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The critical behaviour of an associating ¯ uid mixture, the so called Lin± Taylor model, has
been studied, with focus on the critical exponents which characterize di� erent points on the
critical manifold. In general the critical behaviour of the mixture is found to be Ising-like, but
there are some special situations: when two ordinary critical points merge into a double critical
point or three critical points coalesce at a critical in¯ ection point. A check has been made on
the validity of the relations between critical exponents and predictions from the scaling laws.

1. Introduction

An understanding of the thermodynamic properties of
¯ uid mixtures has substantial technological and
industrial relevance. The presence of di� erent kinds of
molecule makes the behaviour of such systems more
complicated than that of one-component ¯ uids.
Indeed, as well as the usual liquid± gas phase separation
one may observe liquid phases corresponding to dif-
ferent concentrations. In most cases these regions of
immiscibility end on a line of critical solution points
(CSP), i.e., a 1-dimensional manifold in the global
phase diagram [1]. The topology of the critical manifold
can be used as a classi® cation criterion of the phase
diagram behaviour of binary ¯ uid mixtures [2].
Recently, associating binary mixtures have attracted
much interest, due to their peculiar properties. In fact,
unlike standard mixtures, the miscibility curves corre-
sponding to a given value of the pressure acting on the
¯ uid may appear as closed loops. In other words, as the
temperature is lowered the system phase separates into
two liquids, but upon further cooling the mixture
becomes miscible again. Such a phenomenon is due to
a subtle interplay between the energy and the entropy
and is observed in solutions like nicotine± water [3]. Few
models have been introduced to study these reappearing
phases. We have recently studied the phenomenology of
the Lin± Taylor lattice gas mixture. In the present paper
we consider in detail the critical exponents of such a
model and show that almost everywhere on the critical

line they are Ising-like, with the exception of what hap-
pens near special points. Since the coexistence region
can end in high temperatures at an upper critical sol-
ution point (UCSP) or begin in low temperatures at a
lower critical solution point (LCSP), when varying the
parameters that characterize the mixture (pressure or
couplings between the particles), a number of critical
points can merge. So, two or three critical points can
coalesce in a double critical point (DCP) or a critical
in¯ ection point (CIP), respectively. Such behaviour
can be characterized as in the one-component case by
a set of critical exponents. Experimental results [4] indi-
cate Ising-like critical behaviour of the binary ¯ uid mix-
tures, in complete agreement with the theoretical
predictions based on renormalization group analysis
and studies of lattice models. The latter is specially
useful in the study of the criticality of hydrogen
bonded binary ¯ uid mixtures that present peculiar
phase diagrams such as closed loops of immiscibility
[5], allowing the appearnce of DCP and CIP. One of
the ® rst lattice models that takes account of the direc-
tional interaction was proposed some years ago by
Barker and Fock [6]. However, most of the models pro-
posed for the study of these systems are decorated lattice
models [7], that are isomorphic with Ising models. Pre-
vious studies on lattice models [8± 10] showed di� erent
critical behaviour for the DCP and CIP, characterized
by the doubling and tripling of the critical exponent b .
However, other critical exponents have been analysed
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only in [10], using a model that cannot be studied
exactly, but in the framework of a renormalization
group method.

Our aim is to observe the critical behaviour of a
model that can be studied exactly, in order to test pre-
vious results and theoretical predictions such as the
scaling relations between the critical exponents.

2. The Lin± Taylor model of binary mixtures

We shall investigate the properties of a lattice model
of asymmetrical binary mixtures with directional inter-
actions that was proposed few years ago by Lin and
Taylor [11, 12]. Subsequent work [13, 14] completed
and extended the study of the phase diagram of the
model to arbitrary lattices, with special emphasis
towards the appearance of islands of immiscibility.

Let us consider a binary mixture of interacting par-
ticles in a D -dimensional latice (with coordination
number t ). The ® rst kind of particle (that we will call
A particles) can occupy any lattice cell that is not occu-
pied by other A or B particles. In addition, each cell
contains t subcells of equal size, one for each face of
the cell, which are available to species B when the
mother cell is not occupied by A. Multiple occupation
of the subcells is forbidden. There is a nearest-neighbour
pairwise interaction between particles A, with a coupling
value e AA and a binary interaction e AB for each edge
contact between particles A and B.

The grand canonical partition function of this system
can be mapped onto an Ising model [12, 14]with renor-
malized coupling parameters. In fact, given a value of
the temperature T and the chemical potentials ¹A and
¹B , respectively, of particles A and B, the pressure (that
it is related to the grand canonical potential) can be
written as

p =
k BT

s
t ln (1 + z B) + H - t

2
K +

1
N

ln Z
Ising
D ,t (K ,H )[ ].

(1)

In this expression, N is the total number of cells of
hypervolume s , z B = e

b ¹B is the fugacity of particles B,
and Z

Ising
D ,t (K ,H ) is the (canonical) partition function of

the corresponding Ising model with the e� ective coup-
ling K and the e� ective magnetic ® eld H given by

K =
1
2

ln
1 + z B

1 + z B e- b e AB( ) - b e AA

4 , (2)

H =
b ¹A

2 - t
b e AA

4 - t

2
ln (1 + z B) . (3)

The mole fraction is given as

X A =
1 + m D,t (K ,H )

f1 (z B,T ,H ) + f2 (z B,T )m D ,t (K ,H ) , (4)

where m D ,t is the magnetization per site of the Ising
model, and f 1 and f2 are de® ned as

f 1 (z B,T ,H ) = 1 +
t

2
z B

1 + z B
+

z B e- b e AB

1 + z B e- b e AB( )
- u D ,t (K ,H ) +

H

K
m D ,t (K ,H )( )

´
z B

1 + z B
- z B e- b e AB

1 + z B e- b e AB( ) , (5)

f2 (z B,T ) = 1 - t z B

1 + z B
, (6)

with u D ,t the energy per site of the Ising model in units
of J º K /b . The function f1 and f2 satisfy the inequality
f1 > f 2, being equal if and only if z B vanishes.

In order to obtain immiscibility, e.g. coexistence
between two phases of di� erent mole fractions, it is
necessary that D > 1, H = 0 and K > K c, where K c is
the corresponding critical value of the Ising coupling
parameter. Taking m = |m D ,t (K ,H = 0)|, the corre-
sponding mole fractions are

X
6
A =

1 6 m

f1 6 f2m
, (7)

with f1 = f1 (z B, T ,H = 0) and f2 = f2 (z B,T ) .
The states of the mixture with e� ective parameters

H = 0 and K = K c correspond to the critical solution
points, since the non-analyticity of the grand canonical
potential is directly related to the behaviour of the
Helmholtz free energy of the Ising model at its critical
point. The projection of the critical solution points over
the ( p ,T ) plane is the critical solution line (CSL), which
depends on the values of the couplings values e A A and
e A B [12± 14].

3. The critical exponents in the Lin ± Taylor model

In this section we shall determine the critical expo-
nents that characterize the critical behaviour inside the
coexistence region. We choose a critical solution point
that corresponds to a pressure p and a temperature T c.
First we shall study the behaviour, as a function of the
temperature, of the e� ective Ising coupling constant K

near the critical point inside the coexistence region,
keeping ® xed the value of the pressure p . Thus we set
H º 0. If e AB is equal to zero, then K = - b e AA /4 and
(1 - K c /K ) = - (T /T c - 1) . If e AB /= 0, the pressure p

can be considered as a function of T and K using equa-
tions (1) and (2). If we impose p to be constant, by the
well known implicit function theorem we can write
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dK

dT( ) = - ¶ p

¶ T( ) K ,H =0/ ¶ p

¶ K( ) T ,H =0[ ], (8)

where the denominator of this expression is nonzero
[14]. This expression can be rewritten as

dK

dT( ) = - p

T
+ T

¶ ( p /T )
¶ T( ) K ,H =0( ) / ¶ p

¶ K( ) T ,H =0[ ].

(9)

Taking account of equations (1) and (2) and the fact that
the pressure is constant, it is clear that the numerator of
this expression is a regular function of both T and K , in
the region of physically acceptable parameters. Conse-
quently, the dependence of K with respect to the tem-
perature close to the critical point is determined by the
characteristics of the CSL at the critical point. So, if the
critical point is not at a relative extremum (maximum or
minimum) or an in¯ ection point of the CSL, e.g., the
critical point is an UCSP or a LCSP, the relation is
linear:

1 - K c

K( ) < T c

K c

dK

dT( ) T =T c

T

T c
- 1( ) . (10)

The critical point that corresponds to a relative
extremum is a DCP. The case of the maximum will
not be studied, since it corresponds to the disappearance
of an island of immiscibility, merging its UCSP and
LCSP at the DCP. Consequently, there is no coexistence
region neither below nor above the DCP. The minimum
of the CSL corresponds to a DCP where the LCSP of an
island of immiscibility coalesces with the UCSP point of
the low temperature immiscibility region [12, 14]. The
relation between K and T near the DCP is

1 - K c

K( ) < - T
2
c

2K c

¶ 2
p

¶ T 2( )
K ,H =0/ ¶ p

¶ K( ) T ,H =0

é
ë

ù
û DCP

´
T

T c
- 1( )

2

. (11)

On the other hand, the in¯ ection point of the CSL cor-
responds to the merging of three critical points at a CIP.
In this case K is cubic with respect to the temperature
shift:

1 - K c

K( ) < - T
3
c

6K c

¶ 3
p

¶ T 3( )
K ,H =0/ ¶ p

¶ K( ) T ,H =0

é
ë

ù
û CIP

´
T

T c
- 1( )

3

. (12)

The derivative of z B respect to the temperature T , ® xed p

and H = 0 reads

dz B

dT
= - 1

k BT 2 [2p s + - u D ,t - t

2( )

´ e AA

2
- e AB

z B e- b e AB

1 + z B e- b e AB( ) ]/
2t

1 + z B
+ - u D ,t - t

2( )
1

1 + z B
- e- b e AB

1 + z B e- b e AB( )[ ].

(13)

From this expression it is clear that the derivatives of z B

with respect to the temperature at the DCP and CIP are
negative (they appear when e AA /2 < e AB < 0 [12, 14]
and - u D ,t - t /2 is bounded between - t /2 and 0 [14]).
In a similar way it can be shown that it is also negative
at the critical point of the pure A system, since e AA < 0
and z B = 0.

After ascertaining the dependence of K and z B on T

near the critical point, the behaviour of the order par-
ameter M 6 = (X 6

A - X Ac) /X Ac can be studied, as can
be seen from appendix A, equation (A 1). Close enough
to the critical point, we can write the following asymp-
totic expression for M

6 :

M
6 < M

linear
0

T

T c
- 1( ) 6 1 - f

c
2

f c
1( ) m

+ O (u D ,t - u
c
D ,t ,m

2, |T - T c|2, |T - T c|m ), (14)

where M
linear
0 is de® ned as

M
linear
0 = - X Ac

t

2
- u

c
D ,t( ) T

dz B

dT( )
c 1
(1 + z c

B) 2

- X Ac
t

2
+ u

c
D ,t( ) T

dz B

dT
+ z B

e AB

k BT( )
c

´ e- b c e AB

(1 + z c
B e- b e AB )2 , (15)

and the index c indicates that the function is evaluated at
the critical point. The term u D ,t - u

c
D ,t is not considered

explicitly in equation (14). When z
c
B = 0, such a term

disappears, and when z
c
B is di� erent from zero, this

term goes to zero as (K - K c)
1- a Â I , with a ÂI the heat ca-

pacity critical exponent of the Ising model. Close to the
critical point, it becomes negligible with respect to m ,
that goes as (K - K c)

b I , where b I is the corresponding
critical exponent (see table 1) of the Ising model.

The linear term in equation (14) is negligible if z
c
B /= 0

and the dependence of m on the temperature near the
critical point is characterized by an exponent lower than
1. Under these conditions the coexistence curve is sym-
metrical with respect to X Ac close to the critical point,
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and the critical exponent b can be obtained easily: for an
UCSP or a LCSP it is b I, for a DCP it is 2b I, and for a
CIP it is 3b I.

The conditions mentioned above are not veri® ed in
three cases: (a) the pure A vapour± liquid critical point,
(b) a CIP for D > 4, and (c) a DCP for D > 4. For these
three cases the critical exponent b = 1. In the ® rst case
the term on m disappears since f

c
1 = f

c
2 = 1. Conse-

quently, the critical point corresonds to a cuspidal
point of the coexistence curve and is dominated near
the critical point by the linear term. Something similar
happens in case (b), with the di� erence that near the
critical point m ~ |T - T c|3 /2 (for D = 4 a logarithmic
correction must be added [18]). For case (c) the term
in m has a linear dependence on |T - T c| near the critical
point (2b I = 1). The e� ect of the linear term on equa-
tion (14) is to modify the slope of the branches of the
coexistence curve near the critical point (no longer sym-
metrical).

We shall focus our study on the dimensionalities of
physical interest, namely D = 2 and D = 3.

The entropy per particle of the state with a mole frac-
tion X Ac can be obtained from the entropy per particle
of the coexisting states (see appendix B), and reads:

s

k B
= [(X Ac - 1) ln z B - t X Ac ln (1 + z B)]

- 1 - f2

f c
1

[ ] T

z B

¶ z B

¶ T( ) p ,H =0
. (16)

Since C p ,X Ac = T ( ¶ s /¶ T ) p ,X Ac
, and taking into account

equation (13), we see that the singular part of the heat
capacity C

sing
p ,X Ac

stems from the term ( ¶ 2
z B /¶ T

2) p ,H =0.
After some algebra, C

sing
p ,X Ac

takes the form

C
sing
p ,X Ac

< 2X Ac
T

2
c

K 2
c

¶ K

¶ T( )
2

C
I
H =0, (17)

where C
I
H =0 is the heat capacity of the Ising model at

H = 0. The exponent a Â is equal to a Â I for an UCSP and
a LCSP. However, for a DCP or a CIP the divergence of
the heat capacity disappears and then the critical expo-
nent a Â = 0. Following Fisher [15], a critical exponent

for the singular part a Â s can be de® ned. From equation
(17) the exponent a Âs is found to be 2a ÂI - 2 for a DCP,
and 3a ÂI - 4 for a CIP.

Taking into account the Gibbs± Duhem relation, we
can write the response function as

c º ¶ X A

¶ (¹A - ¹B)( ) T ,p
= - X A

¶ X A

¶ ¹B( ) T ,p
. (18)

The singular part of the response function can be related
to the magnetic susceptibility of the Ising model and
reads

c sing < X Ac

2k BT c
1 - f

c
2

f c
1( )

2

c I, (19)

where c I = ( ¶ m /¶ H )K . From equation (19) we obtain
that the critical exponent g Â is equal to g ÂI for the UCSP
and LCSP, to 2g ÂI for a DCP and to 3g ÂI for a CIP.

Finally, we derive the exponents related to the corre-
lation length, t Â and h . The correlation functions can be
written as

G AA (i, j) = k N A (i )N A ( j ) l - k N A (i) l k N A ( j) l , (20)

G AB (i, j t ) = k N A (i )N
t
B ( j ) l - k N A (i) l k N

t
B ( j) l , (21)

G BB (i s , j t ) = k N
s
B (i )N

t
B ( j) l - k N

s
B (i) l k N

t
B ( j) l , (22)

where N A (i) is the number of particles A per unit
volume of cell i , and N

s
B (i) is the number of particles

B per unit volume in subcell s of the cell i . It can be
shown that

G AA (i , j) =
1

4s 2 G
I
2 (i , j) (23)

G AB (i, j t ) =
1

8s 2

z B

1 + z B
- z Bµ

1 + z Bµ( )[
´ (G I

3 ( j, l, i ) - G
I
2 (i, l ) )

- z B

1 + z B
+

z Bµ

1 + z Bµ( ) G
I
2 (i , j)], (24)

G BB (i s , j t ) =
1

16s 2

z B

1 + z B
- z Bµ

1 + z Bµ( )
2

[
´ (G I

4 (i,k , j, l ) + G
I
2 (k , l)

- G
I
3 ( j, l,k ) - G

I
3 (i ,k , l) )

+
z B

1 + z B( )
2

- z Bµ

1 + z Bµ( )
2

( )
´ (G I

2 (i, l) + G
I
2 ( j,k ) - G

I
3 ( j, l , i)

- G
I
3 (i,k , j) )

+
z B

1 + z B
+

z Bµ

1 + z Bµ( )
2

G
I
2 (i, j )], (25)
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Table 1. Critical exponents of the Ising model [17].

Exponent D = 2 D = 3 D > 4a

a I = a ÂI 0 (log) 0.119 6 0.006 0
b I

1
8 0.326 6 0.004 1

2

g I = g ÂI
7
4 1.239 6 0.003 1

d I 15 4.80 6 0.05 3
h I

1
4 0.024 6 0.007 0

t I = t ÂI 1 0.627 6 0.002 1
2

a Logarithm corrections appear for D = 4 [18].



where µ = e- b e AB , and k and l are the nearest-neighbour
cells corresponding to subcell i s and j t , respectively. The
functions G

I
2, G

I
3 and G

I
4 are the correlation functions of

two, three and four spins in the Ising model:

G
I
2 (i, j) = k s i s j l - k s i l k s j l , (26)

G
I
3 (i, j, k ) = k s i s j s k l - k s i s j l k s k l , (27)

G
I
4 (i, j,k , l) = k s i s j s k s l l - k s i s j l k s k s l l . (28)

In the two-dimensional case, the asymptotic expressions
of the correlation functions for r = |i - j| @ 1 and
K > K c decay as exp (- r /x ) /r

2, where x is the correla-
tion length of the Ising model [15]. In the 3-dimensional
case, the expansion series show a similar scenario. The
correlation functions also decay as exp (- r /x ) , while the
correlation length diverges as (K - K c)-

t I . As a conse-
quence, the critical exponent t Â is equal to the Ising
value t ÂI for an UCSP and a LCSP, and is 2t ÂI and 3t ÂI
for a DCP and a CIP, respectively.

Just at the critical point, the leading dependence on
the distance is determined by G

I
2 [15], that varies as

1 /r
D - 2+ h I , hence, the critical exponent h is always

equal to the Ising value h I.
Now we are able to check the scaling relations

between the critical exponents that we have obtained
[15]:

a Â + 2b + g Â = 2, (29)

g Â = t Â (2 - h ), (30)

D t Â = 2 - a Â . (31)

It is clear that these relations are veri® ed for UCSP and
a LCSP, but not for the DCP and the CIP. However, if
we substitute the critical exponent a Â by a Âs , we obtain
another set of scaling relations [15] that are valid for all
types of critical point. Such a result is in agreement with
that obtained previously in [10].

4. Conclusion

The critical behaviour of the Lin and Taylor model
has been analysed. This model is relevant because it
presents special critical solution points such as DCP
and CIP for certain values of the pressure and coupling
parameters between the particles. The critical exponents
a Â ( a Âs) , b , g Â , t Â and h corresponding to D = 2 and
D = 3 have been obtained explicitly. In general, the cri-
tical behaviour is Ising-like, with the exception of the
DCP and the CIP, where two and three critical points
merge, respectively. A new type of critical behaviour
appears in these cases, characterized in each case by a
new set of critical exponents: a Â = 0 ( a Âs = 2a ÂI - 2) ,
b = 2b I, g Â = 2g ÂI , t Â = 2g ÂI and h = h I for a DCP, and

a Â = 0 ( a Âs = 3a Â I - 4) , b = 3b I , g Â = 3g ÂI , t Â = 3t ÂI and
h = h I for a CIP. The appearance of these new sets is
related to the tangential approach to the critical line
imposed by the constraint p = constant [1]. The scaling
relations a Âs + 2b + g Â = 2, g Â = 2, g Â = t Â (2 - h ) and
D t Â = 2 - a Âs hold true for all the critical points, sug-
gesting that the rest of the critical exponents can be
obtained using other scaling relations.

The results obtained are in agreement with the critical
behaviour obtained with other binary mixture models
[8± 10]. However, Landau± Ginzburg theory violates the
scaling laws for the DCP and CIP, as was pointed out by
Narayanan and Kumar [16]. Such a discrepancy could
be solved by the distinction between a Â and a Âs .

Finally, we must remark that the critical exponents
depend strongly on the constraint we have used to
obtain the phase diagrams. For example, if we had
assumed T to be constant, t would have been replaced
by p /p c - 1. Then, all the critical exponents for D = 2
and D = 3 would be Ising-like, since K - K c can be
shown to be proportional to p - p c, provided that
T = T c.
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Appendix A

De® nition of critical exponents in binary mixtures
As in the simple ¯ uid case, the critical exponents char-

acterize the anomalous behaviour of the mixture near a
critical point [1, 4]. We de® ne the order parameter of the
mixture as

M = |X A - X Ac|
X Ac

, (A 1)

where X A is the component A mole fraction, and X Ac its
critical value. The corresponding conjugate ® eld is

h =
¢ - ¢c

¢c
(A 2)

where ¢ is the di� erence in the chemical potential
between the two components ¹A - ¹B, and ¢c its value
at the critical point. We introduce a reduced tempera-
ture shift according to
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t =
T /T c - 1

1 - T /T c

if UCP, DCP or CIP,
if LCP,{ (A 3)

where T c is the critical value of the absolute temperature
T . For |t | ! 1, and for ® xed pressure p , we de® ne the
critical exponents as follows.

Exponents a and a ÂThe divergence of the heat capacity is characterized
by the exponents a and a Â :

C p ,X Ac º T
¶ s

¶ T( ) p ,X Ac

=

A

a
(t- a - 1) t > 0,

A Â
a Â

((- t) - a Â - 1) t < 0,

ìïï
íïïî

(A 4)

with s = S /(N A + N B) the entropy per particle, and A

and A Â the critical amplitudes. If a or a Â is equal to zero,
the corresponding divergence is logarithmic.

Exponent b
The behaviour of the order parameter near the critical

point follows the relation

M = M 0|t|b t < 0, coexistence, (A 5)

where M 0 is the order parameter critical amplitude.

Exponents g and g ÂThe response function diverges near the critical
point as

c º
¶ X A

¶ ¢( ) T ,p
=

c 0t- g

c Â0 (- t)- g Â

t > 0,M = 0,
t < 0,coexistence,{

(A 6)

where the critical amplitudes are c 0 and c Â0. The
response function can be related to the osmotic com-
pressibility c osm by the relation [4]

c osm < 1
X A

¶ X A

¶ p( ) T

=
v

X 2
A

c +
1

X A

¶ X A

¶ p( ) ¢,T
. (A 7)

In this expression p is the osmotic pressure, and v is the
mean speci® c volume.

Exponent d
This critical exponent characterizes the behaviour of

the order parameter along the critical isotherm with its
conjugate ® eld:

h = h 0M |M |d - 1
t = 0, (A 8)

where h 0 is the corresponding critical amplitude.

Exponents t and t ÂThe correlation length for the order parameter ¯ uc-
tuations behaves as follows near the critical point:

x =
x 0t- t

x Â0 (- t )- t Â

t > 0,M = 0,
t < 0,coexistence,{ (A 9)

with x 0 and x Â0 the critical amplitudes.

Exponent h
This critical exponent de® nes the decay of the correla-

tion function with the distance at the critical point:

G i j (r, t = 0,h = 0) = G
0
i j r

- (D - 2+ h )
r ® ¥ , (A 10)

where D is the dimensionality of the space, and G
0
i j the

critical amplitudes.

Appendix B

Calculation of the entropy per particle at X A - X Ac

In order to evaluate the heat capacity at constant
pressure p and mole fraction X Ac in the coexistence
region, we need the entropy per particle.

The entropy can be evaluated using the relation
S = - ( ¶ X /¶ T ) V ,¹A ,¹B

. So, the entropy of the coexisting
phases can be written as

S
6 =

N

2
k B[( f 3 6 f4m ) - ln z B ( f1 6 f2m )], (B1)

where N is the total number of lattice cells, m is the
absolute value of the Ising magnetization, f1 and f 2 are
de® ned by the equations (5) and (6), and f3 and f4 are
de® ned by

f3 = 2b p s + - u D ,t - t

2( )
b e AA

2 - b e AB
z B e- b e AB

1 + z B e- b e AB( )
- t ln (1 + z B) + ln z B, (B2)

f4 = - t ln (1 + z B) + ln z B, (B3)

and the entropy per particle of the coexisting phases will
be s

6 = (2S
6 ) /(N [f 1 6 f2m ]) .

The entropy of the system is S p ,X Ac =
(N +

A + N
+
B ) s

+ + (N -
A + N -

B ) s - , where N 6
A and N 6

B corre-
spond to the number of particles A and B; the entropy
per particle of the system is

s = r s
+ + (1 - r ) s - , (B4)

where r = (N +
A + N

+
B ) /(N +

A + N -
A + N

+
B + N -

B ) . On the
other hand, it is easy to see that r can be obtained also
from the relation

X
c
A =

1
f c
1

= r X
+
A + (1 - r )X -

A, (B5)
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where X 6
A are the coexisting mole fractions de® ned in

the equation (7). After some algebra the entropy per
particle can be rewritten as

s

k B
= - ln z B +

f4

f c
1

+ 1 - f2

f c
1( ) f3 - f4

f1 - f2
. (B 6)

Taking into account that, from the equation (13), the
derivative of z B with respect to the temperature along
the coexistence curve can be expressed as

dz B

dT
= - z B

T

f3 - f 4

f1 - f 2
, (B 7)

we obtain equation (16).
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