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“In our opinion, the mean field approach is very promising ... It has a good
heuristic power and there are still a lot of open problems in its framework ...”

M. Serva, G. Paladin, J. Raboanary in arXiv:cond-mat/9509005

Nonequilibrium Stat. Mech. modeled by SDEs

colloidal particles, biomolecules,

localized SyStemS molecular motors, ...

stochastic lattice gasses
extended SyStemS zero range, SSEP, ASEP, ABC, ...

e Mean field systems are somewhere in between :

for infinite systems they are described by a non—linear
/( version of the small—system Fokker—Planck equation

\ for large finite systems their fluctuations are described by
theory developed for extended systems by the Rome school
(Bertini—DeSole— Gabrielli—Jona—Lasinio—Landim)



to add to the pool of few examples where
the macroscopic fluctuation theory

of the Rome group applies

Toolkit: large deviations theory

Domain

of application:

General non-equilibrium diffusions with mean-field

coupling in dimension d:

dx ., B
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with Y (z,y) = =Y (y,z) and o for the Stratonovich convention

Based on: joint work with F. Bouchet and C. Nardini

in slow progress



Prototype model: N planar rotators with angles 6,, and mean

field coupling, undergoing Langevin dynamics

46 J —
W = F — H sinf,, — N mzz:l Sin(en — Qm) + QkB,];{??n(t)

independent
white noises

Shinomoto-Kuramoto, Prog. Theor. Phys. 75 (1986),

Giacomin-Pakdaman-Pellegrin-Poquet, STAM J. Math. Anal. 44 (2012)

Close cousin of the celebrated Kuramoto (1975) model for
synchronization (with F — F,, and no noise)

Models limit cycles of coupled nerve cells and their cooperative
behaviors

Close to models of depinning transition in disordered elastic media
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e May be re-interpreted as a classical ferromagnetic XY model
with a mean-field coupling of planar spins S,

e FF=0 case (equilibrium):

in constant external magnetic field H = (H, O)
S S(cos 0,,, sin Gn)

e F'# 0 case (non-equilibrium):

in rotating external magnetic field H = H( cos(F't), — Sin(Ft))
gn — S(COS(@n . Ft), sin(@n o Ft)) (i.e. spins are viewed in)

the co—moving frame




Macroscopic quantities of interest in the general case

dx .,

1 N
W = X(tyxn) + Nﬂlz_:lY(t,xn,xm) + %:Xa(taxn) Onna(t)

empirical density

pN(t, CU) —

N
Z O(x — xpn(t))

1
N
empirical current

dxy, (1)

jN(t,$) — dt

1 N
= Z 0(x — xpn(t)) o
n=1
They are related to each other by the continuity equation:

Macroscopic fluctuation theory applies to their large deviations
at N> O(1)




e Effective diffusion in the density space

dxn (t)

o and the passage

e Substitution of the equation of motion for

to the It6 convention give:

jN(tvm) — ij(tvx) + CPN(tvm)

jp — p()? 4= *p) — DVp <—— quadratic in p

A~

X =X-3>(V-Xs)Xa, D =1X,® X,

(Y *xp)(t,z) = [Y(t,z,9)p(t,y)dy

o (52) = 22 D0 37 Xalt,2)6(w — 2 () 7 (t)




e Conditioned w.r.t. p,, the noise C’ON (t, ) has the same law

as the white noise \/2N—1D(t, x)py\(t,x) £(t,x) where

('t @) € (s,y)) = 8" 8(t — 5)(z — v)
Follows from the fact that for functionals
®[p] = g([p(z)hi(z)dz, ..., [p(z)hy(z)ds)

the standard stochastic differential calculus gives

q’[PNt]> — <(£th))[pNt]>

0P[p] .
—/ 5p(z) V-jo(t,x)dx

VVy (D(t, x) p(t,z)d(x — y)) dx dy

/ 5/)(:6) 5p(y)

is the generator of the (formal) diffusion in the space of densities

evolving according to the Ito SDE
Otp + V- (jp + V2N—1Dp¢g) = 0




e /N = oo closure

When N — oo, the effective evolution equation for the empirical
density reduces to Nonlinear Fokker-Planck Equation (NFPE)

otp = =V -j, = —V'(p(X—I—Y*p) —DVp)

—> a nonlinear dynamical system in the space of densities
(autonomous or not)

If ¥ =0 then the N = oo empirical density coincides with
instantaneous PDF of identically distributed processes =, (t) and
NFPE reduces to the linear Fokker-Planck equation for the latter

The N = oco phase diagram of an autonomous system with
mean-field coupling is obtained by looking for stable stationary
and periodic solutions of NFPE and the bifurcations

In principle, more complicated dynamical behaviors may also arise




e /N = oo phases of the rotator model
e Stationary solutions of NFPE satisfy:
27
8o, (0) = g <p(9) (F—Hsin(e) — J [sin(6 — 9) p(9) dz‘}) —kBTﬁgp(9)>
0

= Op <p(9)(F— (H 4+ x1)sin 6 + x2 COSQ) — kBTagp(9)> =0

27 27
with  z1 = J [ cos¥ p(9) dv, ro = J [ sin® p(9)
0 0

and the solution

1 FO+(H+xq)cos 0+xo sin 6 9/—|—27r_ FY9+(H~+xq1) cos 9+x9 sin ¥
(&

0

The coupled equations for 2 variables z1 2 may be easily analyzed

The decoupled J = 0 solution corresponds to x1 2 = 0




e N = oo phase diagram for the rotator model for F # 0
(Shi-Ku 1984, Sakaguchi—Shi—Ku 1986, ...)
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e For H = 0 the periodic phase coincides with the ordered low-temp.

equilibrium phase viewed in the co-rotating phase

¢ When F 0 the periodic phase reduces to the equilibrium
disordered phase at H = +0

e Global properties of the NFPE dynamics for the rotator model

have been recently studied by Giacomin and collaborators




Fluctuations for /N large but finite

e Formally, domain of applications of the small-noise Freidlin-Wentzell

large deviations theory

e In Martin-Rose-Siggia formalism, the joint PDF of empirical

density and current profiles is

(81p— w1805 —in]) = (8[Bep+ V51805 — dp — Co] )

_ (slowp+ 9 -a] [o T Do)
~ 5[0ip+ V - 5] o~ TN SG=3p)(pD) " (G —dp)

where the rate function(al)

T(p. 5 :{%f@'—jp)(pm1<j—jp>dtdx £ Bp+ V. j =0

o0 otherwise



e Large-deviations rate function(al)s for empirical densities

or empirical currents only

<5[Q—PN]> Naos e~ VI <5[j—jN]> N e~ VL]

are obtained by the contraction principle

— mjln Zlp,j] = i/(athrv-jp)(—v : pDV)_l(&gp—l—V-jp) dtdx

min I[p, j] with appropriate boundary limiting conditions for p
Jo)

e That empirical densities have dynamical large deviations with rate

function given above was proven by Dawson-Gartner in 1987

e To our knowledge, the large deviations of currents for mean field

models were not studied in math literature

e The formulae above have similar form as for the macroscopic density
and current rate functions in stochastic lattice gases studied by

the Rome group and Derrida with collaborators




e Elements of the (Roman) macroscopic fluctuation theory

e Instantaneous fluctuations of empirical densities

e Time ¢ distribution of the empirical density

Pilo] = <5[Q—pNt]> ~ e N7Ftlel

satisfies the functional equation 0;P; = £]Tw77t which reduces
for the large-deviations rate function F;:[o] to the functional
Hamilton-Jacobi Equation (HJE)

8tft[g]+/jp-v(5];tg[g] +/<v 5.7;75&)[@]) wD@éF;@[g]) _ g

e In a stationary state the latter becomes the time-independent
HJE for the rate function F|[g]




e Relation between instantaneous and dynamical rate fcts

e By contraction principle

Filo) = min (Feglor] + Tieg 110))

pt=0
e In the stationary state this reduces to

Flo] min

p—oo:pst
POZQ

where pg: is the stable stationary solution of NFPE

minimizing F|[o]

e The minimum on the right is attained on the most probable

trajectory P creating fluctuation p from “vacuum” pg




e Time reversal

e One defines the time-reversed current j;(t,m) by

. , OF
Y
where p*(t,x) = p(—t,x) and j*(t,x) = —j(—t,x) and

the time-reversed process in the density space by Ito eqn.

8p” + V- (i + V2N-1D'p' ¢) =0

with D’ (t,z) = D(—t, x)

¢ Fluctuation Relation

Livg,t11lp 3] + Feoloto] — Feq lpeg ] = I[/—tl,—to][p*>j*]

follows from the comparison of the direct and reversed rate
functions and the HJE for F;




Generalized Onsager-Machlup Relation

Upon minimizing over currents in a stationary state, Fluctuation

Relation reduces to

Tty .t1110) + Flotg] — Floey] = Zi_sy,—eqlP”]

For tp = —00, pty = pst and t; =0, py; = ¢ the minimum

of the LHS is attained on trajectory P and is zero

It must be equal to the minimum of the RHS that is realized
on trajectory p’\ that describes the decay of fluctuation o to

/
=0
o!

vacuum ps; and satisfies time-reversed NFPE 8tp’\—l—v-j
N

Hence the generalized Onsager-Machlup relation:

p/(t,m) — /0,\l (—t,x)




e Solutions for F; in special cases

e For decoupled systems with Y = 0 and independent xz, (0)
all distributed with initial PDEF pg

Al = [ o) 20 do = k5" Slelod

where p; solves the linear FFP equation with initial condition pg
(Sanov Theorem)

« For stationary equilibrium evolutions with X (z) = —M (2)VU (z),
Y(z,y) = —M(x)(VV)(xz —vy) and diffusivity and mobility
matrices related by the Einstein relation D(x) = kT M (x)

F o] :/Q(SU) (k;T (U(m)#—é/V(m, y) p(y) dy) +In Q(a;)> dx + const.

i.e. kpT'F = FE — TS is the equilibrium mean-field free energy




Perturbative calculation of the non-equilibrium
free energy F|o

e 7 [p] can be developed in a power series in mean-field coupling Y

Flo] = > Frle]
k=0

where F°[po] = kng(QHpgt) with pY, the stationary density
of the decoupled model and F¥[p] is of order k in Y

e For k>1, F¥ is a non-local polynomial in o of order £k + 1:

Fk[g] — (k:—il)! /Qbk(mo,,mk)g(ajo)Q(xk)dxodxk

with qﬁk are symmetric in the arguments




e Substituting the expansion for F into stationary HJE one obtains

recursion relations

/QQ’ 5@’“@[@] _ /Q[(Y* 2. vé]—“";gl[g]

k—1

l k—1
+Z( 5]:[9]) D(v5}"5Q [@])]

where Q' —pst stt and Q = —V - X +V-DV is the linear
F'P operator

Kernels ¢" of F%[p] may be iteratively calculated from

the above recursion in terms of a sum over tree diagrams




For rotator model, the 15 order correction has the form

kT ¢* (0o, 01)

— J(l - COS(QQ o 91)) : interaction energy

contribution

+(QId+Id®Q) (v, ®1 —1®v%,)Jsin(- — -)) (0o, 61)

e N

2 —particle Green operator non—equilibrium contribution
the source of non—lacality

where v, (0) = F — Hsin6 — kT 99 In p?,(0) is the mean local
velocity of the the decoupled system (vanishing for F = 0)




e Another perturbative approach involves the expansion of F|p]
around its minimum pg; that is a stationary solution of NFPE

= > 7l
k=1

where 0o = 0o — ps¢ and

—k 1 ~Lk . -

Flel = o /g25 (20, @n) 0(wo) - - - (k) dxo - - - dak
with qgk symmetric in the arguments and fixed by demanding

that f%k(xo,xl,...,azk)dazon

e Substitution into the stationary HJE gives for £ > 1 the recursion
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/@“chcp—l 7l /@“[(Y*@-V it
00 00
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where R is the linearization of the nonlinear Fokker-Planck

operator around ps; and

o~ Nl ~
(P0)(z) = /sb(:v,y) o(y) dy
solves the operator equation
—1 —ilot
R® "+ R' = 2V :-pDV

(coming from the stochastic Lyapunov eqn.) and determines .7?1[@]

~k —~
Kernels ¢ of FF [0] may again be iteratively calculated from

the above recursion in terms of a sum over tree diagrams

For the rotator model, the 1°" expansion is better suited for

21’1d

the disordered phase whereas the one for the ordered phase

In both cases the leading corrections are accessible to numerical

analysis that has been only started




e Large deviations for currents

e Following the Romans, one defines for time-independent current j(x)

1
lim — min Lio +11p, 7
A T o ey TI0mIP ]

)(@)y=1 [ i(t,@)dt

e This is the rate function of large deviations for the temporal means
7 of current fluctuations

e In the stationary phase the minimum is attained on time independent

(p,7) for j close to js+ = j,,, so that

min & [(—j,)(pD) " (3 —jp)dz if V.53=0
IO[j] — p(x)

o0 otherwise

but not necessarily for all »




e In the periodic phase, it is more natural to look at

1

. o L | Sy
ol rooo T p(ta), 5(te) 0,711¢> 7]

g(m):% f(;_sin(wt—{—go) j(t,x) dt

where w is a multiple of the basic frequency

e New phenomenon that does not occur in equilibrium:

At the 279 order non-equilibrium phase transitions the

covariance of temporal averages of current fluctuations

around js; on the scale NLT diverges in special directions

— amplification of current fluctuations around such transitions




e In other words, the N,7 — oo wvariance of

N T
>[5t xn(t) o dun(t) — <>
n=10

VINT

(note the central-limit-like rescaling) diverges for some time-

independent or periodic functions dj(t, ) at such transitions

e A somewhat related enhancement of fluctuations at the saddle-node
transition of the rotator model was observed numerically and
analyzed in Ohta-Sasa, Phys. Rev. E 78, 065101(R) (2008),
see also Iwata-Sasa, Phys. Rev. E. 82, 011127 (2010)




e The inverse covariance of the current ﬂuctuations is extracted by
expanding the rate functional Z[p, j] = 3 L[5 — jp)(pD)_l(j — Jp)
to the 24 order around (Jst, pst):

I[pst + 5p7jst + 5]] — %/(5‘7 o S5p)(pStD)_1(5j o Sap)

Sipsy (%)

where S(z.y) = TIen

e The linearized Fokker- Planck operatoris R = -V S

e At critical points corresponding to a saddle-node or a pitchfork

bifurcations, R has a zero mode dpp(x) and then for

(9p(x),05(x)) = (dpo(x), (Sdpo)(x))
05 — Sdp =

so that Z[ps: + dp, jst + 6j], and consequently I [js¢ + &4],

vanish to the 279 order on such a perturbation




At critical points corresponding to a Hopf bifurcation, R has a pair

of complex conjugate modes dpg(x), dpo(x) with eigenvalues +iw
and then for (dp,dj) = Re (eiw(t+t0)5p0, ew(tHO)Sépo)

05 — Sép = 0

and again Z[pst + 0p, jst + 0j], and consequently I, ,[Re ewSépo]
for any phase 1 vanish to the 2°¢ order

Note that in both cases the constraint 0:0p + V - 67 = 0 is satisfied

Vanishing of Z, Iy or I, , to the 274 5rder around Jst means
that the covariance of current fluctuations in the corresponding

directions diverges on the central-limit scale ﬁ

The reason is that such fluctuations are realized in N = oo dynamics

In equilibrium, £ cannot have non-zero imaginary eigenvalues and
for its zero modes 0dpg, one also has Sdpp = 0, unlike in nonequili-

brium where 07 = Sdpg represents a non-trivial current fluctuation




Example of the rotator model for J =1, F = 0.5
kT

L0 =
b J=1,F=05,T=02

100 - iy o J=1,F=0.5, h=0.2
sk

WE

The inverse covariance 2kp TI(’)’ [js¢+] as a function of magnetic field h
(left, with log-lin scale) and temperature T (right, with lin-lin scale)

e The left figure illustrates the vanishing of I/'[js:] at the saddle-node
bifurcation for h = h., = 0.56 (the points for h < h., correspond
to an unstable stationary solution within the periodic phase)

e The right figure shows the non-zero behavior of I [js:] near the Hopf

bifurcation at 7' = T.,. =~ 0.5 (again, the 7" < T. curve corresponds
to a stationary solution that is unstable within the periodic phase)




Conclusions and open problems

Diffusions with mean field coupling are described for N = occ by NFPE
and may exhibit interesting phase diagrams with dynamical transitions.

Large deviations of empirical densities and currents for large but finite N
are described in such models by rate functionals similar as for stochastic
lattice gases, leading in the macroscopic fluctuation theory

The non-equilibrium free energy satisfies a functional Hamilton-
Jacobi eq. whose solutions may be studied in perturbation theory

The covariance of current fluctuations diverges in specific directions
at the 2°¢ order transition points of such systems, unlike in equilibrium

The analysis of concrete systems, like the rotator model, may be
done by combining analytical and numerical arguments and requires
more work, in particular on large deviations of currents

Similar methods should apply to underdamped diffusions with mean-field
coupling leading at N = oco to Vlasov- Fokker- Planck eq. We hope

also to apply them to randomly forced 2D Navier- Stokes eqns.




