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“ In our opinion, the mean field approach is very promising . . . It has a good

heuristic power and there are still a lot of open problems in its framework ...”

M. Serva, G. Paladin, J. Raboanary in arXiv:cond-mat/9509005

• Nonequilibrium Stat.Mech. modeled by SDEs

localized systems colloidal particles, biomolecules,
molecular motors, ...

ր
ց

extended systems stochastic lattice gasses
zero range, SSEP, ASEP, ABC, ...

• Mean field systems are somewhere in between :

for infinite systems they are described by a non−linear
version of the small−system Fokker−Planck equationր

ց for large finite systems their fluctuations are described by
theory developed for extended systems by the Rome school
(Bertini−DeSole−Gabrielli−Jona−Lasinio−Landim)



• Aim: to add to the pool of few examples where

the macroscopic fluctuation theory

of the Rome group applies

• Toolkit: large deviations theory

• Domain

of application: General non-equilibrium diffusions with mean-field

coupling in dimension d :

dxn

dt
= X(t, xn) +

1

N

N∑

m=1

Y (t, xn, xm) +
∑

a

Xa(t, xn) ◦ ηna(t)
ր

independent

white noises

with Y (x, y) = −Y (y, x) and ◦ for the Stratonovich convention

• Based on: joint work with F. Bouchet and C. Nardini

in slow progress



• Prototype model : N planar rotators with angles θn and mean

field coupling, undergoing Langevin dynamics

dθn

dt
= F −H sin θn −

J

N

N∑

m=1

sin(θn − θm) +
√

2kBT ηn(t)
ր

independent
white noises

Shinomoto-Kuramoto, Prog. Theor. Phys.75 (1986),

· · · · · · ,
Giacomin-Pakdaman-Pellegrin-Poquet, SIAMJ.Math.Anal.44 (2012)

• Close cousin of the celebrated Kuramoto (1975) model for

synchronization (with F → Fn and no noise)

• Models limit cycles of coupled nerve cells and their cooperative

behaviors

• Close to models of depinning transition in disordered elastic media



dθn

dt
= F −H sin θn −

J

N

N∑

m=1

sin(θn − θm) +
√

2kBT ηn(t)

• May be re-interpreted as a classical ferromagnetic XY model

with a mean-field coupling of planar spins ~Sn

• F = 0 case (equilibrium) :

in constant external magnetic field ~H =
(
H, 0

)

~Sn = S
(
cos θn, sin θn

)

• F 6= 0 case (non-equilibrium) :

in rotating external magnetic field ~H = H
(
cos(Ft),− sin(Ft)

)

~Sn = S
(
cos(θn − Ft), sin(θn − Ft)

)
( i.e. spins are viewed in
the co−moving frame )

S

θn

n

H

S

θ
n

−FtnH

F = 0 F 6= 0



• Macroscopic quantities of interest in the general case

dxn

dt
= X(t, xn) +

1

N

N∑

m=1

Y (t, xn, xm) +
∑

a

Xa(t, xn) ◦ ηna(t)

• empirical density

ρ
N
(t, x) =

1

N

N∑

n=1

δ(x− xn(t))

• empirical current

j
N
(t, x) =

1

N

N∑

n=1

δ(x− xn(t)) ◦
dxn(t)

dt

• They are related to each other by the continuity equation:

∂tρN + ∇ · j
N

= 0

• Macroscopic fluctuation theory applies to their large deviations

at N ≫ O(1)



• Effective diffusion in the density space

• Substitution of the equation of motion for
dxn(t)
dt

and the passage

to the Itô convention give:

jN (t, x) = jρ
N
(t, x) + ζρ

N
(t, x)

where

jρ = ρ
(
X̂ + Y ∗ ρ

)
− D∇ρ ←− quadratic in ρ

with

X̂ = X − 1
2

∑
a

(
∇ ·Xa

)
Xa , D = 1

2

∑
a

Xa ⊗Xa

(Y ∗ ρ)(t, x) =
∫
Y (t, x, y) ρ(t, y) dy

and

ζρ
N
(t, x) =

1

N

N∑

n=1

∑

a

Xa(t, x) δ
(
x− xn(t)) ηna(t)



• Conditioned w.r.t. ρ
N
, the noise ζρ

N
(t, x) has the same law

as the white noise
√

2N−1D(t, x)ρ
N
(t, x) ξ(t, x) where

〈
ξ
i
(t, x) ξ

j
(s, y)

〉
= δ

ij
δ(t− s) δ(x− y)

• Follows from the fact that for functionals

Φ[ρ] = g
(
∫ρ(x)h1(x)dx, . . . , ∫ρ(x)hk(x)dx

)

the standard stochastic differential calculus gives

d

dt

〈
Φ[ρ

Nt
]
〉

=
〈 (
L
Nt

Φ
)
[ρ
Nt

]
〉

where (
L
Nt

Φ
)
[ρ] = −

∫
δΦ[ρ]

δρ(x)
∇·jρ(t, x) dx

+
1

N

∫
δ2Φ[ρ]

δρ(x) δρ(y)
∇x∇y

(
D(t, x) ρ(t, x) δ(x− y)

)
dx dy

is the generator of the (formal) diffusion in the space of densities

evolving according to the Itô SDE

∂tρ + ∇ ·
(
jρ +

√
2N−1Dρ ξ

)
= 0



• N = ∞ closure

• When N →∞, the effective evolution equation for the empirical

density reduces to Nonlinear Fokker-Planck Equation (NFPE)

∂tρ = −∇ · jρ = −∇ ·
(
ρ
(
X̂ + Y ∗ ρ

)
− D∇ρ

)

→ a nonlinear dynamical system in the space of densities

(autonomous or not)

• If Y = 0 then the N =∞ empirical density coincides with

instantaneous PDF of identically distributed processes xn(t) and

NFPE reduces to the linear Fokker-Planck equation for the latter

• The N =∞ phase diagram of an autonomous system with

mean-field coupling is obtained by looking for stable stationary

and periodic solutions of NFPE and the bifurcations

• In principle, more complicated dynamical behaviors may also arise



• N = ∞ phases of the rotator model

• Stationary solutions of NFPE satisfy:

∂θjρ(θ) = ∂θ

(
ρ(θ)

(
F−H sin(θ)−J

2π∫
0

sin(θ−ϑ) ρ(ϑ) dϑ
)
−kBT ∂θρ(θ)

)

= ∂θ

(
ρ(θ)

(
F − (H + x1) sin θ + x2 cos θ

)
− kBT ∂θρ(θ)

)
= 0

with x1 = J
2π∫
0

cosϑ ρ(ϑ) dϑ , x2 = J
2π∫
0

sinϑ ρ(ϑ)

and the solution

ρ(θ) =
1

Z
e
Fθ+(H+x1) cos θ+x2 sin θ

kBT

θ+2π∫

θ

e
−
Fϑ+(H+x1) cosϑ+x2 sinϑ

kBT dϑ

• The coupled equations for 2 variables x1,2 may be easily analyzed

• The decoupled J = 0 solution corresponds to x1,2 = 0



• N =∞ phase diagram for the rotator model for F 6= 0

(Shi-Ku 1984, Sakaguchi-Shi-Ku 1986, ... )
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• For H = 0 the periodic phase coincides with the ordered low-temp.

equilibrium phase viewed in the co-rotating phase

• When F ց 0 the periodic phase reduces to the equilibrium

disordered phase at H = +0

• Global properties of the NFPE dynamics for the rotator model

have been recently studied by Giacomin and collaborators



• Fluctuations for N large but finite

• Formally, domain of applications of the small-noise Freidlin-Wentzell

large deviations theory

• In Martin-Rose-Siggia formalism, the joint PDF of empirical

density and current profiles is
〈
δ
[
ρ− ρN

]
δ
[
j − jN

]〉
=

〈
δ
[
∂tρ+∇ · j

]
δ
[
j − jρ − ζρ

]〉

=
〈
δ
[
∂tρ+∇ · j

] ∫
e
iN

∫
a·(j−jρ−ζρ)Da

〉

= δ
[
∂tρ+∇ · j

] ∫
e
iN

∫
a·(j−jρ)−N

∫
a·ρD a Da

∼ δ
[
∂tρ+∇ · j

]
e
− 1

4
N

∫
(j−jρ)(ρD)−1(j−jρ) ∼ e

−NI[ρ,j]

where the rate function(al)

I[ρ, j] =

{
1
4

∫
(j − jρ)(ρD)−1(j − jρ) dtdx if ∂tρ+∇ · j = 0

∞ otherwise



• Large-deviations rate function(al)s for empirical densities

or empirical currents only

〈
δ[̺− ρN ]

〉
∼

N→∞
e
−NI[ρ]

〈
δ[j − jN ]

〉
∼

N→∞
e
−NI[j]

are obtained by the contraction principle

I[ρ] = min
j
I[ρ, j] = 1

4

∫ (
∂tρ+∇·jρ

)
(−∇ · ρD∇)

−1(
∂tρ+∇·jρ

)
dtdx

I[j] = min
ρ
I[ρ, j] with appropriate boundary limiting conditions for ρ

• That empirical densities have dynamical large deviations with rate

function given above was proven by Dawson-Gartner in 1987

• To our knowledge, the large deviations of currents for mean field

models were not studied in math literature

• The formulae above have similar form as for the macroscopic density

and current rate functions in stochastic lattice gases studied by

the Rome group and Derrida with collaborators



• Elements of the (Roman) macroscopic fluctuation theory

• Instantaneous fluctuations of empirical densities

• Time t distribution of the empirical density

Pt[̺] =
〈
δ[̺− ρ

Nt
]
〉
∼ e−NFt[̺]

satisfies the functional equation ∂tPt = L†

Nt
Pt which reduces

for the large-deviations rate function Ft[̺] to the functional

Hamilton-Jacobi Equation (HJE)

∂tFt[̺] +
∫
jρ · ∇

δFt[̺]
δ̺

+

∫ (
∇ δFt[̺]

δ̺

)
· ρD

(
∇ δFt[̺]

δ̺

)
= 0

• In a stationary state the latter becomes the time-independent

HJE for the rate function F [̺]



• Relation between instantaneous and dynamical rate fcts

• By contraction principle

Ft[̺] = min
ρt=̺

(
Ft0 [ρt0 ] + I[t0,t][ρ]

)

• In the stationary state this reduces to

F [̺] = min
ρ
−∞

=ρ
st

ρ
0
=̺

I[−∞,0][ρ]

t8 0

ρ

ρ
st

ρ

−

where ρst is the stable stationary solution of NFPE

minimizing F [̺]

• The minimum on the right is attained on the most probable

trajectory ρ
ր

creating fluctuation ̺ from “vacuum” ρst



• Time reversal

• One defines the time-reversed current j′ρ(t, x) by

j
′∗
ρ∗ = jρ + 2ρD∇ δFt[ρt]

δ̺

where ρ∗(t, x) = ρ(−t, x) and j∗(t, x) = −j(−t, x) and

the time-reversed process in the density space by Itô eqn.

∂tρ
′

+ ∇ ·
(
j
′
ρ′ +

√
2N−1D′ρ′ ξ

)
= 0

with D′(t, x) = D(−t, x)

• Fluctuation Relation

I[t0,t1][ρ, j] + Ft0 [ρt0 ]−Ft1 [ρt1 ] = I′[−t1,−t0][ρ
∗
, j

∗]

follows from the comparison of the direct and reversed rate

functions and the HJE for Ft



• Generalized Onsager-Machlup Relation

• Upon minimizing over currents in a stationary state, Fluctuation

Relation reduces to

I[t0,t1][ρ] + F [ρt0 ] − F [ρt1 ] = I′[−t1,−t0][ρ
∗
]

• For t0 = −∞, ρt0 = ρst and t1 = 0, ρt1 = ̺ the minimum

of the LHS is attained on trajectory ρ
ր

and is zero

• It must be equal to the minimum of the RHS that is realized

on trajectory ρ′
ց

that describes the decay of fluctuation ̺ to

vacuum ρst and satisfies time-reversed NFPE ∂tρ
′

ց
+∇·j′

ρ′
ց

= 0

• Hence the generalized Onsager-Machlup relation:

ρ
ր

(t, x) = ρ
′

ց
(−t, x)

t8 0

ρ

ρ
st

ρ

−

8t0

ρ
st

ρ’ρ



• Solutions for Ft in special cases

• For decoupled systems with Y = 0 and independent xn(0)

all distributed with initial PDF ρ0

Ft[̺] =

∫
̺(x) ln

̺(x)

ρt(x)
dx ≡ k

−1
B S[̺‖ρt]

where ρt solves the linear FP equation with initial condition ρ0

(Sanov Theorem)

• For stationary equilibrium evolutions with X̂(x) = −M(x)∇U(x),

Y (x, y) = −M(x)(∇V )(x− y) and diffusivity and mobility

matrices related by the Einstein relation D(x) = kBTM(x)

F [̺] =

∫
̺(x)

(
1

kBT

(
U(x)+

1

2

∫
V (x, y) ρ(y) dy

)
+ln (̺x)

)
dx+ const.

i.e. kBT F = E − TS is the equilibrium mean-field free energy



• Perturbative calculation of the non-equilibrium

free energy F [̺]

• F [̺] can be developed in a power series in mean-field coupling Y

F [̺] =

∞∑

k=0

Fk[̺]

where F0[̺] = k−1
B
S(̺‖ρ0st) with ρ0st the stationary density

of the decoupled model and Fk[̺] is of order k in Y

• For k ≥ 1, Fk is a non-local polynomial in ̺ of order k + 1:

Fk[̺] =
1

(k+1)!

∫
φ
k
(x0, . . . , xk) ̺(x0) · · · ̺(xk) dx0 · · · dxk

with φk are symmetric in the arguments



• Substituting the expansion for F into stationary HJE one obtains

recursion relations

∫
̺Q

′ δFk[̺]
δ̺

=

∫
̺

[(
Y ∗ ̺) · ∇ δF

k−1[̺]

δ̺

+

k−1∑

l=1

(
∇ δF

l[̺]

δ̺

)
·D

(
∇ δF

k−l[̺]

δ̺

)]

where Q′ = ρ0
−1

st Qρ0st and Q = −∇ · X̂ +∇ ·D∇ is the linear,

FP operator

• Kernels φk of Fk[̺] may be iteratively calculated from

the above recursion in terms of a sum over tree diagrams



• For rotator model, the 1st order correction has the form

kBT φ
1(θ0, θ1)

= J
(
1− cos(θ0 − θ1)

)
←− interaction energy

contribution

+
(
Q′ ⊗ Id + Id ⊗Q′

)−1((v0st ⊗ 1− 1⊗ v0st)J sin(· − ·)
)
(θ0, θ1)

ր տ

2−particle Green operator
the source of non−lacality

non−equilibrium contribution

where v0st(θ) = F −H sin θ − kBT ∂θ ln ρ0st(θ) is the mean local

velocity of the the decoupled system (vanishing for F = 0)



• Another perturbative approach involves the expansion of F [̺]

around its minimum ρst that is a stationary solution of NFPE

F [̺] =

∞∑

k=1

F̃k[˜̺]

where ˜̺= ̺− ρst and

F̃k[˜̺] =
1

(k+1)!

∫
φ̃
k
(x0, . . . , xn) ˜̺(x0) · · · ˜̺(xk) dx0 · · · dxk

with φ̃k symmetric in the arguments and fixed by demanding

that
∫
φ̃k(x0, x1, . . . , xk) dx0 = 0

• Substitution into the stationary HJE gives for k > 1 the recursion

∫
˜̺ΦRΦ−1 δF̃k[˜̺]

δ ˜̺
=

∫
˜̺
[(
Y ∗ ˜̺) · ∇ δF̃

k−1[˜̺]
δ ˜̺

+

k−1∑

l=1

(
∇ δF̃

l[̺]

δ̺

)
·D

(
∇ δF̃

k−l[̺]

δ̺

)]

+

k−1∑

l=2

∫ (
∇ δF̃

l[˜̺]
δ ˜̺

)
· ρstD

(
∇ δF̃

k+1−l[˜̺]
δ ˜̺

)



where R is the linearization of the nonlinear Fokker-Planck

operator around ρst and

(
Φ˜̺

)
(x) =

∫
φ̃
1
(x, y) ˜̺(y) dy

solves the operator equation

RΦ
−1

+ Φ
−1
R

†
= 2∇ · ρD∇

(coming from the stochastic Lyapunov eqn.) and determines F̃1[˜̺]

• Kernels φ̃
k

of F̃k[˜̺] may again be iteratively calculated from

the above recursion in terms of a sum over tree diagrams

• For the rotator model, the 1st expansion is better suited for

the disordered phase whereas the 2nd one for the ordered phase

• In both cases the leading corrections are accessible to numerical

analysis that has been only started



• Large deviations for currents

• Following the Romans, one defines for time-independent current (x)

I0 [] = lim
τ→∞

1

τ
min

ρ(t,x), j(t,x)

(x)= 1
τ

∫ τ
0
j(t,x) dt

I[0,τ][ρ, j]

• This is the rate function of large deviations for the temporal means

 of current fluctuations

• In the stationary phase the minimum is attained on time independent

(ρ, j) for  close to jst = jρst so that

I
0
[] =





min
ρ(x)

1
4

∫
(− jρ)(ρD)−1(− jρ) dx if ∇ ·  = 0

∞ otherwise

but not necessarily for all 



• In the periodic phase, it is more natural to look at

Iω,ϕ[] = lim
τ→∞

1

τ
min

ρ(t,x), j(t,x)

(x)= 1
τ

∫ τ
0
sin(ωt+ϕ) j(t,x) dt

I[0,τ][ρ, j]

where ω is a multiple of the basic frequency

• New phenomenon that does not occur in equilibrium:

At the 2nd order non-equilibrium phase transitions the

covariance of temporal averages of current fluctuations

around jst on the scale 1
Nτ

diverges in special directions

⇒ amplification of current fluctuations around such transitions



• In other words, the N, τ →∞ variance of

N∑
n=1

τ∫
0

δj(t, xn(t)) ◦ dxn(t) −
〈
· · ·

〉

√
Nτ

(note the central-limit-like rescaling) diverges for some time-

independent or periodic functions δj(t, x) at such transitions

• A somewhat related enhancement of fluctuations at the saddle-node

transition of the rotator model was observed numerically and

analyzed in Ohta-Sasa, Phys. Rev. E 78, 065101(R) (2008),

see also Iwata-Sasa, Phys. Rev. E. 82, 011127 (2010)



• The inverse covariance of the current fluctuations is extracted by

expanding the rate functional I[ρ, j] = 1
4

∫
(j − jρ)(ρD)−1(j − jρ)

to the 2nd order around (jst, ρst) :

I[ρst + δρ, jst + δj] =
1

4

∫
(δj − Sδρ)(ρstD)−1(δj − Sδρ)

where S(x.y) =
δjρst (x)

δρ(y)

• The linearized Fokker- Planck operator is R = −∇ · S

• At critical points corresponding to a saddle-node or a pitchfork

bifurcations, R has a zero mode δρ0(x) and then for(
δρ(x), δj(x)

)
=

(
δρ0(x), (Sδρ0)(x)

)

δj − Sδρ = 0

so that I[ρst + δρ, jst + δj], and consequently I
0
[jst + δj],

vanish to the 2nd order on such a perturbation



• At critical points corresponding to a Hopf bifurcation, R has a pair

of complex conjugate modes δρ0(x), δρ0(x) with eigenvalues ±iω
and then for

(
δρ, δj

)
= Re

(
eiω(t+t0)δρ0, e

iω(t+t0)Sδρ0
)

δj − Sδρ = 0

and again I[ρst + δρ, jst + δj], and consequently Iω,ϕ[Re eiψSδρ0]

for any phase ψ vanish to the 2nd order

• Note that in both cases the constraint ∂tδρ+∇ · δj = 0 is satisfied

• Vanishing of I, I0 or Iω,ϕ to the 2nd order around jst means

that the covariance of current fluctuations in the corresponding

directions diverges on the central-limit scale 1
Nτ

• The reason is that such fluctuations are realized in N =∞ dynamics

• In equilibrium, R cannot have non-zero imaginary eigenvalues and

for its zero modes δρ0, one also has Sδρ0 = 0, unlike in nonequili-

brium where δj = Sδρ0 represents a non-trivial current fluctuation



Example of the rotator model for J = 1, F = 0.5

The inverse covariance 2kBTI
′′
0 [jst] as a function of magnetic field h

(left, with log-lin scale) and temperature T (right, with lin-lin scale)

• The left figure illustrates the vanishing of I′′0 [jst] at the saddle-node

bifurcation for h = hcr ≈ 0.56 (the points for h < hcr correspond

to an unstable stationary solution within the periodic phase)

• The right figure shows the non-zero behavior of I′′0 [jst] near the Hopf

bifurcation at T = Tcr ≈ 0.5 (again, the T < Tc curve corresponds

to a stationary solution that is unstable within the periodic phase)



Conclusions and open problems

• Diffusions with mean field coupling are described for N =∞ by NFPE

and may exhibit interesting phase diagrams with dynamical transitions.

• Large deviations of empirical densities and currents for large but finite N

are described in such models by rate functionals similar as for stochastic

lattice gases, leading in the macroscopic fluctuation theory

• The non-equilibrium free energy satisfies a functional Hamilton-

Jacobi eq. whose solutions may be studied in perturbation theory

• The covariance of current fluctuations diverges in specific directions

at the 2nd order transition points of such systems, unlike in equilibrium

• The analysis of concrete systems, like the rotator model, may be

done by combining analytical and numerical arguments and requires

more work, in particular on large deviations of currents

• Similar methods should apply to underdamped diffusions with mean-field

coupling leading at N =∞ to Vlasov-Fokker-Planck eq. We hope

also to apply them to randomly forced 2D Navier-Stokes eqns.


