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Motion of a granular particle on a rough line
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PACS. 83.70.Fn – Granular solids.

PACS. 45.70.-n – Granular systems.

PACS. 05.45.-a – Nonlinear dynamics and nonlinear dynamical systems.

Abstract. – We discuss a new model of ideal granular gas consisting of a particle bouncing
inelastically along a rough inclined plane. Assuming a velocity-dependent inelastic interaction
between the surface and the falling object we study the dynamical phase diagram which consists
of three different phases: an accelerated motion, a stopping phase and a phase where the
velocity fluctuates about a constant value. We analyze the statistical properties of the steady
velocity regime and find that the velocity distribution is characterized by power law tails with
a nonuniversal exponent β which depends on the nature of the surface. An explanation for this
phenomenon is presented and its relation with random multiplicative processes expounded.

Granular flows represent an active research field due to their scientific and technological
importance: not only they occur in nature, often contributing to determine the landscape
of deserts, mountains, beaches, dunes, etc., but are also relevant to many industrial and
manufacturing processes.

In the present letter we study a special case of granular flow, namely the motion of a single
granular particle down an inclined rough plane. This can be thought as the most elementary
process contributing to the complex dynamics of surface flows and is relevant to determine
the conditions under which a flow is steady. Such a regime arises in the presence of a driving
field, gravity in this case, and of inelasticity in the collision process between the surface and
the falling object. The model is inspired to recent laboratory experiments [1,2] and numerical
simulations of the motion of a bead down a rough surface. Motivated by recent studies [3]
which revealed that in the presence of inelastic collisions the velocity distribution of a driven
granular system deviates from a Maxwell-Boltzmann distribution, we examine the following
important issue: which are the statistical properties of the velocity in the steady phase?

We shall consider the dynamical properties of a single bead bouncing inelastically on
an inclined surface [4–7]. With respect to previous studies we assume that the surface is
stochastically rough, a situation commonly encountered in nature where for example it may
correspond to a stone falling down a scree.
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Fig. 1 Fig. 2

Fig. 1 – Geometry of the system and typical trajectory.

Fig. 2 – Schematic phase diagram for rs = 0.94, rf = 0.68 and α = 0.01: the region below the line
ma = ∆/2 is not allowed.

The model consists of a particle (or a swarm of noninteracting particles) starting to fall
under the action of the gravitational field with an initial velocity (v0

x, v0
y), the horizontal and

vertical components, respectively, along an inclined line where it bounces inelastically with a
restitution coefficient, r, which may vary from 1 if the impact is perfectly elastic to 0 in the
totally inelastic case. At each bounce the particle changes its velocity after colliding with a
microfacet, which sits on the line and forms an angle α < 0 with respect to the horizontal
(see fig.1). The collision changes the normal and tangential components of the velocity to the
microfacet, vN and vT respectively, according to the rule vN = −rv′

N and vT = rv′
T, where the

prime indicates precollisional states.
The transverse and antiparallel components of the velocity with respect to the gravitational

acceleration after the n-th impact, vn
x and vn

y respectively, can be expressed in terms of the
corresponding quantities after the (n − 1)-th impact by the transformation vn = Mnvn−1:

vn
x = r[cos2 α − sin2 α − 4mn cosα sinα]vn−1

x − 2r cosα sinαvn−1
y ,

vn
y = r[2 cosα sinα + 2mn(cos2 α − sin2 α)]vn−1

x + r(cos2 α − sin2 α)vn−1
y , (1)

where mn is the value of the slope of the inclined plane in the interval between the (n − 1)-th
jump and the successive one. In the case of a constant slope and constant restitution coeffi-
cient, one expects the following phenomenology:

a) an accelerated regime, if the restititution coefficient, r, is close to 1 (i.e. the system is
nearly elastic) and/or the slope is sufficiently large; the particle falls performing larger and
larger jumps and accelerates indefinitely;

b) a decelerated regime for smaller values of r and less steeper slopes where the particle
eventually comes at rest, since it looses more kinetic energy by collisions than it gains in its
fall.

In the plane (m, r), slope-restitution coefficient, the locus representing the motions with
vanishing acceleration is a line and thus represents a set of zero measure and only a fine tuning
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of the parameters may produce a steady velocity state.
In this letter we introduce a twofold modification of the model and assume that:
i) The restitution coefficient is a decreasing function of the impact velocity: namely, r = rs

if the modulus of the impact velocity is smaller than vc, a threshold value, whereas it is given
by rf < rs above vc. Previous studies have shown that the coefficient of restitution, in the
presence of elastic and viscoelastic interactions, is not a constant but depends on the impact
velocity and has deep repercussions on various aspects of granular dynamics [8]. In the present
work for the sake of simplicity we consider a very simple form of the restitution function [9].

ii) The slope of the inclined plane is not constant, but fluctuates about an average value as
to reproduce the presence of a rough landscape. We assume that mn is given by the following
law:

mn = ma +∆
(

Rn − 1
2

)
, (2)

where Rn is extracted from a uniform distribution in the unit interval and ∆ is chosen so that
the slope is nonnegative (∆ ≤ 2ma).

We begin by considering the dynamical “phase diagram” of the model shown in fig. 2.
The phase with a constant average velocity is stabilized by the the presence of the two new
mechanisms. As shown in fig. 2 in the plane (ma, ∆) the ball decelerates and comes to rest at
low average slopes. On the other hand, the ball accelerates indefinitely for large slopes, but
in between it displays a sector where the average velocity along the trajectory is constant.
In this region the falling object receives energy from the gravitational field and dissipates
some during the collisions with the result of establishing a dynamical equilibrium state in
a suitable parameter range. Along the axis ∆ = 0 (the fully deterministic system) we can
compute exactly, for a given pair of rs and rf , the threshold values of the average slope
separating, respectively, the stopping phase from the steady velocity phase and the latter
from the accelerated phase.

This is achieved by requiring that the largest eigenvalue of the transformation matrix Mn

be 1; the result is the formula

ms(f) =
[rs(f)(cos2 α − sin2 α)− 1]2 + (2rs(f) cosα sinα)2

4rs(f) cosα sinα
. (3)

For a choice of rs = 0.94, rf = 0.68 and α = 0.01, we find ms = 0.101 mf = 3.775.
The steady velocity phase represents an attractive fixed point for the dynamics, in the

sense that particles with velocities larger than the steady velocity slow down while those with
smaller velocities speed up. Small quasiperiodic fluctuations occur about this average value.

It might be worthwhile to mention that the same qualitative behavior has been reported
by Ancey et al. [2] who compared experiments and theory and studied the dependence on
the surface roughness. Their phase diagram showed the existence of two slopes m1, termed
saltational or splashing flow slope, and m2 related to the friction angle, bounding the steady
flow regime in analogy with our findings.

We have focused attention on vx, the horizontal component of the velocity, because this
observable does not change in the interval between two bounces, and studied the behavior of
the acceleration with respect to the control parameters rs, rf and ma and ∆. The average
acceleration represents a kind of order parameter for the problem. A nonvanishing value of the
acceleration characterizes the non–steady-state phase, while a zero value identifies the steady
velocity phase. The transition from one regime to the other bears resemblance with the onset
of an ordered phase in magnetic model.
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Fig. 3 – Velocity distribution for a choice of the control parameters ma = 3.74, ∆ = 7. rs = 0.94,
rf = 0.68 obtained using different coarse-graining sizes.

Fig. 4 – Plot of the horizontal velocity vx vs. time. Notice the presence of fluctuations of all sizes.

In fig. 3 we report the data analysis of the horizontal velocity distribution in the steady
phase. The normalized velocity distribution changes as the degree of stochasticity of the
surface varies. In order to ascertain the character of the distribution we have performed an
analysis of the data by a coarse-graining method, i.e. by grouping the velocity after averaging
it over time intervals of different length and observed a data collapse. The probability density
distribution of the velocity is a power law P (vx) ∝ v−β−1

x for large vx and is characterized by an
exponent β which decreases with increasing randomness of the surface. The dependence of β
on the slope and roughness is reported in table I. We observe that large velocity fluctuations
last longer because the length of the flights increases with velocity and so the energy dissipation
per unit time decreases. A similar phenomenon was reported by Taguchi and Takayasu [10]
who simulated a bed of powder subject to inelastic collisions and considered the distribution
of horizontal velocities. Whereas the distribution appeared to be Maxwellian in the inner
layers, in the surface layer the distribution turned out to follow an inverse power law of the
velocity.

Table I – Exponents of the velocity distribution for different values of m and ∆.

∆ m = 3.71 m = 3.73 m = 3.75 m = 3.77

5.2 2.125 1.868 1.517 1.102
5.6 2.062 1.817 1.385 1.066
6.0 1.847 1.591 1.360 1.090
6.4 1.765 1.547 1.330 1.069
6.8 1.638 1.460 1.281 1.077
7.2 1.566 1.376 1.278 1.084
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Such a power law distribution exists not only at the transition nonaccelerated-accelerated
phase, but also within the steady velocity phase, suggesting the presence of self-similar behav-
ior in the fluctuations. Moreover, the frequency of the fluctuations decreases with their size
(see fig. 4). All sizes are present, and upon magnifying a given portion of the velocity-time
curve one discovers a pronounced self-similarity in this structure which is at the origin of the
power law velocity distribution reported in fig. 3. In addition, the duration of the time spent
above a given threshold is an increasing function of the maximum velocity reached in the
interval. In other words, the distribution of the time intervals during which vx exceeds the
threshold is also a power law of the time interval length.

We consider the axis ∆ = 0 where the system is purely deterministic. Moving now away
from this axis the system becomes more and more irregular. The velocity distribution broadens
as the representative point on the phase diagram moves towards the line ma = ∆/2, however
only for large values of ma and ∆ we clearly observe power laws in the velocity distribution.

In order to understand the origin of the power law behavior, i.e. of the self-similarity, we
consider the motion generated by the transformation (1). If the velocity is larger than vc

the largest eigenvalue of the 2 × 2 matrix Mn, calculated for r = rf , turns out to be of the
linear form λ � 1 + A(m − mf ) for values of m close to mf , where the positive constant A
depends on r. The important thing is that λ, the amplification factor of the velocity, is a
random quantity larger or smaller than one with the property that its average logarithm is
negative. This follows from the fact that within the steady phase the average value of the slope
ma < mf . In spite of this fact, large values of the velocity can be attained through favorable
sequences of slopes with λ > 1, before the velocity decreases towards zero after a sufficiently
large number of bounces as imposed by the condition 〈lnλ〉 < 0. On the other hand, when
the velocity decreases below the value vc the restitution coefficient takes the value rs and the
corresponding eigenvalue of Mn becomes larger than one, thus resetting the velocity to values
larger than vc and avoiding the collapse to zero.

The qualitative behavior of the model can be obtained by exploiting the analogy with the
random multiplicative process studied by Levy and Solomon [11,12] described by the map

Wt+1 = µtWt ,

where µt, playing here the role of the amplification factor λ, is a stochastic variable with a
finite support distribution of probability Π(µt) and 〈lnµt〉 is negative and Wt is constrained to
remain larger than a minimum positive value W0; even in this case, the variable Wt displays
a power law distribution, of the same kind of the one we report. For this reason it has
been termed convergent multiplicative random process repelled from zero. By introducing
an auxiliary variable, xt, defined by the nonlinear transformation xt = lnWt, Solomon and
Levy showed that the process can be mapped onto a model of a random walker performing
random steps lt = lnµt with a drift, 〈lt〉, towards a reflecting wall at −∞ and described by
the Langevin process:

xt+1 = xt + lt .

From their analysis it follows that the exponent β depends on the distribution of µt and
therefore is nonuniversal. In particular if the process converges to a fixed average Wm = 〈Wt〉
the exponent β is given by

β =
1

1− W0

Wm

.

This result explains why in our case β varies with the nature of the surface.
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To conclude we have studied the statistical properties of an assembly of noninteracting
point-like particles subject to the action of a gravitational field and bouncing inelastically on
a curve piecewise constant and whose slope has an assigned probability distribution. We have
shown that such a system displays already a highly nontrivial behavior even in the absence of
any particle-particle interaction and might lead to a better understanding of some dynamical
aspects of granular materials [13]. After obtaining the phase diagram of the model in terms of
the relevant control parameters, we found that the velocity distribution along the trajectory
in the nonaccelerating phase is an inverse power law, characterized by an exponent, β, which
decreases as the randomness and the slope increase. What determines the power law behavior
is the presence of the nonlinear feedback in the velocity. On the other hand, for small slope
the variance of the distribution is very narrow and the distribution delta-like.
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