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2Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032, Camerino, Italy.
3Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2,
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ABSTRACT

We study a system of interacting active particles, propelled by colored noises, characterized by an activity time τ , and confined
by a single-well anharmonic potential. We assume pair-wise repulsive forces among particles, modelling the steric interactions
among microswimmers. This system has been experimentally studied in the case of a dilute suspension of Janus particles
confined through acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are negligible -
increasing the persistent time, τ , pushes the particles away from the potential minimum, until a saturation distance is reached.
We compute the phase diagram (activity versus interaction length), showing that the interaction does not suppress this
delocalization phenomenon but induces a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior
is observed: a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher values, when
the delocalization occurs, a further increase of τ induces freezing inside the densest regions. An approximate analytical
scheme gives fair predictions for the density profiles in the weakly interacting case. The analysis of non-equilibrium heat fluxes
reveals that in the region of largest particle concentration equilibrium is restored in several aspects.

Introduction

Recently the theorists’ attention has been attracted by the study of so-called self-propelled particles1–3 in the context of active
matter. Typical experimentally accessible examples come from biological systems: swimming bacteria, such as the E. Coli4,
unicellular protozoa5 and spermatozoa6 but also more complex systems such as actin filaments7, active nematics8, living tissues9

or the so-called motor-proteins10. Moreover, artificially realized micro-swimmers, such as self-propelled Janus particles11, 12

and colloidal particles immersed in a bacterial suspension13, have been shown to behave as active systems. All these examples
show common features both at the level of the single particle trajectory14, and at the collective level, which cannot be captured
by an equilibrium Brownian motion model. Regardless of their nature, these systems propel themselves in some space direction
for a finite time, by employing different mechanisms. Typically, biological systems employ mechanical tools, such as Cilia or
Flagella, or complex chemical reactions. Active colloids are typically activated through light15, 16, which injects energy into
the system, or chemically through the decomposition of hydrogen peroxide17, 18. Independently on their origins, on one hand,
an isolated self-propelled particle displays an anomalously long persistent motion: In the potential-free case, its orientation -
i.e. the active force - and so its velocity direction remains constant for times much longer with respect to those allowed by an
equivalent thermal system, where activity is replaced by ordinary diffusion process with the same amplitude. Of course, at
very long times - when velocity correlations have decayed - normal effective diffusion is recovered when active particles are
not confined. On the other hand, a suspension of interacting active particles shows interesting collective phenomena such as
the so-called motility induced phase separation (MIPS)19–26 or dynamical ordering phenomena such as flocking27. All these
phenomena cannot be explained through an equilibrium approach, i.e. in terms of a Maxwell-Boltzmann distribution. For
this reason, a series of simplified models have been recently proposed, in particular, the Run and Tumble model28–30 and the
Active Brownian Particles (ABP) model31–33: the connection between these two modelizations was discussed in34, 35, showing
a good consistency between them, at least in a range of values of the control parameters. Since the two-time correlation
of stochastic activity force in the ABP, averaged over the angular degree of freedom, has an exponential shape, the Active
Ornstein-Uhlenbeck Particles (AOUP) model was introduced, as the simplest model with such time-correlation behavior36–40.
Despite its apparent simplicity, many aspects of the active phenomenology were reproduced37, 41, providing consistency with
this model. The possibility in AOUP of obtaining clear theoretical results may lead to new predictions which may trigger future
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experimental investigations.
With this aim, here we implement numerical simulations42 of interacting AOUP particles within a confining single-well

potential, reproducing a “delocalization” phenomenon, i.e. the escape of particles far from the potential minimum, recently
observed in experiments with Janus particles. In particular, in43 the system was dilute enough to make inter-particle interactions
negligible. At variance with44, our model considers a constant mobility and neglects any kind of hydrodynamic interactions,
supposed to be small. Moreover, we do not involve any alignment and consider only pairwise repulsive potentials to model
the steric repulsion among the spherical microswimmers. Our study first demonstrates that delocalization increases with
activity and is robust also in the presence of interactions, at least up to a certain effective density. We also reveal a complex
interplay between interactions and activity, inducing a freezing phenomenon which is consistent with the one observed with
ABP particles in45. The relative simplicity of the AOUP model allows understanding the physical origin of both delocalization
and freezing. In particular, an approximation method, the so-called Unified Colored Noise Approximation (UCNA), well
reproduces the density profiles, offering a simple principle for determining the density in the case of non-interacting particles
subject to external fields. An interesting observation concerns the role of detailed balance (DB)46, 47 which is locally satisfied
only in regions of space having the highest probabilities of being occupied, while in the remaining regions DB is violated and
the local velocity distribution displays strongly non-Gaussian shapes.

Model and numerical Results
As mentioned in the Introduction, one of the most popular models describing self-propelled particles is ABP. The microswimmers
are approximated as points and the hydrodynamic interactions due to the fluid feedback are neglected. The self-propulsion
mechanism is represented by a force of amplitude v0 and direction êi. For instance, in two dimensions êi is a vector of
component (cosθi,sinθi), being θi the orientational angle of particle i. Therefore, the radial component of the activity is
assumed to be constant. The ABP dynamics describing a suspension of N particles in a two-dimensional system reads:

γ ẋi = Fi + γ
√

2Dtξξξ i + γv0êi

θ̇i =
√

2Drwi
(1)

where ξξξ i and wi are independent white noises (i.e. δ -correlated in time and with zero average). Dr is the rotational diffusion
coefficient, which states the typical time associated to the activity directional change, τr ∼ 1/Dr. Fi is the total force acting
on the particle i, which can be decomposed as Fi = −∇iU(xi)−∇iΦ(x1, ...xN), i.e. into the force due to the external and
to the interaction pairwise potential, respectively. We call l and R, respectively, the typical length of U and Φ, such that
Φ = ∑i< j φ(|xi−x j|/R) and U =U(x/l). For the sake of simplicity, l is set to one in the numerical study. The parameters γ

and Dt denote the solvent viscous damping and the bare diffusivity due to thermal fluctuations (i.e. in the absence of forces and
activity). Notwithstanding its clarity, deriving further analytical predictions for the ABP model may be difficult even in simple
cases. The form of the autocorrelation function, 〈êi(t) · ê j(t ′)〉, of the orientational d-dimensional vector êi is well known in the
theory of rotational diffusion of polar molecules48. For generic d, averaging over the angular distributions at time t and t ′, we
simply obtain 〈〈êi(t) · ê j(t ′)〉〉Ω = exp(−|t− t ′|Dr(d−1))δi j, being 〈·〉Ω the average over the angular degrees of freedom. For
this reason, as already mentioned in the Introduction, the AOUP model has been introduced as a surrogate able to capture the
ABP phenomenology. Indeed, the AOUP model is perhaps the simplest model which exhibits the same two-time correlations
matrix as the ABP. In the AOUP one replaces v0êi→ ua

i in Eq.(1), where each component of ua
i evolves as an independent

Ornstein-Uhlenbeck process. AOUP dynamics reads:

γ ẋi = Fi(x1, ...,xN)+ γua
i + γ

√
2Dtξξξ i,

τ u̇a
i =−ua

i +
√

2Daηηη i,
(2)

where ηηη i is a d-dimensional noise vector, whose components are δ -correlated in time and have unit variance and zero mean.
In this approximation the term γua

i represents the self-propulsion mechanism, the internal degree of freedom which converts
energy into motion, such that 〈ua

i (t) ·ua
j(t
′)〉= Da/τ exp(−|t− t ′|/τ)δi jd. Finally, the non-equilibrium parameters τ and Da

are, respectively, the persistence time and the diffusivity due to the activity, which is usually some order of magnitude larger
than Dt , an approximation often employed also in the ABP model. The identification of the two correlations matrices imposes
relations among the coefficients, namely in v2

0/d = Da/τ and Dr(d−1) = 1/τ . Since the third, fourth, and so on, correlation
matrices are in general non-trivial in the ABP, the AOUP model can be considered as its effective Gaussian approximation.
Moreover, the unitary constraint of activity is removed meaning that the radial component of the activity has itself a dynamics.
As revealed by extensive numerical studies, these approximations seem not to be particularly relevant in order to recover the
self-propelled particles phenomenology and for these reasons one could claim the possibility to consider the AOUP as a basic
model itself and not simply as an ABP approximation.
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We point out that in the potential-free model there are two natural temperatures: the solvent temperature Tb = γDt and the
effective active temperature Ta = µ〈u2〉= µDa/τ = γDa, where we have defined the effective mass µ = γτ (see below). We
fix the value of γ = 1 and inspired to the connection between the AOUP and the ABP model39 - we also fix the ratio Da/τ = 10
that is the variance of the self-propulsion velocity. This protocol allows us to use a single parameter, τ , to tune the relevance
of activity in the system. In fact, taking the limit τ → 0 leads to Ta� Tb, providing a vanishing contribution with respect to
the thermal noise. On the contrary, at large values of τ one has Ta� Tb: self-propulsion becomes important and the thermal
bath can be neglected. We restrict to this second regime, where the system temperature Ta has a limited significance since it
represents the temperature of the system only in few specific cases discussed below and in the Supplementary Information (SI).
In general, the system is out of equilibrium and many of its statistical properties are hardly comparable to a thermal system.

A well-known result for this model concerns the existence of MIPS in the large activity regime, when U ≡ 0 and Φ is given
by the sum of pairwise repulsive potentials41. In this work, the particles are confined by an external radial potential, U(r) ∝ r2n

with r = |x|. We choose n > 1 since the case n = 1 - when thermal noise and particle-particle interactions are negligible - is
trivial even at τ > 0, corresponding to a Gibbs density distribution ∼ e−U(r)/Te f f with some temperature Te f f (see discussion
after Eq. (3) and SI). If n > 1 and τ > 0, DB is broken and the steady phase-space distribution is not amenable to a simple
representation in terms of U(r). In the presence of an external potential, a useful dimensionless parameter can be defined:

ν =
τU ′′(l)

γ
.

It represents the ratio between the persistence time and the relaxation time due to the external force: ν is a relative measure of
the activity in our system and determines how far from equilibrium is the system. Indeed, when ν . 1, the relaxation time
of the active force is smaller than the typical time over which a significant change of the microswimmer position, due to the
potential, occurs: thus from Eq.(2) we have uuua

i ≈
√

2Daηηη . In this case, one recovers an equilibrium-like picture, which can
be explained in terms of the effective temperature, Ta = γDa (SI for more details). When ν � 1, the situation dramatically
changes: we have to take into account the dynamics of both degrees of freedom in Eq.(2) and we expect significant departures
from an equilibrium-like picture. Note that keeping fixed the strenght of the activity, Da/τ = v2

0, γ and U(r), one has that both
Ta and τ are proportional to ν .

0.1 Phase diagram: delocalization and induced freezing
In Fig. 1 we display pictorially the phase diagram of a system in 2 dimensions, varying ν and the rescaled interaction radius
R/l, (keeping fixed the number of particles and the external potential), which play the role of control parameters. Through R/l
we control the excluded volume of the system, while through ν we tune the relevance of the activity ingredient.

Considering the non-interacting regime - Φ = 0 or equivalently R/l small enough as in the left column of Fig. 1 (a) -
the equilibrium-like regime for ν . 1 is consistent with a Brownian-like picture and does not reveal any surprises: particles
accumulate around the minimum of the potential, exploring an effective average volume determined just by the interplay between
the external potential and the random force. Indeed, the system has effective temperature Ta, and no far-from-equilibrium
physics is involved. In the non-equilibrium regime, namely ν & 1 in Fig.1 (a), the area close to the potential minimum empties
and the system shows strong delocalization in favour of a peripheric (annular in 2d) region at an average distance r∗ from the
origin. At large values of ν , r∗ appears to saturate and a further increase of ν just produces a dynamical effect, leading to a
slowdown of the particles (see SI for details). This phenomenology reproduces the experimental result obtained in43 for Janus
particles inside an acoustic trap with negligible interactions.

Let us to discuss the interacting case, that is when R/l is not negligible. The equilibrium-like regime, when ν . 1 in
Fig.1 (a), can be again understood in terms of a Brownian picture. Indeed, the system has temperature Ta, regardless of R/l,
and we recover the three equilibrium-like aggregation phases, as expected: a dilute-phase (or gas), where interactions between
particles are rare and the volume explored by the particles is only controlled by the random force; a solid-like phase, where the
random force is very small compared to the inter-particle interactions and produce only oscillations around the almost-fixed
particles positions; and finally; an intermediate liquid-like phase where both these terms are relevant and produce a correlated
and complex dynamics. These different internal structures can be roughly identified by the study of the pair correlation
function49, g(r), which is estimated by taking into account a region approximately uniform in density, in the densest part of
the system (namely the annular region): in the dilute regime g(r) is flat or ”quasi”-flat, in the liquid one g(r) displays, some
peaks before approaching to one and finally in the solid regime these peaks become more pronounced, showing the typical
structure of hexagonal lattice (in 2D with radial inter-particles interactions). In all the equilibrium-like aggregation phases
the increasing of ν produces an expected fluidization phenomenon, which can be easily understood in terms of the effective
temperature, Ta ∝ ν . In particular, in the liquid-like regime, as shown in the first two left columns of Fig.1 (a), the increase
of ν enhances the effective volume occupied - when the excluded volume becomes negligible compared to noise-fluctuation
-, leading to the transition from the liquid-like to the gas-like structure. In the solid-like regime - last two right columns in
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Figure 1. Top: Phase diagram illustrated by simulation snapshots as a function of R/l and τ . Colors indicate the internal
density structure (see SI for details): gaseous (red), liquid (blue), solid (green). Bottom: g(r/R) for R = 10−3,10−2,3 ·10−2,
and for two different values of τ = 1,102, respectively red and blue dots. Each box is realized confining N = 103 particles
through the interaction potential Φ∼ ∑i< j R4/|xi j|4. Parameters: n = 2, Da/τ = 102 and Dt = 10−5.

Fig.1 (a) -, the interactions are very strong and the effectively occupied volume is determined by the balance between the
inter-particle repulsion and the confinement due to the external potential. In this case, the increase of Ta leads only to the
fluidization of the internal structure of the system, determining the transition from a solid-like to a liquid-like structure.
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Restricted to ν & 1, the delocalization phenomenon persists when the interaction radius R/l increases, as shown in Fig. 1 (a).
In that case, it is interesting to analyze the internal structure of the system, exploiting analogies and differences with respect
to the equilibrium picture. In this regime of ν , this analysis leads to the identification of non-equilibrium aggregation phases
which resemble the equilibrium scenario but with important differences, which already emerges from the static structure.
Indeed, non-equilibrium effects manifest themselves in two ways: 1) in the dilute case - i.e. left column of Fig. 1 (a) - a
peak at r ∼ R appears in the g(r), not expected for dilute Brownian particles at the same conditions in terms of density and
temperature (Fig. 1 (b) and SI for details): this is likely to be similar to that observed in37; 2) increasing R/l, the system displays
liquid-like and solid-like structures but with evident shifts in position and intensity with respect to an equilibrium structure with
comparable average energy per particle and density, as shown in Fig. 1 (c) and (d) (see SI for details). At large R/l - but still far
from close packing - the system freezes into an almost periodic lattice structure just by increasing ν ∼ τ . This analysis suggests
that a purely dynamical quantity, the persistence time, τ , can produce a dramatic change in the internal structure of the system.
Finally, when the interaction radius R/l brings the system to an effective close packing, the radial delocalization is completely
suppressed and the system comes back to a homogeneous phase with ordered (solid-like) internal structure. In this regime,
inter-particle interactions dominate compared to active forces, which are completely negligible.

Summarizing, for all the explored values of R/l, namely in all the aggregation phases, our numerical study suggests a
reentrant behavior of the structural properties of the system induced by ν . The first fluidization, explained by the effective
temperature approach, is followed by an induced far-from-equilibrium freezing for ν & 1, which requires a more subtle analysis
to be understood. The discussion, at least regarding the delocalization phenomenon, remains qualitatively valid in three
dimensions.

Theoretical approach
In order to make analitycal progress, it is common to map Eq. (2) onto a different system, going from the description in the
variables (xi,ua

i ) to (xi,vi ≡ ẋi), i.e. considering the evolution of the coarse-grained velocity of each particle instead of their
the activity. When the thermal noise is negligible ( i.e. Dt � Da), deriving with respect to time Eq.(2) and eliminating ua

i in
favor of vi, leads to58 (see also SI):

ẋiα = viα (3a)

µ v̇iα =−γΓ
αγ

ik vkγ +Fiα + γ
√

2Daηiα , (3b)

Γ
αγ

ik =

(
δik +

τ

γ

∂

∂xiα

∂

∂xkγ

(Φ+U)

)
. (3c)

where we use Latin and Greek indices for indicating the N particle and for the d components of the particle coordinates,
respectively. We point out that this mathematical passage can be considered only as a change of variables and thus does
not involve any approximations. Moreover, viα is not the real velocity of such a particle but has to be interpreted just as a
coarse-grained velocity, i.e. ẋiα by definition, where xiα is the position of the overdamped dynamics, i.e. such that timescales of
molecular interaction and inertia relaxation are filtered out. The original over-damped dynamics of each particle is mapped
onto the under-damped dynamics of a particle immersed into a fictitious bath with its effective diffusion coefficient, related to
the activity parameters. The non-equilibrium feature of such a dynamics is fully contained in the space-dependent, (d ·N)2

dimensional friction matrix, Γ, which naturally produces a violation of the Fluctuation Dissipation Relation. The dynamics
of one particle is coupled to all the degrees of freedom through both the interaction potential and Γ. When particle-particle
interactions are negligible, Γ reduces to a d-block diagonal matrix, which provides just a coupling among the different
components of the dynamics of a single particle. In this case, when ν � 1, the Γ matrix reduces to a spatially homogeneous
matrix and the system reaches a Gibbs steady state ∼ exp(−H/Te f f ) with H = µ|v|2/2+U(x) and Te f f = Ta, meaning that
Ta can be identified as the effective temperature of the system51, 52. The peculiarity of the case n = 1 emerges in the dilute
regime since Γ is constant for all ν and Te f f = Ta(1+ν)−1. In the case n > 1 and non-negligible ν , only approximations of the
stationary pdf41, 53, 54 are known.

The representation of the dynamics given by the Eqs.(3) sheds some light on both freezing and delocalization phenomena
observed above. The freezing can be understood by the slowing down induced by the increase of Γ, determined by the internal
forces among active particles in the large persistence regime. The radial delocalization phenomenon which is observed even
in the presence of negligible interactions can be physically understood as follows: the effective damping coefficient, Γ(x)/τ ,
is small near the minimum of the potential well and increases as x departs from it. Therefore, particles with x≈ 0 can attain
large velocities and leave the region, while for x large enough they reduce their “effective speed”, v, for the combined effects of
viscous damping and the external force.
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UCNA approximation
To make this argument quantitative we employ the unified colored noise approximation (UCNA). UCNA was developed first
time in56, 57 in the context of electric fields with a correlated noise, but the methodology has been adapted to interacting active
particles systems in58. This approximation consists in an effective equilibrium approach which predicts the spatial distribution
of the particles in terms of an effective potential, which involves the derivatives of U +Φ. The prediction can be derived by
dropping the inertial term in Eq.(3) in the limit of vanishing current, or by performing the usual adiabatic elimination in the
FP-equation?. Its derivation is reviewed in the SI and the final result reads:

pu(x1, ...,xN) ∝ e−Hu(x1,...,xN)/Ta ,

Hu = Φ+U +
τ

2γ
∑
iα
(Fiα)

2−Daγ log |detΓ
αγ

ik |.
(4)

In spite of the fact that the UCNA is derived under the assumption of vanishing currents and thus restores the DB, at least in
some regimes it is able to capture many interesting aspects of the observed phenomenology of self-propelled particles.

In order to assess this approximation, we consider a one-dimensional system of non-interacting particles and show, in
Fig. 2 (a), the comparison between the numerical probability density in space, p(x), and pu(x). Remarkably, the effective
potential Hu takes the shape of a double well which fairly reproduces the numerical simulations. The comparison is optimal
when τ � 1, and gives fair quantitative information for the location of the density maxima also when τ � 1. In particular, pu
correctly predicts the accumulation in some regions, depending on τ , but it undererrates the probability of finding a particle in
the bottom of the well, for large τ . This double-well effective phenomenology may be also related to the results obtained in50,
explaining why the time-dependent response function of the system shows two different characteristic times for large values of
the activity.

Hydrodynamics
We also consider a hydrodynamic approach, explained in details in ref.53, which provides a useful tool to improve the
understanding of the observed phenomenon. In particular, let us start from the Fokker Planck (FP) Equation associated to
Eqs.(3), in 1d in the non-interacting case. Multiplying by a polynomial basis in powers of v and integrating out the velocity, we
can construct an infinite herarchy of equations, involving the probability density p(x), the first velocity momentum, 〈v〉x, the
second velocity momentum, 〈v2〉x, and so on. Here, we have introduced the notation 〈·〉x =

∫
dv · p(x,v)/p(x), which points

out that each observable is an explicit function of the position x. The zero-order equation, obtained just by integrating out the
velocity in the FP Eq., is equivalent to the mass conservation. The first order equation obtained by multiplying FP by v and
integrating out the velocity reads:

∂

∂ t
[p(x)〈v〉x]+

∂

∂x
[p(x)〈v2〉x] =

[
F
µ
− γ Γ

µ
〈v〉x

]
p(x). (5)

Eq.(5) expresses the evolution of the particles momentum, in terms of 〈v2〉x and p(x). Note that 〈v2〉x is not constant in space,
at variance with ordinary underdamped equilibrium dynamics. Iterating this procedure in the polynomial v-basis leads to an
infinite hyerarchy of equations, which cannot be solved without employing some closure. Since in the stationary state 〈v〉x = 0,
the minima of p(x) correspond to the minima of the function 〈e〉x = 〈v2〉x +U/µ . The slowdown of the particles in regions far
from the minima balances the increasing in the potential energy. These results are well verified in Fig. 2 (b). Let us notice that
the space dependence of 〈v2〉x is determined by the correlation between x and v and connected with the violation of the detailed
balance condition and of the equipartition theorem41, 59.

Heat, temperature and local detailed balance
The last observation suggests the existence of non-trivial thermodynamics balances in this system. The analysis of Eqs. (3)
shows that additional temperature scales exist, which are space-dependent. Their definitions are clear for one particle in one
dimension, where Eq. (3b) without external potential takes the form of an equilibrium bath at temperature θ(x) = Ta/Γ(x). In
the multidimensional case the symmetric matrix Γ can be diagonalised and one obtains a vector of temperatures55 (for instance
in the radial 2d case one has a radial temperature and a tangential temperature). In53, 55 it was shown that such a temperature
satisfies a generalized Clausius relation coupling entropy production and heat exchanged with the bath. In particular, following
a stochastic thermodynamics approach60–64, the entropy production rate of the medium Ṡm can be calculated. Despite the recent
dispute about Ṡm, the validity of the result was definitively confirmed in65. Moreover, Ṡm and the heat rate density, q̇(x), in 1D,
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Figure 2. Top Panel: on the left p(x) computed from data (line+dot) and pu (line), for different values of τ . On the right, for
τ = 10: p(x) (blue points), energy 〈e〉x (red points), 〈v2〉x (green line) and U(x) (orange line). Two vertical black lines are drawn
at x = xm, corresponding to the most probable position. Bottom Panel: p(v|x) for three different positions, x =−0.3,−0.15,0,
from left to right. The black line is the equilibrium prediction. Parameters: Da = 1, τ = 10, k = 10/4, n = 2.

are related through the relation55:

Ṡm =
∫

dx p(x)q̇(x)/θ(x), (6)

q̇(x) =
Daγ

τ θ(x)

[
θ(x)−µ

〈
v2〉

x

]
, θ(x) =

Daγ

Γ
= Daγ

(
1+

τ

γ
U ′′(x)

)−1

. (7)

Physically speaking, at x a local flux of heat is transferred from the system to the active bath if (µ〈v2〉x−θ(x)) is positive while
the reverse occurs in the negative case. In the Fig. 3 (a), we numerically compare the temperature θ and µ〈v2〉x, showing a
clear discrepancy in the central part of the system which increases with τ . Interestingly, both temperatures rapidly decrease
when moving from the origin to the periphery of the well, making it clear that the annular region where density is high is
also very cold. In the proximity of highest density, we have µ〈v2〉x ∼ θ(x), meaning that in that region the particles reach an
effective thermal equilibrium with the heat bath so that the DB is locally satisfied, although globally it is not. This picture is
confirmed by Fig. 3 (b) where the local exchange of heat is shown, becoming negligible in the positions corresponding to the
density maxima. Therefore, we can identify two symmetric space regions (ER), where the system is almost in equilibrium
and others where it is strongly far from it (NER). In order to confirm our intuition, we plot the local conditional probability,
p(v|x) = p(x,v)/p(x), in the bottom graphs of Fig. 2 (Panels (c) - (d)). The Gaussian prediction at temperature θ(x) in the
ER and a strongly non-Gaussian shape in the NER are confirmed: going towards the origin, p(v|x) becomes an asymmetric
function with a skewed tail until the symmetrization is again reached in x = 0, where the non Gaussianity is still quite clear.
Comparing p(x) and p(v|x), we note that a particle spends most of its time in the ER, where it accumulates a small amount of
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Figure 3. Panel (a): Temperatures θ(x) (line) and µ〈v2〉x (line+dot) in function of x. Panel (b): q̇(x), in unit of Da/τ ,
for different values of τ . Data are collected through a numerical simulation performed with N = 104 independent particles.
Parameters: k = 10/4, n = 2.

heat per unit of time through the coupling with the fictitious bath. When a fluctuation gives it enough energy, it can overcome
the effective barrier which separates the two effective symmetric wells, rapidly crossing the NER, and rapidly returning all the
heat, absorbed before, to the bath (indeed numerically

∫
dx p(x) q̇ = 0), in order to come back in the ER.

Summary and Conclusion
In conclusion, we have reproduced the recent experimental observation of the delocalization phenomenon by means of a simple
model of self-propelled particles. We showed that interactions do not suppress the phenomenon (unless close packing is reached)
but may induce interesting internal structures which, when self-propulsion is relevant, can be hardly captured by equilibrium
modeling and are sensitive to changes of activity time. Interestingly, in the delocalized regime, a local detailed balance condition
is verified in the preferred regions. Our conjecture is that this is the reason why the peaks of the density distribution are
fairly reproduced by the UCNA approximation in terms of an effective double well potential and an equilibrium-like approach
works66. Escape times through the effective double well potential could be interesting and improve previous studies67, 68 where
the authors found just a polynomial correction to the Kramers-formula46.
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1 Supplemental Material
In this Supplemental Material, we shall discuss in more detail with respect to the main text (MT) the phenomenology illustrated
concerning the radial pair correlation function, g(r), and the concept of effective temperatures of an active system1–3. Moreover,
we present the derivations of the approximations employed in MT. In particular, in Sec. 2 we derive Eqs.(3) starting from
Eqs.(2) of MT and the Unified Colored Noise Approximation (UCNA), i.e. Eq.(4) of MT. In Sec. 3, we discuss the concept of
effective temperature applied to the AOUP system36, 37, 39, 54. In particular, we discuss whether to characterize the system it is
appropriate to define the effective temperature, T , through the Gibbs density configurational distribution ∝ e−U(r)/Te f f or we
need alternative definitions, for instance by identifying T with the average kinetic energy of the particles. In Sec. 4, we study in
detail the g(r) of the system, explaining the computational details and performing an extensive comparison with a Brownian
system under the same conditions of density and temperature.

2 Derivation of Eq.(3) & UCNA-approximation

In this Section we review for the sake of completeness the derivation of Eqs.(3) of the main text (see refs.54, 58). Let us start from
Eqs.(3) of MT, describing the interacting dynamics of AOUP active particles. Neglecting the thermal noise, these equations
read (using Cartesian components and Einstein’s summation convention):

ẋiα =−∂iα Φ

γ
+ua

iα (8)

u̇a
iα =−

ua
iα
τ

+

√
2Da

τ
ηiα (9)

where Ψ is the total potential acting on the system. The Latin index identifies the particles and the Greek index specify the
Cartesian component of each vector. Applying the time-derivative to Eq.(8) and defining the coarse-grained velocity:

viα = ẋiα , (10)

we obtain:

ẍiα =−
v jβ

γ
∂ jβ ∂iα Φ+ u̇a

iα =−
v jβ

γ
∂ jβ ∂iα Φ−

ua
iα
τ

+

√
2Da

τ
ηiα (11)

where in the last equality we have used Eq.(9) to eliminate u̇a
iα . Now, using Eq.(8) and (10) to eliminate ua

iα we obtain:

v̇iα =−
v jβ

γ
∂ jβ ∂iα Φ− ∂iα Ψ

γτ
− viα

τ
+

√
2Da

τ
ηiα =−∂iα Ψ

γτ
− 1

τ

[
δi jδαβ +

τ

γ
∂ jβ ∂iα Φ

]
v jβ +

√
2Da

τ
ηiα (12)

which is Eqs.(3) of MT, being Γi jαβ = δi jδαβ + τ

γ
∂ jβ ∂iα Φ.

We can derive the Unified colored noise approximation (UCNA) by taking the over-damped limit, v̇iα ≈ 0, in Eq.(12). This
procedure leads to a relation between v and x:

ẋiα = viα = Γ
−1
i jαβ

[
−

∂ jβ Ψ

γ
+
√

2Daη jβ

]
(13)
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ruling the UCNA dynamics. Eq.(13) involves a multiplicative noise and does not satisfy the fluctuation-dissipation theorem.
The associated Fokker-Planck equation associated to Eq.(13) - using the Stratonovich integration - , for the density p({x}, t),
reads:

∂t p =−∂iα Jiα , Jiα =−Γ
−1
iαkβ

[
∂kβ Ψ p+Da∂kβ

(
Γ
−1
iα jβ p

)]
(14)

Looking for a stationary solution of Eq. (14) under the condition of vanishing current we find the following equation:

−p
∂kα Ψ

Daγ
− p ∂ jβ Γ

−1
jβ iα = Γ jβ iα [∂ jβ p]. (15)

After some algebra we obtain:

−p
τ

Daγ
Γiα jβ ∂ jβ Ψ+ p Γ

−1
jβkδ

∂ jβ Γkδ iα = ∂iα p (16)

Moreover, by using the identity, ∂ jβ Γiαkγ = ∂kγ Γiα jβ - since Γ involves only the second derivatives of Ψ - and the Jacobi’s
formula:

1
detΓ

∂y detΓ = Tr
(
Γ
−1

∂yΓ
)

(17)

we obtain:

Γ
−1
iα jβ ∂iα Γ jβkδ =

1
detΓ

∂kδ detΓ (18)

Using this result in Eq.(16):

−Daγ (∂iα p− p ∂iα logdetΓ) = p Γiα jβ ∂kβ Ψ (19)

Solving this set of partial first-order differential Eqs. we find the UCNA probability distribution:

p ∝ exp
(
− H

Daγ

)
,

H = Ψ+
τ

2γ
∑
kβ

(
∂kβ Ψ

)2−Daγ logdetΓ.
(20)

Considering just the one-dimensional case in the non-interacting case, we find the pdf p(x) shown in Fig.2 of MT
The possibility of neglecting v̇ = 0 in Eq.(12), i.e. taking the overdamped limit, is equivalent to assume the Gaussianity of

the conditional probability, p(v|x), with a kinetic ”effective temperature” which satisfies the Einstein relation. The form of such
a p(v|x) shows that different components of the velocity are not independent. In fact, the approximate probability distribution
reads:

p({x},{v}) = p({v}|{x})pu({x}) ∝ e−viα Γi jαβ v jβ pu. (21)

We point out that Eq.(21) is not the solution of the FP-equation associated to Eq.(12), but can be just considered as a useful
approximation. Despite its apparent simplicity, it involves many-body interactions, which cannot be easily evaluated and for
this reason, up to now, the UCNA was not particularly practical in understanding collective phenomena.

3 A kinetic temperature for the active system

In the presence of an external potential, it is not clear which should be the temperature of an assembly of active particles51. Re-
cently, some approximations were developed with the aim of describing by an effective potential the particles interactions56–58, 66.
These approximations seem to work in spite of the fact that these systems are clearly far from equilibrium14, 41.

As discussed in MT, the potential-free system displays two temperatures: Tb = γDt determined by the solvent, and Ta = γDa,
(the so called active temperature) related to the self-propulsion force, γu. Since we fix the variance of u, i.e. the ratio Da/τ ,
the possibility of neglecting Tb with respect to Ta depends on the value of τ . On one hand, for τ small enough Ta� Tb, one
encounters a non-interesting regime where the activity plays a negligible role and the system behaves as if it were subject to
Brownian dynamics, at temperature Tb. On the other hand, the more interesting regime studied in the main text occurs when τ
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is large enough, i.e. Ta� Tb, so that we can effectively neglect the solvent temperature. The presence of a non uniform external
force leads to a new effect: it determines a non-trivial correlation between the position, x, of the particle and its self-propulsion,
γu, which eventually leads to the violation of the equipartition theorem41, 59, breaking the DB53. In this case, the identification
of Ta with an effective temperature51, 52 is not trivial and depending on the choice of the parameters in general not true. In MT,
we exploit the importance of ν - i.e. the ratio between the typical time τ associated with the active force and the one associated
with the potential, γ/U ′′(l). The dimensionless parameter ν is recognized as the relevant parameter determining if the system is
close to a global equilibrium. In particular, if ν � 1 but Ta� Tb we can perform the overdamped limit of the Eq.1(a) of MT,
approximating u as a Brownian process. This operation provides a simplified overdamped dynamics for the particle position,
meaning that the system reaches the equilibrium, evolving with an effective Brownian dynamics with diffusion coefficient, Da:

ẋ =−U ′(x)
γ

+
√

2Daη −→ p(x) ∝ exp
[
−U(x)

γDa

]
. (22)

In this regime, Ta = γDa has, trivially, the role of the effective temperature of the system. For ν ∼ O(1), this is no longer true,
since the system is not in the overdamped regime. Moreover, we can directly check this claim by evaluating a simple solvable
case: the harmonic potential in one dimension. Indeed, by setting U(x) = kx2/2, Eqs.(2) of MT can be solved36, 39, providing
an analytical expression for the steady state probability p(x,u) for all values of ν :

p(x,u) ∝ exp
[
− k

γ

Γ

Da

x2

2

]
exp

[
− τ

Da

Γ

2

(
u− k

γ
x
)2
]
, Γ = 1+ν (23)

As we can see, Ta does not coincide with the effective temperature of the system when ν is not negligible, a result which is in
general true for a generic potential, except for some special cases36.

The UCNA equilibrium-like approach, employed in MT and reviewed in Sec.2, provides a prediction for the equilibrium
temperature θ(x) in the non-interacting one dimensional system: θ(x) = γDa/Γ(x), being Γ(x) = 1+U ′′(x)τ/γ . In particular,
we find numerically that UCNA does not hold globally in space but only in the so-called equilibrium regions (ER), which
correspond to the regions where the particles spend most of their life, as shown in MT. In the ER the stationary probability
distribution, p(x,v), is a Gaussian with respect to v:

p(x,v) ∝ e−Hu/Daγ e−µv2/2θ(x), Hu =U(x)+
τ

2γ

[
∂

∂x
U(x)

]2

− γDa log [Γ(x)], (24)

adapting Eq.(21) to the one-dimensional non-interacting case. Therefore, θ(x) can be interpreted as a space dependent
kinetic temperature. For small activity, θ is almost equivalent to Ta, but this is no longer true at large activity since the
space-dependence plays an important role.

4 Spatial structure and thermal equivalents of the active system
In Fig.1 of the main text, we have reported the important changes of g(r) when R/l and ν are varied. Here, we discuss the
possibility of interpreting these changes in terms of some effective temperature. Let us see what happens to θ(x) which,
according to Section 1, can be interpreted as an effective local kinetic temperature.

As discussed in Section 1, θ scales as Daγ/τ when ν� 1, meaning that the increasing of ν , leaves unchanged this effective
temperature of the system since the ratio Da/τ is fixed. In the bottom panel of Fig.(1) of the main text, we display g(r) for
different interaction lengths, R/l, and for two values of ν = 102,104. In all cases, a freezing phenomenon seems to occur with
the increase of ν , since the peaks of g(r) become more pronounced. We point out that, on one hand, these measures were
performed by monitoring the effective density of the system in the more crowded regions: ρ remains nearly constant in such
a way that its variation cannot be considered the cause of the structural changes appearing in g(r). Also θ roughly does not
change, meaning that such structural changes are not driven by a variation of θ .

We try an alternative approach and look whether an equivalent Brownian system exists - at the same density and appropriate
temperature - displaying the same g(r). To answer these questions boils down to establish whether there exists or not a mapping
between the active system and a fictitious over damped passive system.

For an equilibrium system of passive interacting Brownian particles (Da = 0), with diffusion coefficient Dt , the Einstein
relation holds and we can identify γDt as the temperature of the system, Tb. At fixed area fraction, a variation of Tb produces a
change in the structure of the system, which can be analyzed by the pair correlation function, g(r)49. For Tb large enough the
g(r) is flat, meaning that there are not preferential distances among particles, a situation which can be roughly identified as a
gas-like phase. Particles move around the accessible volume and the interactions are rare and binary-like. The decreasing of Tb,
produces some peaks in the g(r), before approaching to one. These peaks establish the typical distances among particles, a
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regime identified as liquid-like, since particles move around the available volume and particles positions are strongly correlated.
A further decreasing of Tb leads to a freezing pattern, where particles just fluctuate around their fixed equilibrium positions,
which are hexagonally distributed in two dimensions. The g(r) peaks become higher and thin, approaching to δ -Dirac function
(ideally at Tb = 0), a phase which has strong analogies with a solid. The same qualitative picture, gas → liquid → solid,
is, roughly, produced by the growth of the packing fraction of the system, φ ≈ ρ0R2 (in two dimensions), being ρ0 the
numerical density and R the interaction length of the repulsive pairwise potential. Let’s remark that the identification of the
microscopic structures with the macroscopic phases (eventually with phase transitions) makes sense just if we consider the
infinite volume limit. If we apply an external potential, particles can explore just an effective volume, depending both on the
inter-particle interactions and on the potential itself. Therefore, fixing the number of particles to ∼ 102−104 (typical numbers
of a simulation), means to study a system with few degrees of freedom, whose importance, nowadays, is well known. With
these motivations, studying the internal structure of such a system, for instance through the g(r), makes sense and could be
useful in order to understand the role of the interactions.

In Fig. 1 of the SM we compare the g(r) of active systems with that of many possible passive systems having the same
interactions and density (for details see Sec. 4.1), varying the diffusion coefficient. From this analysis it emerges that in the
gas-like regime (Fig. 1 panel (d)), when R is very small, g(r) displays a first peak at r ≈ R, which does not have a Brownian
counterpart. Indeed, the passive g(r) profiles are flat also for very low temperatures, which is not a surprise since the interactions
are rare. We interpret the active peak as a consequence of the slow-down of the particles in the presence of a convex interaction,
as ∼ 1/|x|b with b > 0, which increases the probability that two particles are close to each other. This is the leading mechanism
on which the MIPS phenomenon is based.

In the top panel of Fig. 4, we perform the same analysis with an interaction R larger than the previous case, such that a
liquid-like structure is produced as the pronounced peaks reveal. For ν ≥ 1, as shown in panels (b) and (c), again it is not
possible to determine a value of the diffusion coefficient in such a way that we can reproduce the shape of g(r) in the active
case: indeed, the active peak is always shifted towards smaller values of r. Such an effect clearly disappears when ν � 1 since
in the last case an active system is equivalent to a passive overdamped one with effective temperature Ta (Fig 4 panel (a)).

Finally, a further increasing of R, leads to a completely different scenario also for ν ∼ O(1). Although the effective
temperature of the system does not trivially scale with ν , the comparison with a Brownian simulation shows that we can find a
numerical temperature value, Tr, through which we can reproduce the active g(r) shape, as illustrated in Fig. 4 panel (e).

We may conclude that when the packing fraction is large enough the microscopic structure, represented by g(r), is the same
as the one of an equivalent Brownian system with an effective temperature, Tr. Nevertheless, there is no way to reproduce the
active g(r) in the gas-like and liquid-like regime induced by the activity, with an equivalent Brownian simulation under the
same condition: these structural changes are entirely due to the activity and are genuine non-equilibrium effects.

4.1 Details about the g(r) computations
In the active case, we have computed numerically the g(r) function by using the following procedure:

1. We chose a square inside the dense region of a configuration: a disk or a circular crown (depending if the radial
delocalization occurs or not). This square is chosen not too big, in such a way we may neglect the boundary of such a
region.

2. We compute numerically the g(r) in this region, using the standard formula49:

g(r) =
V
N

〈
1
N ∑

i 6= j
δ [rrr− (rrri− rrr j)]

〉

, where rrri is the position of a target particle and 〈·〉 denotes both the average over all the particles inside the region and a
time average. The normalization is estimated by numerically computing the number of particles inside the square for
each configuration.

3. Consistency check: in order to check the result, we perform the same analysis for different (but dense) regions, verifying
that there are no big changes.

In the following, we describe the protocol adopted in order to compare an AOUP system with a Brownian one. In particular,
we are interested in performing a Brownian simulation under the same conditions of an active system, i.e. same packing fraction
and number of particles:

1. We compute the g(r) in the active case, with the procedure described above, by selecting a square space region, of area
Ar, and computing the average number of particles, Nr, in that region.
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Figure 4. g(r) for an active system (black line) compared with the equivalent Brownian systems at different temperatures
(colored line as shown in each graph). Top Panel: R = 10−2, graph(a),(b) and (c), respectively, at ν = 10−2,1,102. Bottom
panels: ν = 1. Graph(d) at R = 10−3 and graph(e) at R = 4 ·10−2. Other parameters: k = 102/4, Da/τ = 102, b = 4.

2. We compute the g(r), for the following system: Nr overdamped Brownian interacting particles in a square region of area,
Ar, under the action of the confining potential. In this way, the numerical density of the equivalent Brownian system is
the same as the AOUP. Considering the same interactions we have a Brownian system with the same packing fraction.

3. We compute the g(r) of the Brownian system for different values of the diffusion coefficient, checking if there is some
temperature value which reproduces the active g(r).
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