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Active chiral particles under confinement: surface
currents and bulk accumulation phenomena

Lorenzo Caprinia and Umberto Marini Bettolo Marconi *bc

In this work, we study the stationary behavior of an assembly of independent chiral active particles

under confinement by employing an extension of the active Ornstein–Uhlenbeck model. The chirality

modeled by means of an effective torque term leads to a drastic reduction in the accumulation near the

walls with respect to the case without handedness and to the appearance of currents parallel to the

container walls accompanied by a large accumulation of particles in the inner region. In the case of

two-dimensional chiral particles confined by harmonic walls, we determine the analytic form of the

distribution of positions and velocities in two different situations: a rotationally invariant confining

potential and an infinite channel with parabolic walls. Both these models display currents and chirality

induced inner accumulation. These phenomena are further investigated by means of a more realistic

description of a channel, where the wall and bulk regions are clearly separated. The corresponding current

and density profiles are obtained by numerical simulations. At variance with the harmonic models, the

third model shows a progressive emptying of the wall regions and the simultaneous enhancement of the

bulk population. We explain such a phenomenon in terms of the combined effect of wall repulsive forces

and chiral motion and provide a semiquantitative description of the current profile in terms of effective

viscosity of the chiral gas.

1 Introduction

The dynamics of self-propelled particles is an exciting new area
of research at the frontier between physics, biology and bio-
engineering.1–4 These particles are ubiquitous in nature or can
be artificially created and employed in the near future in tasks
such as targeted drug delivery and nanosurgery. Examples of
the first category are bacteria, ciliates, Synechococcus a type of
blue-green alga, and sperm cells, while artificial self-propellers
are represented by Janus particles catalytically driven or mag-
netic microparticles subject to a magnetic field. Each particle,
whose size may range from 10 mm up to several microns, con-
sumes energy from the environment in order to move and is fueled
either by metabolic processes or by chemical reactions: E. coli
move forward through rotational motion of their spiral-shaped
flagella while synthetic Janus colloids are driven by a catalytic
chemical reaction on their surface.

A small departure from the right-left symmetry relative to
the propulsion axis of the self-propelled particles or an external
magnetic field is sufficient to determine circle swimming in
two dimensions or helical swimming in three dimensions,

a phenomenon termed chirality or handedness. Indeed, in
nature one observes spiral-like swimming trajectories in E. coli
bacteria5,6 and spermatozoa in bulk suspensions7 or circle-like
motion near a planar substrate8 and clockwise treadmilling in
FtsZ proteins on membranes.9

Analogous chiral trajectories are produced by artificial
microswimmers, for instance, L-shaped particles.10,11 In nature,
magnetotactic bacteria are widespread motile prokaryotes, having
an organelle called magnetosome which causes the cell to behave
like a miniature compass and swim parallel to the magnetic field
lines.12,13 The direction of the magnetic field is so crucial that this
kind of bacterium dies when taken to the opposite hemisphere
of Earth.

As discussed by Ten Hagen et al.14 a system of self-propelled
particles can be described at two different levels: (i) a fine-
grained level fully taking into account the self-propulsion
mechanism, the degrees of freedom of microswimmers, such
as moving internal elements, and the solvent hydrodynamics,15

(ii) a coarse-grained level where the motion of microswimmers
is modeled by using the Brownian overdamped equations
and the self-propulsion is represented in terms of effective
forces and torques.16 In the following, it was convenient for
us, following the literature in the field, to adopt the second level
of description which allows a straightforward application of the
tools of statistical mechanics and computer simulation for
large collections of active particles. Among these tools there
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are two popular theoretical approaches for the study of active
particles: the active Brownian particle (ABP) model,17,18 and the
active Ornstein–Uhlenbeck particle (AOUP) model.19 Both
models represent the microswimmer motion through a viscous
solvent by means of Langevin overdamped dynamics and
include the distinguishing feature of active particles, namely
the self-propulsion mechanism as an effective force term. Such
a self-propulsion force has the following properties: (a) it is
typically noisy and its orientation is random, (b) active forces
acting on different self-propelled particles are mutually inde-
pendent and (c) the direction of driving persists over time
scales of the order of the microseconds. As briefly discussed
in the next Section, the ABP and the AOUP differ by the way
the self-propulsion force is modeled, but in spite of that
many important aspects of their nonequilibrium behavior are
similar. So far, the mechanism responsible for the active chiral
behavior has been included only in the ABP by adding an
effective constant torque term in the corresponding Langevin
equation.16 Chirality could also be induced by the non sphe-
rical shape of the particles, but this mechanism is not treated
in the present work. Such a torque induces a systematic drift
in the orientation of active particles, i.e. a rotation with a
constant angular speed of the active velocity, leading to helical
trajectories in three dimensions and to circular ones in two
dimensions.

While the effect of chirality on the bulk behavior of self-
propelled particles has been investigated,11 the properties of
the self-propelled chiral particles under confinement are not so
well known and understood. Confining surfaces may induce
surface accumulation, sliding motion and selection of active
particles according to their chirality20–22 and therefore it is
interesting to investigate under which conditions these effects
can be enhanced or suppressed.

In the present work, we focus on the properties of confined
chiral particles and motivated by the simpler mathematical
structure of the AOUP, which facilitates theoretical treatments,
we extend these to account for chiral effects. As in the case of
the ABP, this goal is achieved by adding a torque term to the
self-propulsion.

The paper is organized as follows: in Section 2 we introduce
the chiral active Ornstein–Uhlenbeck particle (CAOUP) model,
in Section 3 we study the special case of the CAOUP confined in
a two-dimensional harmonic trap, and in Section 4 we study the
behaviour of the model in the case of confinement in a parabolic
channel and in a slit. Finally, in Section 5 we present the
conclusions and discuss some future directions.

2 Planar chiral active motion

In the following, we describe the assembly of N mutually
independent active chiral particles moving in the two dimen-
sional (x, y) plane. Each particle at position xi is subject to four
kinds of driving forces: an active or self-propulsion force, fa

i ,
a drag force, �g :xi due to the friction with the solvent, a white

noise force g
ffiffiffiffiffiffiffiffi
2Dt

p
ni representing the thermal agitation of

the solvent, whose intensity depends on the thermal diffusion
coefficient, Dt, and a force, �rf(xi) due to a potential, f which
confines their motion in a restricted region of the two-dimensional
space. The active force, fa

i = gv0ei has a constant magnitude
proportional to a velocity v0 and a direction ei � (cos yi, sin yi)
dependent on an angle yi(t) undergoing unbiased rotational
diffusion with rotational diffusion coefficient Dr. Inertial effects
are neglected because of the low Reynolds number regime as
well as the hydrodynamic effects and the solvent reaction.
van Teeffelen et al.16 have extended the standard ABP model
to account for the chiral motion of microswimmers by adding a
new ingredient: they imposed a constant angular drift of
amplitude O to the dynamics of the angle yi(t) to represent
an effective constant torque uniformly applied to the particles.
The resulting chiral ABP model is described by the following
stochastic equations:

g _xi ¼ �rf xið Þ þ g
ffiffiffiffiffiffiffiffi
2Dt

p
ni þ fai ; (1)

_ei ¼
ffiffiffiffiffiffiffiffi
2Dr

p
wi þ O

� �
ẑ� ei; (2)

where ẑ is the unit vector normal to such a plane, ni and wi are
independent Gaussian noises with d-correlated components,
unit variance and zero mean. The torque turns the standard
exponential form of the autocorrelation function of the orienta-
tion vector into a damped oscillatory behavior

hei(t)�ej (0)i = dije
�Drt cos(Ot), (3)

where t 4 0. Notice that when |Ot| 4 p/2 the force autocorrela-
tion function becomes negative.

A series of interesting studies of the chiral ABP have been
conducted by various authors,20,22–24 and they mainly rely on
numerical simulations and/or the analysis of the low noise,
quasi-deterministic behavior of eqn (1) and (2).

Hereafter, motivated by the success of the active Ornstein–
Uhlenbeck model in reproducing and predicting the main
behaviors of non-chiral microswimmers,25–27 we consider its
chiral extension. Moreover, the AOUP is considered to be a valid
alternative tool to investigate the properties of active particles
because of the feature which makes it analytically more trea-
table than the ABP, namely the property that the fluctuations of
the self-propulsion force are Gaussian. We introduce the chiral
version of the AOUP model by assuming the same governing
eqn (1) for xi as in the ABP, but writing the dynamics of the
active force fa

i = gui as:

_ui ¼ �
ui

t
þ Oẑ� ui þ

ffiffiffiffiffiffiffiffiffi
2Da

p

t
gi; (4)

where gi is the Gaussian noise and each component of ui

evolves according to the Ornstein–Uhlenbeck process of char-
acteristic time, t and strength Da and is subject to a tangential
drift at a fixed frequency O around an axis orthogonal to
the plane of motion. It is very simple to show that, in the case
of freely moving particles (f = 0), the two-time correlation
functions of the chiral versions of the ABP and the AOUP
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are similar. A brief calculation gives the following two-time
average:

uaðtÞuað0Þh i ¼ Da

t
e�

t
t cosðOtÞ; (5)

where Greek indices denote Cartesian components and the
particle index will be omitted from now on. Although it is known
that even in the non-chiral case there are some important
differences between the two models (e.g. the stationary distri-
bution of f a

a is circular in the ABP and Gaussian in the AOUP),
previous studies28,29 have shown that they share many important
aspects of their nonequilibrium behavior. It is not too unlikely
to assume that this holds true even in the case of angular drift.
Thus, neglecting the autocorrelation functions of the self-
propulsion f a

i (t) beyond the second order and noticing that
eqn (3) and (5) have the same functional form, we establish the
following mapping between the parameters of the two models
by making the correspondence:

v0
2 ¼ Da

t
d; (6)

where d is the dimensionality.
For theoretical work it is convenient to transform eqn (1)

and (4) into a system of equations involving the effective velo-

city, v defined as v ¼ u�rf
g

and generalizing the trans-

formation of ref. 30 and 31 we obtain a new set of equations
(see Appendix A6):

_x ¼ vþ
ffiffiffiffiffiffiffiffi
2Dt

p
n; (7)

_v ¼ � 1

t
1

g
rfþ CðxÞ � v

� �
þ Oẑ� vþ 1

g
rf

� �

þ
ffiffiffiffiffiffiffiffiffi
2Da

p

t
gþ I� CðxÞ

t

ffiffiffiffiffiffiffiffi
2Dt

p
n;

(8)

where I is the identity matrix and C is an effective friction
tensor given by:

GabðxÞ ¼ dab þ
t
g
rarbfðxÞ: (9)

Such a transformation maps the original problem of an active
particle onto the dynamics of a fictitious passive particle,

immersed in a heat bath of amplitude
ffiffiffiffiffiffiffiffiffi
2Da

p �
t. The fictitious

particle experiences: (i) a deterministic force proportional to
the potential gradient (the first term in the r.h.s. of eqn (8)),
(ii) a Stokes force dependent on the second derivative of the
potential (the second term in the r.h.s.), (iii) an effective Lorentz
force proportional to the torque O and orthogonal to the velo-
city v and (iv) a term proportional to O and orthogonal to the
potential gradient. Hereafter, the thermal diffusion coefficient,
Dt is set equal to zero, not only for simplifying the analytical
work but also because it is often much smaller than Da.32 For the
following analysis, it is convenient to write the Fokker–Planck
equation (FPE)33 for the P(x, v, t) distribution corresponding
to the dynamics (7) and (8). In the limit of vanishing thermal
noise we write:

@Pðx; v; tÞ
@t

¼ Da

t2
X
a

@2Pðx; v; tÞ
@va2

�
X
a

va
@Pðx; v; tÞ

@xa

þ
X
a

@

@va

1

t

X
b

dab þ
t
g
fab � Oteab

� �
vbPðx; v; tÞ

 !

þ
X
a

@

@va

1

t

X
b

dab � Oteab
� 	fb

g
Pðx; v; tÞ

 !
;

(10)

where for notational convenience we adopted an explicit
Cartesian representation, using Greek indices to denote two
dimensional vector components, introduced the symbols fa and
fab for the first and second partial derivatives of the potential,
respectively, and the symbol eab for the antisymmetric 2 �
2 tensor such that eyx = �exy = 1.

2.1 Detailed balance

At variance with the standard AOUP model (O = 0) in order to
obtain the steady state solution of the FPE (10) we ought to solve
the second order partial differential equation corresponding to
the vanishing of the phase-space divergence of the probability
current34 Ia = ((Ia)x, (Ia)v), where a = x, y:

diva � Ia ¼
X
a

@

@xa
Iað Þx þ

@

@va
Iað Þv: (11)

It is convenient to split the probability current into a reversible
and an irreversible contribution, i.e. Ia = Irev

a + Iirr
a , according to

the their parity under time reversal, i.e. the components (x, v) of
the reversible (irreversible) part of the current are transformed
under time-reversal in the same (opposite) way as the time
derivative of (x, v), respectively. Explicitly, the components of
the probability current are:

(Irev
a )x = vaPst(x, v), (12)

I reva

� 	
v
¼ � 1

tg

X
b

dab � Oteab
� 	

fb

 !
Pstðx; vÞ; (13)

(Iirr
a )x = 0, (14)

I irra

� 	
v
¼ �Da

t2
@Pstðx; vÞ
@va

� 1

t

X
b

dab þ
t
g
fab � Oteab

� �
vbPstðx; vÞ:

(15)

Let us remark that the x-component (y-component) of the current
depends on the y-component (x-component) of the gradient of the
potential.

The system is microscopically reversible when the detailed
balance condition holds.35,36 Such a condition is satisfied if
Iirr
a = 0 and diva�Irev

a = 0 in the steady state.

2.2 Unconfined chiral active motion

In the free case f = 0, the time-independent solution of eqn (10)
is the steady state distribution, Pst, and is uniform in space and
has the form:
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Pstðx; vÞ ¼N exp � t
2Da

vx
2 þ vy

2
� 	� �

: (16)

We notice that while the two-time properties of the velocity
distribution depend on O, as already seen in eqn (5), the pre-
sence of chirality does not affect the shape of the Maxwell-like
velocity distribution (16) with respect to the case O = 0, a
situation which is modified when the particles are confined
as we show below.

We, now, consider how the torque O modifies the diffusive
properties of the particles and find that for both the ABP and the
AOUP the mean square displacement is given by the formula:16,47

xaðtÞ � xað0Þð Þ2
D E

¼ 2

ðt
0

dt1

ðt1
0

dt2 ua t1ð Þua t2ð Þh i

¼ 2DO tþ ð1� O2t2Þt
1þ O2t2

e�t=t cosðOtÞ � 1
� ��

� 2Ot2

1þ O2t2
e�t=t sinðOtÞ

�
; (17)

where DO ¼
Da

1þ O2t2
and the thermal contribution 2Dtt to the

mean square displacement has been neglected. One sees that the
long-time diffusion coefficient is decreased by a factor (1 + O2t2)�1

with respect to the non-chiral case,37 an effect which is explained
by noticing that the particles perform cycloid trajectories.

An easy check of the lack of detailed balance is provided by
the free case whose distribution function is given by (16). At
variance with the AOUP with f = 0, the condition that the
components of the irreversible current must vanish is violated:

(Iirr
x )v = �OvyPst(v) a 0, (18)

(Iirr
y )v = OvxPst(v) a 0. (19)

3 Spontaneous circulation of totally
confined active particles

We begin by considering a CAOUP moving in two dimensions
and confined in a harmonic trap:38

fðxÞ ¼ k
x2 þ y2
� 	

2
:

The linearity of the Ornstein–Uhlenbeck process allows obtaining
the exact form of the nonequilibrium steady state, whose phase-
space distribution reads:

Pðx;vÞ¼N exp � t
2Da

G vxþ
G�1

G
Oy

� �2

þ vy�
G�1

G
Ox

� �2
 !" #

� exp � 1

2Dat
G�1

G
G2þO2t2
� 	

x2þy2
� 	
 �

;

(20)

where G ¼ 1þ t
g
k

� �
with k 4 0 and N is a normalization

constant.

At variance with passive systems, the positional and velocity
coordinates are correlated and the steady state is characterized
by currents linearly increasing with O a 0. In fact, the average
velocity field at fixed position x, defined as

vh ix¼
Ð
dvPðx; vÞvÐ
dvPðx; vÞ ;

is given by the formulas:

vxh ix¼ �
G� 1

G
Oy; (21)

vy
� 


x
¼ G� 1

G
Ox: (22)

Such a field has the structure of a vortex centered at the mini-
mum of the potential. The confining force pins to the origin of
the trajectories of different particles resulting in producing a
single coherent macroscopic vortex, which in contrast is absent
in the free-case as evident from the distribution (16). Finally,
the velocity variance

vx
2

� 

� vxh i2 ¼ vy

2
� 


� vy
� 


2 ¼ 1

G
Da

t
(23)

is reduced with respect to the free case being G 4 0, but is
torque independent.

We also consider the corresponding marginal (configura-
tional) distribution, rðx; yÞ ¼

Ð
dvPðx; vÞ:

rðx; yÞ ¼N0 exp � 1

2Dat
G� 1

G
G2 þ O2t2
� 	

x2 þ y2
� 	� �

: (24)

We remark that the chirality determines a more concentrated
distribution of the particles near the bottom of the potential well,
thus effectively increasing its stiffness. In other words, the chirality
acts as a centripetal force whose strength is proportional to O2t2.
The non-chiral limit O - 0 is smoothly recovered and one finds
the well-known AOUP distribution in the quadratic trap.

By inserting the exact solution (20) in eqn (12)–(15) one finds
that also in the case of harmonically confined chiral particles at
variance with the non chiral AOUP the detailed balance condi-
tion is violated due to the presence of circulating currents. Due
to this lack of detailed balance condition the unified colored
noise approximation (UCNA)39 fails even in this simple case of
a chiral AOUP confined in a harmonic trap.25

3.1 Virial pressure

The virial pressure formula is obtained by equating the pressure
exerted by the particles on the walls to force per unit length that
the walls exert on the particles.40,41 Thus, we obtain

2pvA = hrf�xi, (25)

where A is the area and the average is obtained using the steady
state distribution. For the rotationally invariant harmonic trap we
find using eqn (24) the following expression of the virial pressure

pvA ¼
Dg

Gþ O2t2

G

:
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Such a result shows that the pressure decreases as O increases
since the particles tend to be more localised near the bottom of
the well with respect to the O = 0 case.

4 Confinement in a channel

Before delving into the study of the confined chiral gas, let us
briefly summarize some recent results concerning the case
O = 0: the self-propelled particles accumulate in the proximity
of repulsive walls.42,43 Such a phenomenon is more evident
when the persistence time, t, increases and Da/t is large with
respect to the thermal noise amplitude, gDt. In fact, a particle
pushed by the self-propulsion force along the normal to the
wall remains trapped there and escapes only when the pro-
pulsion direction changes, i.e. typically after a time t. This
mechanism leads to the formation of a peak in the proximity
of each wall and is reflected in eqn (8) by the presence of a

Stokes force term, �1
t
GðxÞ � v, which opposes the motion and

traps the particle near the walls. In the region where the
potential gradients are negligible, instead, the particles
undergo an underdamped motion and their density is almost
uniform or smoothly varies in the presence of thermal noise
(Dt a 0).31

Intuitively, we expect a reduction of the accumulation of the
particles at the walls with chirality. In fact, the time, tw, a
particle spends in front of a wall is a decreasing function of |O|,
as we argue by considering the form of the two-time velocity
autocorrelation function eqn (5), characterized by the two
characteristic time-scales t and 1/O. In the non-chiral limit,
O = 0, the residence time at the wall is tw E t, because after this
time a particle typically inverts its self-propulsion and goes
back to the bulk. On the other hand, in the case |O| 4 0, the
first value where the autocorrelation changes its sign is tO =
p/(2|O|), the smallest zero of the cosine function in eqn (5).
Based on this remark, we identify two regimes: (I) tO c t, where
the role of the chirality is negligible and does not affect the
distribution of the particles in the channel, hence tw E t;
(II) tO r t, where the correlation (5) changes the sign for times
shorter than t. In this case, we can estimate the typical time
needed to change the orientation and leave the wall as tw B tO.
Following Lee,44 we propose a coarse-grained description where
the particles belong to two different populations: a bulk popu-
lation of nb members and a wall population of nw elements,
characterized by residence times tb and tw, respectively. Due to
the permanent injection of energy, there is a continuous
exchange of particles between the two populations, so that to
achieve the steady state we must have nw/tw = nb/tb. We may
conclude that the wall population decreases as tw decreases,
that is when O grows.

In the following, we employ two different types of set-ups
in order to assess quantitatively the effects of chirality in con-
fined systems. We begin with the study of an infinite para-
bolic channel where the particles are confined only in the
x-direction and free to move along the y-direction. We shall
determine the exact full steady state distribution function and

show the existence of steady momentum currents induced by
the chirality.

We then consider the more realistic slit case, i.e. a model
where the wall and bulk regions are clearly separated and the
walls are modeled by means of truncated repulsive harmonic
potentials. In the case of non-constant potential curvature, it is
possible to observe the interplay between wall accumulation
and wall depletion due to the competition between wall attrac-
tion and a chiral effective force pushing the particles away from
the boundaries.

4.1 Parabolic channel

A one dimensional quadratic well fðxÞ ¼ k
x2

2
mimics a channel

limited by harmonic walls along the x-direction and unbounded
along the y-direction. In this case, the distribution depends
on the two components of the velocity v, but only from the
x-coordinate transversal to the channel. Its representation is a
multivariate Gaussian distribution containing diagonal terms
proportional to (vx

2, vy
2, x2), but also three cross terms of

type (vxvy, xvy, xvx). The exact expression of each of the six
proportionality constants, featuring the Gaussian, is a function
of the control parameters, k, t, g, O, Da and is reported in
Appendix B. In the main text, to ease the presentation we write
the more transparent form of the distribution obtained by
neglecting the contributions to the coefficients beyond the
linear order in O:

Pðx; vÞ � N exp � t
2Da

Gvx2 þ vy
2 þ 2

G� 1

G
Otvxvy

� �
 �

exp �G� 1

2Dat
Gx2


 �
exp O

t
Da

G� 1

G
vyx


 �
:

(26)

By integrating over vx and vy we obtain the x-dependent average
velocity along the y-direction as a function of O

hvyix ¼
G� 1

G
Ox: (27)

The result (27) is valid to all orders in O and for O 4 0 predicts
the existence of a current parallel to the walls and directed
along the downward y-direction for x o 0 and upwards for
x 4 0, while reversing the sign of O the current in the two
halves of the channel changes the sign. Instead, there is no net
average current hvxix along the x-direction. Finally, using the
exact form of the distribution given by eqn (46) we obtain the
associated marginalized positional distribution function

rðxÞ ¼N exp � 1

2Dat
G� 1

G
G2 þ O2t2
� 	

x2
� �

(28)

which shows that the density near the center is enhanced with
respect to the O = 0 case as if an extra effective potential
G� 1

G
O2t2x2=2 was pushing the particles towards the midpoint.

In Fig. 1 we display two typical trajectories for two different
values of O, which become more and more localised as the
chirality increases.
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Unlike the rotationally invariant case, the variances of the
velocity of the particles weakly depend on the value of O as
shown by the exact solution of Appendix B:

vx
2

� 

x¼0 ¼

Da

t
O2t2 þ G
O2t2 þ G2

;

vy
2

� 

x¼0¼

Da

tG
O2t2 þ G3

O2t2 þ G2

and

vxvy
� 


x¼0¼ �
Da

t
ðG� 1Þ Ot

O2t2 þ G2
; (29)

where the subscript means that the average refers to the
midpoint x = 0.

4.2 The slit

We turn, now, to study a different type of channel where the
stiffness of the walls and the width of the channel can be varied
independently. A two-dimensional collection of independent
chiral active particles is confined between two parallel repulsive
soft walls, exerting a force piece-wise linear, characterized by an
elastic constant k according to the formula:

Fw(x) = k(x + L)Y(�x � L) � k(x� L)Y(x � L), (30)

where Y is the Heaviside step-distribution. We choose a large
value of k so that the penetration inside the wall is negligible.
The space between the walls extending from x = �L to x = L,
instead, forms a force-free region. The setup, recently studied in
the case of non-chiral particles, O = 0, provides a more realistic
description of a straight capillary because we may clearly distin-
guish a boundary, potential region from a bulk-like region.31

In the numerical simulations, in order to model an infinite
vertical channel we assume periodic boundary conditions along

the y-direction. At variance with the non chiral case, where the
problem becomes effectively one-dimensional, in the O a 0
case, as already found in the previous Section 4.1, both x and
y directions matter and the system develops a steady vertical
momentum current and the bulk region becomes overpopulated
with respect to the O = 0 case.

In Fig. 2, we plot the density at the walls, nw, as a function of
O, for two different parameter configurations: we fix the ratio
Da/t = 1 and perform numerical simulations for t = 1 and t = 10.
We evaluate nw by counting the number of particles in the
regions x r�L and x Z L, for the left and right wall, respectively.
In the regime (I) identified in Section 4 the decrease of nw is
slower than that of 1/|O|, since the effect of the chirality does not
affect the wall population being tO 4 t. On the other hand, in
regime (II) the scaling 1/O fairly agrees with the data for both
choices of t.

In Fig. 3 we show the marginalized distribution r(x) for a
system of active chiral particles subject to the dynamics of
eqn (7) and (8) in the presence of the wall force (30). We consider
the dependence of the profile on the internal torque by varying O
and keeping Da and t fixed to values such that there is appreci-
able accumulation at the walls. Upon introducing a small
chirality the accumulation at the walls is reduced, as shown in
Fig. 3(a). In the intermediate regime of O, the role of the chirality
is more consistent: on one hand, the particles accumulate in
front of the wall (as in the case O = 0), and on the other hand, the
profile in the bulk is no longer flat-like. In particular, we observe
an emptying phenomenon in a layer near the wall favoring the
accumulation in the inner region, as shown in Fig. 3(b). A further
increase of O depletes the density near the walls and enhances it
in the bulk region until the wall region remains almost com-
pletely empty. For these values of O, the situation is completely
inverted with respect to the case O = 0 and the wall behaves as if
the effective wall-potential was repulsive.

We stress that, at variance with the harmonically confined
CAOUP of Section 4.1, it is possible to observe a transition from

Fig. 1 Two typical trajectories of active chiral particles confined to a
parabolic channel. The particles undergo spiral motion. Notice the stronger
localisation of the particle near the bottom of the well, with increasing value
of the torque O as predicted by eqn (28).

Fig. 2 Density at the walls nw versus O for two different values of t = 1
(red pentagons) and 10 (blue diamonds). The parameters are: Da = t, g = 1,
k = 10, and L = 8, and the walls are at positions x = �L.
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a situation where particles accumulate near the walls to a
situation where they accumulate in the bulk.

We, now, explain the process which leads to the emptying of
the wall region and to the enrichment of the central region in
the case of the channel when O a 0 and to this purpose we
rewrite eqn (8) under the explicit form:

_vx ¼ � 1þ ðG� 1Þ Yð�x� LÞ þYðx� LÞð Þ½ �vx
t
� Ovy

�Yð�x� LÞ k
gt
ðxþ LÞ �Yðx� LÞ k

gt
ðx� LÞ þ

ffiffiffiffiffiffiffiffiffi
2Da

p

t
Zx

_vy ¼ �
vy

t
þ Ovx þ

O
gt

kðxþ LÞYð�x� LÞ þ kðx� LÞYðx� LÞ½ �

þ
ffiffiffiffiffiffiffiffiffi
2Da

p

t
Zy:

One sees that on one side the chirality acts as an effective
magnetic field of strength O periodically rotating the velocity
direction without changing its magnitude and the other side,
for |x| 4 L, in combination with the wall repulsion it produces
a tangential force always along the y direction. As a result,

the particle accelerates and gains ‘‘kinetic energy’’. Such a
force, proportional to kO/t only acts in the boundary region
and generates a vertical momentum current having opposite
directions at the two walls. When a particle penetrates the
potential region, its velocity components vx is strongly damped
by the large Stokes force �Gvx/t and thus it remains trapped
there. At the same time, the vy component of the velocity rapidly
increases under the action of the tangential force. This process
continues for a time tO after which the torque rotates the
velocity vector and transfers the accumulated ‘‘kinetic energy’’
to the x component of the velocity pointing towards the bulk.
In the regime of large |O|t c 1, the tangential field acts on a
shorter time scale than the scale of the dissipative Stokes force
and the velocity is nearly unaffected by friction. The particle
leaves the wall with a velocity proportional to O and enters the
potential-free region where it undergoes a spiral motion with a
large initial radius, due to the energy accumulated at the wall.
This radius continuously shrinks due to the dissipation caused
by the Stokes bulk force, as shown in Fig. 4. After a time Bt the

dissipation becomes relevant and vj jh i 	
ffiffiffiffiffiffiffiffiffiffiffi
Da=t

p
, i.e. the steady

state typical velocity. The process herein described continues
forever since a fluctuation of the self-propulsion can drive a
bulk particle to reach again the wall region to start a new cycle.
It is clear that the removal of particles from the walls due to O
has an effect on depleting the wall accumulation and increasing
the bulk population.

To test the existence of large surface currents leading to the
formation of an intermediate emptying region we have studied
the profile of the vertical velocity. In the two panels Fig. 5 shows
the average velocity hvyix as a function of distance from the
center of the slit x for two different values of O. We notice the
monotonic behavior of the velocity, which can be described by
a hyperbolic sine function since the average velocity in the

Fig. 3 Density profile r(x) for different values of O as shown in the legend:
O = 0.1, 0.25, 0.5 (panel (a)), O = 1, 2, 5 (panel (b)). The control parameters
are: Da = 10, t = 10, g = 1, k = 10 and L = 4. In the insets, we show the
zoomed profiles of regions delimited by dashed vertical lines.

Fig. 4 A typical trajectory of an active chiral particle confined to a slit-like
channel. In the inner region, the particle undergoes spiral-like motion,
while at the walls it slides vertically. Notice that the sliding occurs down-
wards at the left wall and upwards at the right wall.
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left-hand side has the opposite direction with respect to the
velocity in the right-hand side. As discussed above, the mecha-
nism which causes such a behavior is the interplay between the
wall force and the chiral force; however, in this case, the non-
uniformity of the Stokes force in the x-direction leads to a
richer structure both in the density and in the velocity profiles
than the one observed in the parabolic channel. In fact, the
Stokes force opposing the motion along the x direction is large
only in the wall region |x| 4 L, while the centripetal force Oẑ � v
is spatially uniform.

4.3 Momentum profile in the potential-free region |x| o L
and effective viscosity

As shown in the two panels of Fig. 5, the vertical component of the
average velocity field varies in the region bounded by the walls.
Hereafter, we derive the equations for the current by projecting the
Fokker-Planck equation onto an appropriate hydrodynamic space.

By integrating the FPE (10) over vx,vy we obtain the continuity
equation:

@rðx; tÞ
@t

þ @jxðx; tÞ
@x

þ @jyðx; tÞ
@y

¼ 0 (31)

with

jaðx; tÞ ¼
ð
dvxdvyvaPðx; v; tÞ:

In the steady state
@jxðx; tÞ
@x

¼ 0 and by symmetry the particle

current j is a function of x only. From the continuity equation
and the wall boundary conditions it follows that jx(x) = 0, while
the vertical component jy(x) varies with x. Next, we define the
pressure tensor P as:

PabðxÞ ¼
ð
dvxdvyvavbPðx; vÞ;

the stationary FPE is multiplied by vy and vx, respectively, and
integrated over the velocity. In the potential-free region, |x| o L,
we obtain the following equations relating the components of
the pressure tensor to the current jy:

�1
t
jyðxÞ �

@PxyðxÞ
@x

¼ 0; (32)

�OjyðxÞ �
@PxxðxÞ
@x

¼ 0: (33)

In order to determine jy(x) from eqn (32), we must relate it to
Pxy(x), a task which will be pursued hereafter using a simple
kinetic argument.

In the situation depicted in Fig. 5, let us consider the average
vertical momentum flux J+

y per unit time and per unit length
crossing a segment at x = x0 (with �L o x0 o L) and originating
from the region x o x0. We assume that: (a) the particles
passing from the one side to the other side of the unit vertical
segment at x0 move with the constant average velocity, |%vx| and
(b) the physical space can be divided into cells of linear size lO,
the smallest distance over which the mean values of the physical
observables vary. Based on these hypotheses, the magnitude of
J+
y can be written as:

Jþy x0ð Þ ¼
1

4
�vxj jjy x0 � lOð Þ: (34)

Similarly, the momentum flux of the particles coming from the
right is

J�y x0ð Þ ¼ �
1

4
�vxj jjy x0 þ lOð Þ; (35)

where the geometrical factor 1/4 takes into account the different
possible directions of the velocities of the particles under the
assumption of isotropy of the velocity distribution. The result is
a net transfer of the y-component of momentum across the
segment x = x0 given by:

Jþy x0ð Þ � J�y x0ð Þ � �
1

2
lO �vxj j

@jy
@x

����
x0

: (36)

Fig. 5 Velocity and density profiles of the slit-like channel. Panel (a): case
O = 0.75. Mean vertical velocity hvyix as a function of the x-coordinate
(blue symbols) and theoretical prediction (blue line) eqn (41). The black line
indicates the corresponding density profile r(x). Panel (b): case O = 3. Mean
vertical velocity hvyix versus x (red symbols) and theoretical prediction
(red line) eqn (41). The black line indicates the density profile r(x). For both
panels the control parameters are: t = 10, g = 1, Da = 10, and L = 4.
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The rate of change of momentum per unit length, ( J +
y � J�y ),

due to the diffusion of the particles in the horizontal direction
is equivalent to the shear force per unit length exerted by the
particles with x o x0 on the particles with x 4 x0, that is to the
off-diagonal component of the pressure tensor:

Pxy ¼ Jþy � J�y ¼ �nO
@jy
@x

(37)

with nO ¼
1

2
lO �vxj j. The same kind of elementary kinetic argu-

ment, this time replacing the transported quantity jy(x) by r(x),
predicts that a gas of tracer chiral active particles with non
uniform density r(x) generates a net flux JN, defined as the
number of particles per unit time crossing a unit vertical
segment according to the formula:

JN ¼ �
1

2
lO �vxj j

@rðxÞ
@x

����
x0

: (38)

The ratio between �JN and �@rðxÞ
@x

defines the self-diffusion

coefficient of chiral particles DO ¼
1

2
lO �vxj j. One concludes that

the kinematic shear viscosity and the diffusion coefficient are
equal: nO = DO, a result well known in the kinetic theory of
dilute gases. By comparing this result with the exact calculation

of the long-time diffusion coefficient DO ¼
Da

1þ O2t2
given by

eqn (17) we can now directly determine the value of nO and
thus obtain

Pxy ¼ �
Da

1þ O2t2
@jy
@x
: (39)

Finally, substituting in eqn (32) we obtain

@2jy
@x2
¼ 1þ O2t2

Dat
jy (40)

whose solution is

jyðxÞ ¼ A sinh
xffiffiffiffiffiffiffiffi
nOt
p
� �

¼ A sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ O2t2
p

ffiffiffiffiffiffiffiffi
Dat
p x

 !
; (41)

where the constant A is fixed by the odd boundary conditions at
x = �L. Using eqn (33) we can obtain Pxx:

PxxðxÞ ¼
ðx
�L

dx0jyðx0Þ ¼ P0 � AO
ffiffiffiffiffiffiffiffi
nOt
p

cosh
xffiffiffiffiffiffiffiffi
nOt
p
� �

; (42)

where the constant P0 is determined by the boundary condi-
tions. Let us remark that jy(x) is proportional to hvyix in the
regime where the density r(x) varies slower than hvyix itself.
Under these conditions it is legitimate to compare directly the
solution jy(x) of eqn (41) with the profile hvyix of Fig. 5. The
present prediction of the current profile jy(x) (eqn (41)) is in
qualitative agreement with the numerical simulation result for
the same quantity. However, in order to achieve a full quantita-
tive agreement it is necessary to multiply the theoretical char-

acteristic length l ¼ ffiffiffiffiffiffiffiffi
nOt
p

by a factor
ffiffiffi
2
p

. The origin of such a
rescaling cannot be explained by our simple argument and
remains to be understood.

5 Conclusions

In this paper, we have introduced an extension of the active
Ornstein–Uhlenbeck model to study the behavior of a gas of
active chiral particles under confinement. The handedness
of the particles’ motion has been accounted for by means of
an effective torque term in the self-propulsion forcing. The
presence of the torque has a profound influence on the proper-
ties of the AOUP as it breaks the detailed balance condition even
in the unconfined case. Under confinement, we find that the
torque is responsible for the appearance of steady momentum
currents and reduction of the accumulation of the particles
at the container’s boundaries. Explicit illustrations of these
phenomena are shown by means of the exact solution of the
stationary Fokker–Planck equation in two cases of parabolic
confinement. In a more realistic case of confinement by stiff
walls, beside the emptying of the boundary region and the enrich-
ment of the bulk region, we find a structure of the velocity field
akin to the one observed in sheared viscous fluids. This behavior is
explained in terms of a simple kinetic argument and the velocity
profile is reproduced.

Since the linear propulsive and rotational behavior can
independently be tuned, by changing t and O respectively,
one could drive more efficiently the motion of active particles
for instance by partly suppressing their diffusivity, or obtain
more efficient harmonic traps. Active rotation does also have
an impact on the properties of interacting systems: Liao and
Klapp have found that it generally opposes motility-induced
clustering and phase separation, as demonstrated by narrowing
the coexistence region of a two-dimensional chiral ABP upon
increase of the propulsion angular velocity.45 A similar behav-
iour should also be observed in systems of the interacting
CAOUP.

Finally, concerning the practical interest of the systems studied,
one could envisage the possibility of selecting chiral active particles
on the basis of their handedness in pharmaceutical or biotechno-
logical applications where chiral levogyre or dextrogyre properties
correspond to different functionalities.20,46
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Appendix A: transformation of variables

In this appendix, we derive the governing equations for the trans-
formed variables (xi,vi). Let us consider the AOUP equation:

_xi ¼ �
1

g
@f
@xi
þ

ffiffiffiffiffiffiffiffi
2Dt

p
xi þ ui (43)

and define the ‘‘velocity’’, vi: vi ¼ _xi �
ffiffiffiffiffiffiffiffi
2Dt

p
xiðtÞ. We differ-

entiate (43) and eliminate ui with the help of eqn (4) and use
again (43). Adopting Stratonovich convention for the derivatives
of f we finally obtain:

_xi ¼ vi þ
ffiffiffiffiffiffiffiffi
2Dt

p
xi (44)
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_vi ¼ �
1

t
1

g
@f
@xi
þ vi


 �
þ Oeik vk þ

1

g
@f
@xk


 �
� 1

g
@2f
@xi@xk

vk

þ
ffiffiffiffiffiffiffiffiffi
2Da

p

t
Zi �

ffiffiffiffiffiffiffiffi
2Dt

p

g
@2f
@xi@xk

xk

(45)

where we used the Einstein repeated index convention.

Appendix B: exact distribution in the
parabolic channel

Hereafter, we report the exact phase-space distribution in the
case of a parabolic channel. Its form as discussed in the main
text depends on six constants A, K1, K2, K3, M1, and N2 according
to the formula:

Pðx; vÞ ¼N exp �A
2
x2

� �
exp �K1

2
vx

2 � K2

2
vy

2 � K3vxvy

� �

� exp �M1vxx�N2vyx
� 	

:

(46)

For the sake of notational simplicity we define:

D = O2t2 + G2

and write the following six equations for the coefficients in
terms of independent control parameters:

A ¼ k

Dag
O4t4 þ 2O2t2 þ 3O2t2ðG� 1Þ þ G3

D
;

K1 ¼
t
Da

O2t2 þ G3

D
;

K2 ¼
t
Da

G
O2t2 þ G

D
;

K3 ¼
Ot3

Dag
G
D
k;

M1 ¼ � O2t4
1

Dag
k2

g
1

D
;

N2 ¼ �
Ot2

Dag
O2t2 þ G

D
k:

The average velocity along y is

vy
� 


x
¼ G� 1

G
Ox (47)

and is proportional to
Ot
g
k.
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Condens. Matter, 2011, 23, 194119.
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