2} \frac{\partial}{\partial_R} \left[D^{eff}(R,t) R^2 \frac{\partial P(R,t)}{\partial_R} \right]$$

$$D^{eff}(R,t) = \tau(R) \langle \left[(\mathbf{u}(\mathbf{x}_1 + \mathbf{R}) - \mathbf{u}(\mathbf{x}_1)) \cdot \hat{\mathbf{R}} \right]^2 \rangle$$

Model - NS comparison

Scatamacchia et al., PRL (2012)

Exit time statistics

Boffetta Sokolov, PRL 2002

Measure statistics of time lag $T_{\rho}(R)$ needed to have pair distance growing from $r_0 = R_0$ to $r_n = \rho^n R_0$. An asymptotic exit time PDF can be obtained from the Richardson distribution.

$$\mathcal{P}_{\rho,r_n}(T) \approx \exp\left(-C \, \frac{T_{\rho}(r_n)}{\langle T_{\rho}(r_n) \rangle}\right)$$

Exit time PDF : $r_n{=}10~\eta$ and $r_{n{+}1}{=}50~\eta$

Exit time PDF : $r_n{=}2~\eta$ and $r_{n{+}1}{=}10~\eta$

POINT SOURCE EMISSION

HEAVY PARTICLES

$$rac{d \mathbf{V}}{dt} = rac{\mathbf{u} - \mathbf{V}}{ au_p}$$

$$St = rac{{{ au _p}}}{{{ au _\eta }}} = \left[{0.6;1;5}
ight]$$

Modeling Relative Separations of Inertial Particles

Lagrangian framework

Bec et al. JFM 645 (2010); Bec et al. JFM 646(2010)

Heavy particles <u>stationary</u> mass distribution

Inertial particles dynamics possess a singular measure in phase space. By large-deviation formalism for dissipative dynamical systems, the moments of mass distribution at separation $r < \eta$:

$$M_r^{(q)}(St) \equiv \langle \sum_{i=1}^{N_r(St)} m_r^q \rangle \sim r^{(q-1)D_q(St)}$$

Heavy particles <u>stationary</u> velocity distribution

PDF of rescaled velocity differences

$$\sigma_{St} = \frac{\Delta_R V_{\parallel}^{(St)}}{R}$$

Velocity statistics is due to the competition of *smooth fluctuations* with *quasi-singular events* (*caustics*) of very large velocity fluctuations at close points

HEAVY PAIRS SEPARATION PDF

from localised source

Heavy ~at small separations *like tracers* in rough & compressible Kraichnan flow

$$\mathcal{P}_{\xi,\mu}(R,t) \propto rac{R^{D_2-1}}{t^{(d-\mu)/(2-\xi)}} \exp\left[-Arac{R^{2-\xi}}{t}
ight]$$

HEAVY PAIRS SEPARATION PDF

from localised source

Behaviour at large separations

Heavy ~ for small Stokes, heavy pairs *separation dynamics relaxes onto the tracers one.*

For large Stokes, inertia prevents very large separations (i.e. intermittency is depleted)

Emergence of caustics: PDF of velocity differences

Behaviour conditioned on small separations

Behaviour conditioned on large separations

Conclusions

TRACERS

For tracers dispersion,

big violation to Richardson model are detectable

Finite size effects can be included But they are not sufficient

^B ^B ^{III} Gaussianity hypothesis at the base of D_{eff}(R) can not capture stretching rate fluctuations responsible of *slowly separating pairs*.

Temporal correlations (including those associated to intermitent behaviours) are still a critical point to describe *fast separating pairs*. (see e.g. *Bitane, Homann, Bec PRE 2012*)

INERTIAL PARTICLES

No reference theory, just observations

Thanks to

Jérémie Bec, CNRS-Oca and Univ. Sophia Antipolis Luca Biferale, Dept. Physics, Univ. Tor Vergata (Ita Guido Boffetta, Dept Physics, Univ. Torino (Italy) Antonio Celani, Pasteur Institute (France) Massimo Cencini, INFM-CNR & SMC (Italy) Ben Devenish, Met. Office (UK) Irene Mazzitelli, Univ. del Salento (Italy) Stefano Musacchio, Univ. Sophia Antipolis (France) Riccardo Scatamacchia, University of Rome Tor Vergata (Italy) Andrea Scagliarini, University of Rome Tor Vergata (Italy) Federico Toschi, Tech. Univ. of Eindhoven (The Netherlands)

Diffusion process: basic

1D random walk: simplest case

$$p_{n+1}(x) = \frac{1}{2}p_n(x-1) + \frac{1}{2}p_n(x+1)$$

In the continuous limit, $\Delta t \rightarrow 0$ and $\Delta x \rightarrow 0$, with $D_0 = \Delta x^2/2\Delta t$

$$rac{\partial \, p(x,t)}{\partial t} = D_0 \, rac{\partial^2 p(x,t)}{\partial x^2}$$

Gaussian solution

$$p(x,t) = \frac{1}{\sqrt{4\pi D_0 t}} \exp\left(-\frac{x^2}{4D_0 t}\right)$$

Diffusive flux depends on gradient particle number density

 $\Gamma(\mathbf{x},t) = -D_0 \nabla n(\mathbf{x},t)$

Inverse Exit time moments & Eulerian intermittency

From exit-time PDF, we can measure moments dominated by fast separating pairs: 1

$$\left\langle \frac{1}{\left[T_{\rho}(R)\right]^{p}} \right\rangle \approx R^{-\alpha(p)}$$
?

Parisi Frisch 1985; Paladin Vulpiani 1987

Using Multifractal formalism for Eulerian statistics:

