Macroscopic fluctuations for non-equilibrium systems with mean-field interactions

Krzysztof Gawędzki Rome, September 2013

"In our opinion, the mean field approach is very promising . . . It has a good heuristic power and there are still a lot of open problems in its framework ..."

M. Serva, G. Paladin, J. Raboanary in arXiv:cond-mat/9509005

• Nonequilibrium Stat. Mech. modeled by SDEs

localized systems colloidal particles, biomolecules, molecular motors, ...

extended systems

stochastic lattice gasses

zero range, SSEP, ASEP, ABC, ...

• Mean field systems are somewhere in between :

for infinite systems they are described by a non-linear version of the small-system **Fokker-Planck** equation

for large finite systems their fluctuations are described by theory developed for extended systems by the Rome school (Bertini-DeSole-Gabrielli-Jona-Lasinio-Landim)

- Aim: to add to the pool of few examples where the macroscopic fluctuation theory of the Rome group applies
- Toolkit: large deviations theory
- Domain of application: General non-equilibrium diffusions with mean-field coupling in dimension d:

$$\frac{dx_n}{dt} = X(t, x_n) + \frac{1}{N} \sum_{m=1}^{N} Y(t, x_n, x_m) + \sum_{a} X_a(t, x_n) \circ \eta_{na}(t)$$
independent
white noises

with Y(x,y) = -Y(y,x) and \circ for the **Stratonovich** convention

• Based on: joint work with F. Bouchet and C. Nardini in slow progress

• Prototype model: N planar rotators with angles θ_n and mean field coupling, undergoing Langevin dynamics

$$\frac{d\theta_n}{dt} = F - H \sin \theta_n - \frac{J}{N} \sum_{m=1}^N \sin(\theta_n - \theta_m) + \sqrt{2k_B T} \eta_n(t)$$

independent white noises

Shinomoto-Kuramoto, Prog. Theor. Phys. 75 (1986),,

Giacomin-Pakdaman-Pellegrin-Poquet, SIAM J. Math. Anal. 44 (2012)

- Close cousin of the celebrated **Kuramoto** (1975) model for synchronization (with $F \to F_n$ and no noise)
- Models limit cycles of coupled nerve cells and their cooperative behaviors
- Close to models of depinning transition in disordered elastic media

$$\frac{d\theta_n}{dt} = F - H \sin \theta_n - \frac{J}{N} \sum_{m=1}^N \sin(\theta_n - \theta_m) + \sqrt{2k_B T} \eta_n(t)$$

• May be re-interpreted as a classical ferromagnetic **XY** model with a mean-field coupling of planar spins \vec{S}_n

• F = 0 case (equilibrium):

in constant external magnetic field $\vec{H} = (H, 0)$ $\vec{S}_n = S(\cos \theta_n, \sin \theta_n)$

• $F \neq 0$ case (non-equilibrium):

in rotating external magnetic field $\vec{H} = H(\cos(Ft), -\sin(Ft))$ $\vec{S}_n = S(\cos(\theta_n - Ft), \sin(\theta_n - Ft))$ (i.e. spins are viewed in the co-moving frame)

- Macroscopic quantities of interest in the general case $\frac{dx_n}{dt} = X(t, x_n) + \frac{1}{N} \sum_{m=1}^{N} Y(t, x_n, x_m) + \sum_{a} X_a(t, x_n) \circ \eta_{na}(t)$
 - empirical density

$$p_N(t,x) = \frac{1}{N} \sum_{n=1}^N \delta(x - x_n(t))$$

• empirical current

$$j_N(t,x) = \frac{1}{N} \sum_{n=1}^N \delta(x - x_n(t)) \circ \frac{dx_n(t)}{dt}$$

• They are related to each other by the continuity equation:

$$\partial_t \rho_N^{} \, + \, \nabla \cdot j_N^{} \, = \, 0$$

• Macroscopic fluctuation theory applies to their large deviations at $N \gg O(1)$

• Effective diffusion in the density space

• Substitution of the equation of motion for $\frac{dx_n(t)}{dt}$ and the passage to the **Itô** convention give:

$$j_N(t,x) = j_{\rho_N}(t,x) + \zeta_{\rho_N}(t,x)$$

where

$$j_{
ho} =
ho ig(\widehat{X} + Y *
ho ig) - D
abla
ho \qquad \longleftarrow \quad ext{quadratic in} \quad
ho$$

with

$$\hat{X} = X - \frac{1}{2} \sum_{a} \left(\nabla \cdot X_{a} \right) X_{a} , \qquad D = \frac{1}{2} \sum_{a} X_{a} \otimes X_{a}$$
$$(Y * \rho)(t, x) = \int Y(t, x, y) \rho(t, y) dy$$

and

$$\zeta_{\rho_N}(t,x) = \frac{1}{N} \sum_{n=1}^N \sum_a X_a(t,x) \,\delta(x - x_n(t)) \,\eta_{na}(t)$$

- Conditioned w.r.t. ρ_N , the noise $\zeta_{\rho_N}(t,x)$ has the same law as the **white noise** $\sqrt{2N^{-1}D(t,x)\rho_N(t,x)} \xi(t,x)$ where $\left\langle \xi^i(t,x)\xi^j(s,y) \right\rangle = \delta^{ij} \delta(t-s) \delta(x-y)$
- Follows from the fact that for functionals

 $\Phi[\rho] = g(\int \rho(x)h_1(x)dx, \dots, \int \rho(x)h_k(x)dx)$

the standard stochastic differential calculus gives

$$\frac{d}{dt} \left\langle \Phi[\rho_{Nt}] \right\rangle = \left\langle \left(\mathcal{L}_{Nt} \Phi \right) [\rho_{Nt}] \right\rangle$$

where

$$\left(\mathcal{L}_{Nt} \Phi \right) [\rho] = -\int \frac{\delta \Phi[\rho]}{\delta \rho(x)} \nabla \cdot j_{\rho}(t, x) \, dx + \frac{1}{N} \int \frac{\delta^2 \Phi[\rho]}{\delta \rho(x) \, \delta \rho(y)} \nabla_x \nabla_y \left(D(t, x) \, \rho(t, x) \, \delta(x - y) \right) \, dx \, dy$$

is the generator of the (formal) diffusion in the space of densities evolving according to the **Itô SDE**

$$\partial_t \rho + \nabla \cdot \left(j_\rho + \sqrt{2N^{-1}D\rho} \xi \right) = 0$$

• $N = \infty$ closure

• When $N \to \infty$, the effective evolution equation for the **empirical** density reduces to Nonlinear Fokker-Planck Equation (NFPE)

$$\partial_t \rho = -\nabla \cdot j_{\rho} = -\nabla \cdot \left(\rho \left(\hat{X} + Y * \rho \right) - D \nabla \rho \right)$$

 \rightarrow a nonlinear dynamical system in the space of densities (autonomous or not)

- If Y = 0 then the $N = \infty$ empirical density coincides with instantaneous **PDF** of identically distributed processes $x_n(t)$ and **NFPE** reduces to the linear **Fokker-Planck** equation for the latter
- The N = ∞ phase diagram of an autonomous system with mean-field coupling is obtained by looking for stable stationary and periodic solutions of NFPE and the bifurcations
- In principle, more complicated dynamical behaviors may also arise

• $N = \infty$ phases of the rotator model

• Stationary solutions of **NFPE** satisfy:

$$\partial_{\theta} j_{\rho}(\theta) = \partial_{\theta} \left(\rho(\theta) \left(F - H \sin(\theta) - J \int_{0}^{2\pi} \sin(\theta - \vartheta) \rho(\vartheta) \, d\vartheta \right) - k_{B} T \, \partial_{\theta} \rho(\theta) \right)$$
$$= \partial_{\theta} \left(\rho(\theta) \left(F - (H + x_{1}) \sin \theta + x_{2} \cos \theta \right) - k_{B} T \, \partial_{\theta} \rho(\theta) \right) = 0$$

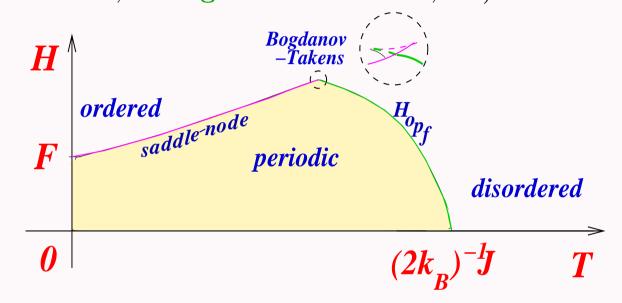
with
$$x_1 = J \int_{0}^{2\pi} \cos \vartheta \, \rho(\vartheta) \, d\vartheta$$
, $x_2 = J \int_{0}^{2\pi} \sin \vartheta \, \rho(\vartheta)$

and the solution

$$\rho(\theta) = \frac{1}{Z} e^{\frac{F\theta + (H+x_1)\cos\theta + x_2\sin\theta}{k_B T}} \int_{\theta}^{\theta+2\pi} e^{-\frac{F\vartheta + (H+x_1)\cos\vartheta + x_2\sin\vartheta}{k_B T}} d\vartheta$$

- The coupled equations for 2 variables $x_{1,2}$ may be easily analyzed
- The decoupled J = 0 solution corresponds to $x_{1,2} = 0$

• $N = \infty$ phase diagram for the rotator model for $F \neq 0$ (Shi-Ku 1984, Sakaguchi-Shi-Ku 1986, ...)



- For H = 0 the periodic phase coincides with the ordered low-temp. equilibrium phase viewed in the co-rotating phase
- When $F \searrow 0$ the periodic phase reduces to the equilibrium disordered phase at H = +0
- Global properties of the **NFPE** dynamics for the **rotator model** have been recently studied by **Giacomin** and collaborators

- Fluctuations for N large but finite
 - Formally, domain of applications of the small-noise **Freidlin-Wentzell large deviations theory**
 - In Martin-Rose-Siggia formalism, the joint **PDF** of empirical density and current profiles is

$$\left\langle \delta \left[\rho - \rho_N \right] \delta \left[j - j_N \right] \right\rangle = \left\langle \delta \left[\partial_t \rho + \nabla \cdot j \right] \delta \left[j - j_\rho - \zeta_\rho \right] \right\rangle$$

$$= \left\langle \delta \left[\partial_t \rho + \nabla \cdot j \right] \int e^{iN \int a \cdot (j - j_\rho - \zeta_\rho)} \mathcal{D}a \right\rangle$$

$$= \delta \left[\partial_t \rho + \nabla \cdot j \right] \int e^{iN \int a \cdot (j - j_\rho) - N \int a \cdot \rho D \cdot a} \mathcal{D}a$$

$$\sim \delta \left[\partial_t \rho + \nabla \cdot j \right] e^{-\frac{1}{4}N \int (j - j_\rho) (\rho D)^{-1} (j - j_\rho)} \sim e^{-N\mathcal{I}[\rho, j]}$$

where the **rate function(al)**

$$\mathcal{I}[\rho, j] = \begin{cases} \frac{1}{4} \int (j - j_{\rho})(\rho D)^{-1} (j - j_{\rho}) dt dx & \text{if } \partial_t \rho + \nabla \cdot j = 0\\ \infty & \text{otherwise} \end{cases}$$

• Large-deviations rate function(al)s for empirical densities or empirical currents only

$$\left\langle \delta[\varrho - \rho_N] \right\rangle \underset{N \to \infty}{\sim} e^{-N\mathcal{I}[\rho]} \left\langle \delta[j - j_N] \right\rangle \underset{N \to \infty}{\sim} e^{-N\mathcal{I}[j]}$$

are obtained by the contraction principle

 $\mathcal{I}[\rho] = \min_{j} \mathcal{I}[\rho, j] = \frac{1}{4} \int (\partial_{t} \rho + \nabla \cdot j_{\rho}) (-\nabla \cdot \rho D \nabla)^{-1} (\partial_{t} \rho + \nabla \cdot j_{\rho}) dt dx$ $\mathcal{I}[j] = \min_{\rho} \mathcal{I}[\rho, j] \quad \text{with appropriate boundary limiting conditions for } \rho$

- That empirical densities have dynamical large deviations with rate function given above was proven by **Dawson-Gartner** in 1987
- To our knowledge, the large deviations of currents for mean field models were not studied in math literature
- The formulae above have similar form as for the macroscopic density and current rate functions in stochastic lattice gases studied by the Rome group and **Derrida** with collaborators

- Elements of the (Roman) macroscopic fluctuation theory
 - Instantaneous fluctuations of empirical densities
 - Time t distribution of the empirical density

$$\mathcal{P}_t[\varrho] = \left\langle \delta[\varrho - \rho_{Nt}] \right\rangle \sim \mathrm{e}^{-N\mathcal{F}_t[\varrho]}$$

satisfies the functional equation $\partial_t \mathcal{P}_t = \mathcal{L}_{Nt}^{\dagger} \mathcal{P}_t$ which reduces for the large-deviations rate function $\mathcal{F}_t[\varrho]$ to the functional **Hamilton-Jacobi Equation** (HJE)

$$\partial_t \mathcal{F}_t[\varrho] + \int j_\rho \cdot \nabla \frac{\delta \mathcal{F}_t[\varrho]}{\delta \varrho} + \int \left(\nabla \frac{\delta \mathcal{F}_t[\varrho]}{\delta \varrho} \right) \cdot \rho D\left(\nabla \frac{\delta \mathcal{F}_t[\varrho]}{\delta \varrho} \right) = 0$$

• In a stationary state the latter becomes the time-independent HJE for the rate function $\mathcal{F}[\varrho]$

- Relation between instantaneous and dynamical rate fcts
 - By contraction principle

$$\mathcal{F}_t[\varrho] = \min_{\rho_t = \varrho} \left(\mathcal{F}_{t_0}[\rho_{t_0}] + \mathcal{I}_{[t_0,t]}[\rho] \right)$$

• In the stationary state this reduces to

$$\mathcal{F}[\varrho] = \min_{\substack{\rho_{-\infty} = \rho_{st} \\ \rho_0 = \varrho}} \mathcal{I}_{[-\infty,0]}[\rho]$$

ρ____

where ρ_{st} is the stable stationary solution of **NFPE** minimizing $\mathcal{F}[\varrho]$

• The minimum on the right is attained on the most probable trajectory ρ_{\nearrow} creating fluctuation ϱ from "vacuum" ρ_{st}

• Time reversal

• One defines the time-reversed current $j'_{\rho}(t,x)$ by

$$j_{\rho^*}^{\prime *} = j_{\rho} + 2\rho D \nabla \frac{\delta \mathcal{F}_t[\rho_t]}{\delta \varrho}$$

where $\rho^*(t, x) = \rho(-t, x)$ and $j^*(t, x) = -j(-t, x)$ and the **time-reversed process** in the density space by **Itô** eqn.

$$\partial_t \rho' + \nabla \cdot \left(j'_{\rho'} + \sqrt{2N^{-1}D'\rho'} \, \xi \right) = 0$$

with D'(t, x) = D(-t, x)

• Fluctuation Relation

$$\mathcal{I}_{[t_0,t_1]}[\rho,j] + \mathcal{F}_{t_0}[\rho_{t_0}] - \mathcal{F}_{t_1}[\rho_{t_1}] = \mathcal{I}'_{[-t_1,-t_0]}[\rho^*,j^*]$$

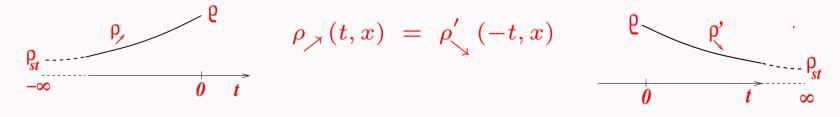
follows from the comparison of the direct and reversed rate functions and the **HJE** for \mathcal{F}_t

• Generalized Onsager-Machlup Relation

• Upon minimizing over currents in a stationary state, Fluctuation Relation reduces to

$$\mathcal{I}_{[t_0,t_1]}[\rho] + \mathcal{F}[\rho_{t_0}] - \mathcal{F}[\rho_{t_1}] = \mathcal{I}'_{[-t_1,-t_0]}[\rho^*]$$

- For $t_0 = -\infty$, $\rho_{t_0} = \rho_{st}$ and $t_1 = 0$, $\rho_{t_1} = \varrho$ the minimum of the **LHS** is attained on trajectory ρ_{\nearrow} and is zero
- It must be equal to the minimum of the **RHS** that is realized on trajectory ρ'_{\downarrow} that describes the decay of fluctuation ϱ to vacuum ρ_{st} and satisfies time-reversed **NFPE** $\partial_t \rho'_{\downarrow} + \nabla \cdot j'_{\rho'_{\downarrow}} = 0$
- Hence the generalized **Onsager-Machlup** relation:



- Solutions for \mathcal{F}_t in special cases
 - For decoupled systems with Y = 0 and independent $x_n(0)$ all distributed with initial **PDF** ρ_0

$$\mathcal{F}_t[\varrho] = \int \varrho(x) \ln \frac{\varrho(x)}{\rho_t(x)} dx \equiv k_B^{-1} S[\varrho \| \rho_t]$$

where ρ_t solves the linear **FP** equation with initial condition ρ_0 (**Sanov Theorem**)

• For stationary equilibrium evolutions with $\widehat{X}(x) = -M(x)\nabla U(x)$, $Y(x,y) = -M(x)(\nabla V)(x-y)$ and diffusivity and mobility matrices related by the Einstein relation $D(x) = k_B T M(x)$

$$\mathcal{F}[\varrho] = \int \varrho(x) \left(\frac{1}{k_B T} \left(U(x) + \frac{1}{2} \int V(x, y) \, \rho(y) \, dy \right) + \ln \varrho(x) \right) dx + const.$$

i.e. $k_B T \mathcal{F} = E - TS$ is the equilibrium mean-field **free energy**

- Perturbative calculation of the non-equilibrium free energy $\mathcal{F}[\varrho]$
 - $\mathcal{F}[\varrho]$ can be developed in a power series in mean-field coupling Y

$$\mathcal{F}[\varrho] = \sum_{k=0}^{\infty} \mathcal{F}^k[\varrho]$$

where $\mathcal{F}^0[\varrho] = k_B^{-1} S(\varrho \| \rho_{st}^0)$ with ρ_{st}^0 the stationary density of the decoupled model and $\mathcal{F}^k[\varrho]$ is of order k in Y

• For $k \ge 1$, \mathcal{F}^k is a non-local polynomial in ϱ of order k+1:

 $\mathcal{F}^{k}[\varrho] = \frac{1}{(k+1)!} \int \phi^{k}(x_{0}, \dots, x_{k}) \, \varrho(x_{0}) \cdots \varrho(x_{k}) \, dx_{0} \cdots dx_{k}$

with ϕ^k are symmetric in the arguments

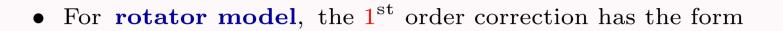
• Substituting the expansion for \mathcal{F} into stationary **HJE** one obtains recursion relations

$$\int \varrho \, Q' \, \frac{\delta \mathcal{F}^{k}[\varrho]}{\delta \varrho} = \int \varrho \left[\left(Y * \varrho \right) \cdot \nabla \frac{\delta \mathcal{F}^{k-1}[\varrho]}{\delta \varrho} + \sum_{l=1}^{k-1} \left(\nabla \frac{\delta \mathcal{F}^{l}[\varrho]}{\delta \varrho} \right) \cdot D \left(\nabla \frac{\delta \mathcal{F}^{k-l}[\varrho]}{\delta \varrho} \right) \right]$$

where $Q' = \rho_{st}^{0^{-1}} Q \rho_{st}^0$ and $Q = -\nabla \cdot \hat{X} + \nabla \cdot D \nabla$ is the linear **FP** operator

• Kernels ϕ^k of $\mathcal{F}^k[\varrho]$ may be iteratively calculated from the above recursion in terms of a sum over tree diagrams

,



$$k_B T \phi^1(\theta_0, \theta_1)$$

$$= J (1 - \cos(\theta_0 - \theta_1)) \qquad \longleftarrow \qquad \begin{array}{c} \text{interaction energy} \\ \text{contribution} \end{array}$$

$$+ (Q' \otimes Id + Id \otimes Q')^{-1} ((v_{st}^0 \otimes 1 - 1 \otimes v_{st}^0) J \sin(\cdot - \cdot))(\theta_0, \theta_1)$$

$$\swarrow \qquad \swarrow \qquad \swarrow$$

2-particle Green operator the source of non-lacality non-equilibrium contribution

where $v_{st}^0(\theta) = F - H \sin \theta - k_B T \partial_{\theta} \ln \rho_{st}^0(\theta)$ is the **mean local velocity** of the the decoupled system (vanishing for F = 0) • Another perturbative approach involves the expansion of $\mathcal{F}[\varrho]$ around its minimum ρ_{st} that is a stationary solution of **NFPE**

$$\mathcal{F}[\varrho] = \sum_{k=1}^{\infty} \widetilde{\mathcal{F}}^k[\widetilde{\varrho}]$$

where $\tilde{\varrho} = \varrho - \rho_{st}$ and

 $\widetilde{\mathcal{F}}^{k}[\widetilde{\varrho}] = \frac{1}{(k+1)!} \int \widetilde{\phi}^{k}(x_{0}, \dots, x_{n}) \, \widetilde{\varrho}(x_{0}) \cdots \widetilde{\varrho}(x_{k}) \, dx_{0} \cdots dx_{k}$ with $\widetilde{\phi}^{k}$ symmetric in the arguments and fixed by demanding

with ϕ^k symmetric in the arguments and fixed by demanding that $\int \widetilde{\phi}^k(x_0, x_1, \dots, x_k) dx_0 = 0$

• Substitution into the stationary HJE gives for k > 1 the recursion

$$\begin{split} \int \widetilde{\varrho} \, \Phi R \Phi^{-1} \frac{\delta \widetilde{\mathcal{F}}^{k}[\widetilde{\varrho}]}{\delta \widetilde{\varrho}} &= \int \widetilde{\varrho} \bigg[\left(Y \ast \widetilde{\varrho} \right) \cdot \nabla \frac{\delta \widetilde{\mathcal{F}}^{k-1}[\widetilde{\varrho}]}{\delta \widetilde{\varrho}} \\ &+ \sum_{l=1}^{k-1} \left(\nabla \frac{\delta \widetilde{\mathcal{F}}^{l}[\varrho]}{\delta \varrho} \right) \cdot D \Big(\nabla \frac{\delta \widetilde{\mathcal{F}}^{k-l}[\varrho]}{\delta \varrho} \Big) \bigg] \\ &+ \sum_{l=2}^{k-1} \int \Big(\nabla \frac{\delta \widetilde{\mathcal{F}}^{l}[\widetilde{\varrho}]}{\delta \widetilde{\varrho}} \Big) \cdot \rho_{st} D \Big(\nabla \frac{\delta \widetilde{\mathcal{F}}^{k+1-l}[\widetilde{\varrho}]}{\delta \widetilde{\varrho}} \Big) \end{split}$$

where R is the linearization of the nonlinear Fokker-Planck operator around ρ_{st} and

$$ig(\Phi \widetilde{arrho}ig)(x) \,=\, \int \widetilde{\phi}^1\!(x,y)\, \widetilde{arrho}(y)\, dy$$

solves the operator equation

$$R\Phi^{-1} + \Phi^{-1}R^{\dagger} = 2\nabla \cdot \rho D\nabla$$

(coming from the stochastic Lyapunov eqn.) and determines $\widetilde{\mathcal{F}}^1[\widetilde{\varrho}]$

- Kernels $\tilde{\phi}^k$ of $\tilde{\mathcal{F}}^k[\tilde{\varrho}]$ may again be iteratively calculated from the above recursion in terms of a sum over tree diagrams
- For the **rotator model**, the 1st expansion is better suited for the disordered phase whereas the 2nd one for the ordered phase
- In both cases the leading corrections are accessible to numerical analysis that has been only started

• Large deviations for currents

• Following the Romans, one defines for time-independent current j(x)

$$I_0[j] = \lim_{\tau \to \infty} \frac{1}{\tau} \min_{\substack{\rho(t,x), j(t,x) \\ j(x) = \frac{1}{\tau} \int_0^\tau j(t,x) dt}} \mathcal{I}_{[0,\tau]}[\rho, j]$$

- This is the rate function of large deviations for the temporal means *j* of current fluctuations
- In the stationary phase the minimum is attained on time independent (ρ, j) for j close to $j_{st} = j_{\rho_{st}}$ so that

$$I_{0}[j] = \begin{cases} \min_{\rho(x)} \frac{1}{4} \int (j - j_{\rho})(\rho D)^{-1} (j - j_{\rho}) dx & \text{if } \nabla \cdot j = 0\\ \infty & \text{otherwise} \end{cases}$$

but not necessarily for all j

• In the periodic phase, it is more natural to look at

$$I_{\omega,\varphi}[j] = \lim_{\tau \to \infty} \frac{1}{\tau} \min_{\substack{\rho(t,x), j(t,x) \\ j(x) = \frac{1}{\tau} \int_0^\tau \sin(\omega t + \varphi) j(t,x) dt}} \mathcal{I}_{[0,\tau]}[\rho, j]$$

where ω is a multiple of the basic frequency

• **New phenomenon** that does not occur in equilibrium:

At the 2nd order non-equilibrium phase transitions the covariance of temporal averages of current fluctuations around j_{st} on the scale $\frac{1}{N\tau}$ diverges in special directions

 \Rightarrow amplification of current fluctuations around such transitions

• In other words, the $N, \tau \to \infty$ variance of

$$\frac{\sum_{n=1}^{N} \int_{0}^{\tau} \delta j(t, x_{n}(t)) \circ dx_{n}(t) - \left\langle \cdots \right\rangle}{\sqrt{N\tau}}$$

(note the central-limit-like rescaling) diverges for some timeindependent or periodic functions $\delta j(t, x)$ at such transitions

• A somewhat related enhancement of fluctuations at the saddle-node transition of the **rotator model** was observed numerically and analyzed in **Ohta-Sasa**, Phys. Rev. E **78**, 065101(R) (2008), see also **Iwata-Sasa**, Phys. Rev. E. **82**, 011127 (2010)

• The inverse covariance of the current fluctuations is extracted by expanding the rate functional $\mathcal{I}[\rho, j] = \frac{1}{4} \int (j - j_{\rho}) (\rho D)^{-1} (j - j_{\rho})$ to the 2nd order around (j_{st}, ρ_{st}) :

$$\mathcal{I}[\rho_{st} + \delta\rho, j_{st} + \delta j] = \frac{1}{4} \int (\delta j - S\delta\rho) (\rho_{st}D)^{-1} (\delta j - S\delta\rho)$$

where $S(x.y) = \frac{\delta j_{\rho_{st}}(x)}{\delta\rho(y)}$

- The linearized **Fokker- Planck** operator is $R = -\nabla \cdot S$
- At critical points corresponding to a saddle-node or a pitchfork bifurcations, R has a zero mode $\delta \rho_0(x)$ and then for $(\delta \rho(x), \delta j(x)) = (\delta \rho_0(x), (S \delta \rho_0)(x))$

 $\delta j - S \delta \rho = 0$

so that $\mathcal{I}[\rho_{st} + \delta\rho, j_{st} + \delta j]$, and consequently $I_0[j_{st} + \delta j]$, vanish to the 2nd order on such a perturbation

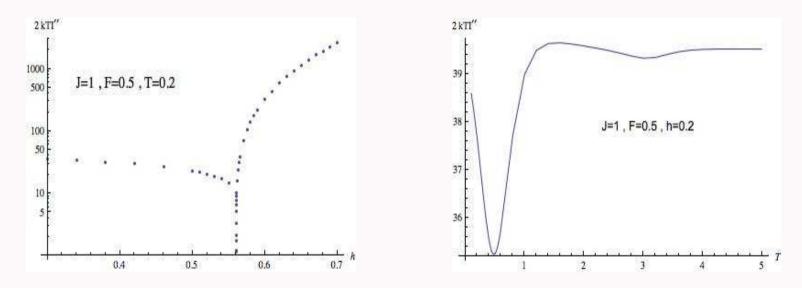
• At critical points corresponding to a **Hopf** bifurcation, R has a pair of complex conjugate modes $\delta\rho_0(x)$, $\overline{\delta\rho_0(x)}$ with eigenvalues $\pm i\omega$ and then for $(\delta\rho, \delta j) = \operatorname{Re}\left(e^{i\omega(t+t_0)}\delta\rho_0, e^{i\omega(t+t_0)}S\delta\rho_0\right)$

$$\delta j - S \delta \rho = 0$$

and again $\mathcal{I}[\rho_{st} + \delta\rho, j_{st} + \delta j]$, and consequently $I_{\omega,\varphi}[\operatorname{Re} e^{i\psi}S\delta\rho_0]$ for any phase ψ vanish to the 2nd order

- Note that in both cases the constraint $\partial_t \delta \rho + \nabla \cdot \delta j = 0$ is satisfied
- Vanishing of \mathcal{I} , I_0 or $I_{\omega,\varphi}$ to the 2nd order around j_{st} means that the covariance of current fluctuations in the corresponding directions diverges on the central-limit scale $\frac{1}{N\tau}$
- The reason is that such fluctuations are realized in $N = \infty$ dynamics
- In equilibrium, R cannot have non-zero imaginary eigenvalues and for its zero modes $\delta \rho_0$, one also has $S\delta \rho_0 = 0$, unlike in nonequilibrium where $\delta j = S\delta \rho_0$ represents a non-trivial current fluctuation

Example of the rotator model for J = 1, F = 0.5



The inverse covariance $2k_BTI_0''[j_{st}]$ as a function of magnetic field h (left, with log-lin scale) and temperature T (right, with lin-lin scale)

- The left figure illustrates the vanishing of $I_0''[j_{st}]$ at the saddle-node bifurcation for $h = h_{cr} \approx 0.56$ (the points for $h < h_{cr}$ correspond to an unstable stationary solution within the periodic phase)
- The right figure shows the non-zero behavior of $I_0''[j_{st}]$ near the Hopf bifurcation at $T = T_{cr} \approx 0.5$ (again, the $T < T_c$ curve corresponds to a stationary solution that is unstable within the periodic phase)

Conclusions and open problems

- Diffusions with mean field coupling are described for $N = \infty$ by **NFPE** and may exhibit interesting phase diagrams with dynamical transitions.
- Large deviations of empirical densities and currents for large but finite N are described in such models by rate functionals similar as for stochastic lattice gases, leading in the macroscopic fluctuation theory
- The non-equilibrium free energy satisfies a functional **Hamilton**-**Jacobi** eq. whose solutions may be studied in perturbation theory
- The covariance of current fluctuations diverges in specific directions at the 2nd order transition points of such systems, unlike in equilibrium
- The analysis of concrete systems, like the **rotator model**, may be done by combining analytical and numerical arguments and requires more work, in particular on large deviations of currents
- Similar methods should apply to underdamped diffusions with mean-field coupling leading at $N = \infty$ to Vlasov-Fokker-Planck eq. We hope also to apply them to randomly forced 2D Navier-Stokes eqns.