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A detailed analysis is made of the lattice model of binary mixtures A± B, proposed a few years
ago by Lin and Taylor. This model exhibits ¯ uid± ¯ uid immiscibility and a closed loop of
immiscibility. Based on general arguments, the distinct possible behaviour is examined as a
function of the coupling parameters, temperature and pressure in di� erent lattices. The phase
diagram is found to be richer than that reported previously, even in the square lattice case. The
system, for attractive A± A interactions, shows the disappearance of one of the critical points
for pressures lower than the A-pure system critical pressure. On the other hand, the mixture
displays closed-loop behaviour without a low temperature immiscibility region for values of
the interaction parameters e AA < 0 and e AB < e AA /2.

1. Introduction

In the last decade there has been an upsurge of inter-
est in the physics of complex ¯ uids. Among these, hy-
drogen bonded ¯ uids play an important role, and
present peculiar thermodynamic and structural proper-
ties which render them very di� erent from simple ¯ uids.
Like ordinary ¯ uids, they can exist in di� erent phases
and transform from one phase to another or coexist. It is
known that the phase diagram of ¯ uid mixtures can be
very complex because, in addition to the familiar liquid±
gas transition, the system can demix into phases of dif-
ferent composition.

Hydrogen-bonded ¯ uids and their mixtures display a
striking di� erence with respect to normal ¯ uids, namely
the presence of closed loops of immiscibility. Such
special behaviour is due to the existence of short range
and highly orientation dependent interactions which
cause the molecules to associate. The presence of
closed loops contrasts with one’s intuitive idea that at
low temperature order always prevails and thus that
distinct phases separate as T ® 0. Surprisingly, phase
separation instead starts at some ® nite temperature,
and it is only upon further heating that the mixture
becomes perfectly miscible. A well known example of
a closed-loop phase diagram is provided by the binary
mixture nicotine± water [1]. Instructive introductions to
this area can be found in [2± 5]. About sixty years ago

Hirschfelder and coworkers [6] explained this reentrant
miscibility by noting that hydrogen bonding favours
mixing at low temperatures, but becomes ine� ective as
the temperature is raised above a certain lower critical
temperature. Di� erent lattice models have been pro-
posed to study this behaviour, as can be seen in [4]. In
the present paper we shall study and extend the lattice
model of associating mixtures which was proposed by
Lin and Taylor (LT) in [7] and [8].

We completed the study of these models by consider-
ing cases which were not analysed previously, and dis-
covered that the morphology of its phase diagram is
richer than that reported earlier. In particular, we
found that in some cases the highest temperature at
which the ¯ uid is immiscible does not correspond to a
critical point, but to the temperature at which the ¯ uid
becomes pure under conditions of ® xed pressure. On the
other hand, the system exhibits closed loop behaviour
for values of the interaction parameters which were not
considered in the Lin and Taylor studies.

We begin by recalling the LT binary mixture model.
Each unit square cell consists of four triangular subunits
and there are the following rules: (1) a pair of particles A
or A± B cannot occupy the same unit square; (2) each
triangular subunit can be occupied by at most one par-
ticle of type B (in other words, in a square cell left empty
by particles A, it is possible to allocate at most four
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possible triangular B particles, one for each orientation
of the triangles); (3) pairwise interactions exist between
nearest neighbour A± A and A± B pairs, but not between
pairs B± B. After summing over the occupation variables
relative to particles B, the mixture can be mapped into
an equivalent pure lattice gas model for species A only
with renormalized temperature and concentration de-
pendent interactions. Taking advantage of the iso-
morphism between a lattice gas and an Ising model,
Lin and Taylor were able to provide an exact solution
of the model in two dimensions. An exact solution of a
closely related model with purely repulsive interactions
had been discussed earlier by Frenkel and Louis [9], who
found immiscibility at low temperatures instead of
closed loops. This situation will appear in our discussion
as a particular case of the model we solve.

The LT model is relevant because it shows that one
can prove the existence of closed loops in the miscibility
without introducing any uncontrolled approximations.
The coexistence curves are obtained by cutting concen-
tration± temperature slices in the thermodynamic space
planes at ® xed pressure, a situation which corresponds
to experimental conditions in the laboratory.

Under suitable conditions one sees that the usual bell
shaped coexistence curve becomes a closed loop plus a
lower bell shaped curve. As a result of this complicated
coexistence line, one may observe three critical points,
two upper and one lower, instead of a single upper
critical point. This is not, however, the only possibility.
In fact the uppermost critical point may be suppressed
and two di� erent phases assume the same composition
before their densities become equal. This leads to a ® rst-
order termination of the loop: the system turns pure,
before it becomes critical. Moreover for some values
of the coupling parameters, the lower portion of the
coexistence curve can even disappear.

Physically, this behaviour occurs in the presence of a
strong interaction between particles B and A. The direct
A± A interaction is screened at low temperatures by par-
ticles B and the low temperature phases are B rich. The
critical point of the pure ¯ uid A is lowered because the
e� ective A± A interaction is reduced by the screening.
However, as the temperature increases the thermal ¯ uc-
tuations decrease the average number of associated A± B
pairs and the interaction A± A becomes more e� ective
and a demixing of the ¯ uid can occur again, giving rise
to a lower critical point. Finally, at su� ciently high
temperatures the ¯ uid becomes miscible again.

First we present the model and determine the corre-
sponding thermodynamic functions, which are obtained
from the exact mapping onto the Ising model. As far as
coexistence properties are concerned, we need to con-
sider only the solutions which correspond to zero mag-
netic ® eld, H, in the associated Ising problem. After

reducing the grand potential and the controlling ® elds
of the model to dimensionless form, we study the phase
diagram. This method leads to a natural way of classify-
ing the solutions according to the sign of the interactions
and of their relative strength. We illustrate explicitly the
various cases with the help of the exact solutions for the
square lattice case. Finally we present the conclusions.

2. The model

We begin by extending the lattice model of binary
mixtures introduced by Lin and Taylor [7, 8] to D-
dimensional lattices and coordination numbers t . The
mixture is composed of two species A and B. The A
particles (corresponding to the squares in the LT
model) are allowed to occupy any of the cells of the
lattice at most once. Particles of the other type, named
species B (corresponding to the triangles in the LT
model), can occupy the cells left empty by particles A.
Each unoccupied cell contains t subcells, where every
subcell shares a face with one of the nearest-neighbour
cells. Single occupancy by particles B is allowed on the
subcells. Each lattice cell can exist in (2 t + 1) di� erent
states: occupied by an A, completely empty or all the
possibilities to be occupied by 1, . . . , t particles B. There
are nearest-neighbour interactions between A± A pairs,
e AA . An interaction e AB between A± B pairs is present if
the two partners have a face in common.

Assuming a grand canonical ensemble description, we
shall refer to ¹A and ¹B as the chemical potentials rela-
tive to A and B, respectively. As usual, we de® ne the
fugacity z by

z = e b ¹ (1)

with b = (kBT ) - 1 and T the absolute temperature of the
system.

As shown in appendix A the grand canonical poten-
tial can be written as:

X mixture = NkB T[ t K
2 - H - t ln (1 + zB)

- 1
N

ln ZD,t (K,H)], (2)

where N is the number of lattice cells, ZD,t is the cano-
nical partition function of the Ising model, and H and K
are de® ned by equation (A 9a,b) of appendix A.

The pressure of the mixture is given by

p =
- X mixture

V
=

- X mixture

Ns
, (3)

and the densities of A and B particles take the forms

nA =
mD,t (K,H) + 1

2s
(4a)
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and

nB =
zB

Ns ( ¶ ln N

¶ zB ) T

=
t

4s [ zB

1 + zB
+

e- b e ABzB

1 + zBe- b e AB ]
- 1

2s [ zB

1 + zB
- e- b e ABzB

1 + zBe- b e AB ]
´ [uD,t (K,H) +

H
K

mD,t (K,H)]
- t

2s
zB

1 + zB
mD,t (K,H) , (4 b)

where N is the grand canonical partition function, s is
the hypervolume of a site of the lattice and uD,t and mD,t
are the energy per site and the magnetization per site,
respectively, of an Ising model in the presence of an
external ® eld.

For later convenience, we introduce the function
~
C(K,H) :

~
C(K,H) =

1
N

ln ZD,t (K,H) + H - t

2
K. (5)

Equations (3) and (4 a,b) can be rewritten as

p =
kBT

s [t ln (1 + zB) +
~
C(K,H)], (6 a)

nA =
mD,t + 1

2s
, (6 b)

and

nB =
t

2s
zB

1 + zB [( 1 +
1
t ( ¶

~
C

¶ K) H

1 - e- b e AB

1 + zBe- b e AB )
- mD,t (K,H)]. (6 c)

We also de® ne C(K) as
~
C(K,H = 0) . The key properties

of
~
C(K,H) and C(K) are derived in appendix B.
The mole fraction XA of A particles is de® ned as

XA =
nA

nA + nB
. (7)

3. Phase diagram

In the present section we shall consider the conditions
under which the model mixture displays coexistence
between an A-rich phase, a , and a B-rich phase, b ,
i.e., immiscibility.

We will follow the procedure used in Lin and Taylor’s
work. For clarity we will show the results for the square
lattice, where we have an explicit expression for C(K) ,
given by the Onsager solution (see, e.g. [11]), as shown
originally by Lin and Taylor. Other closed expressions
for C(K) can be obtained for other two-dimensional

lattices [12, 13]. In any case, the study is completely
general and it is valid for any D-dimensional lattices,
even if the expression for C(K) is not known.

In order to have phase separation, from equation
(6 b, c) we see that in the Ising model we must ful® l the
conditions: (a) D > 2, (b) K > Kc(D, t ) > 0, where Kc is
the critical value of the coupling parameter. and (c)
H = 0, the coexistence condition.

In principle, negative values of K are allowed in our
system, but this condition leads to antiferromagnetism.
In the generalized Lin± Taylor (GLT) model, as we can
see from equation (6 b), this situation would describe a
di� erent problem from the one we are studying, namely
repulsive interactions mimic the features of the liquid±
solid transitions. Thus we shall consider only the sector
K > 0. When H = 0 and K > Kc(D, t ) , there are two
coexistence states in the equivalent Ising model, with
the same uD,t and opposite values of mD,t .

From equation (A 9a) , the condition H º 0 of the
associated Ising model, leads to

zA = (1 + zB) t ´ exp ( t b e AA /2) . (8)

In order to study the states in coexistence, we invert
equation (A 9 b) :

zB =
exp( 2K +

b e AA

2 ) - 1

1 - exp( 2K - b ( e AB - e AA

2 ) )
. (9)

When e AB = 0, it is necessary to use a di� erent inversion
formula, as we shall see below.

The cases that allow values of K > 0 in the physical
region of the parameters (zB > 0, b > 0) are, as we can
see from equation (9), the cases with e AA < 0 (and arbi-
trary e AB), and the cases with e AA > 0 and e AB > e AA /2.
So, we shall restrict our study to these cases:

3.1. e AA > 0 and e AB > e AA /2
In this case, both the A± A and A± B interactions are

repulsive, as in the model studied by Frenkel and Louis
[9]. We introduce the dimensionless pressure p* and
temperature T * variables de® ned as

p* =
ps

e AB - e AA /2
, (10a)

and

T * =
kB T

e AB - e AA /2
. (10b)

Substituting these de® nitions and equation (9) into (6a)
with H = 0, we obtain the following expression:

p* = T *[t ln( exp (- s /T *) - exp (- 1 /T *)
exp (- 2K) - exp (- 1 /T *) ) + C(K)],

(11)
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where the parameter s is

s =
- e AA

2e AB - e AA
. (12)

Expression (11) de® nes the pressure as a function of
T * and K. At ® xed temperature, the pressure p* is a
monotonically increasing function of K in the range
allowed by equation (9), that includes positive and nega-
tive values of K; p* displays a minimum value
T *C(s /2T *) at K = s /(2T *) . Thus, if the pressure is
greater than this minimum, one ® nds a single solution
K for each value of T *.

Furthermore, keeping K ® xed and positive, the press-
ure is a monotonically increasing function also with
respect to the temperature, and has a minimum value
p*

m = - t s at T * = 0, diverging at T * = 1 /2K.
With the help of these two properties, the values of

pressure and temperature for which coexistence can be
achieved are located between the critical line p*

c ( T *)
(obtained by setting K = Kc) and the axis T * = 0 (see
® gure 1). The mixture displays coexistence with a single
upper critical point whenever p* > - t s. For reduced
pressures below this value the system is miscible. Since
the ratio e AB / e AA ® ¥ when s ® 0- , one needs only a
small pressure p* > 0 in order to induce immiscibility in
such limit. On the other hand, when s ® - ¥ one has to
force the system by applying greater and greater press-
ure in order to observe phase separation, since the mini-
mum value of p* which exhibits phase separation
increases with s.

3.2. e AA < 0
In this case the interaction between particles A is

attractive, but the interaction between particles A and
B can be either attractive or repulsive. In this case com-
ponent A undergoes a vapour± liquid phase separation
below a certain critical temperature T A

c of the pure
model (that is, a single component system consisting
of species A). The existence of this line implies the ex-
istence of new phase diagrams not mentioned in the Lin
and Taylor paper.

We de® ne the dimensionless pressure and temperature
as:

p* =
- 2ps
e AA

, (13a)

and

T * =
- 2kBT

e AA
. (13b)

With these de® nitions, T *A
c = 1 /(2Kc) , at a dimen-

sionless pressure p*A
c = C(Kc) /2Kc.

Equation (6 a) (with H = 0) can be rewritten with
these de® nitions as

p* = T *[t ln (1 + zB) + C(K)]. (14)

If e AB /= 0 we can use equation (9) to rewrite (14) as

p* = T *[ t ln( exp (- 1 /T *) - exp (- 1 /sT *)
exp (- 2K) - exp (- 1 /sT *) ) + C(K)]

= g( T *,K) , (15)

where s is de® ned in equation (12). As in the preceding
case, equation (15) de® nes the pressure as a function of
T and K. The subdivisions of this case are the following.

3.2.1. e AA < 0 and e AB > 0
Physically this situation corresponds to a repulsive

interaction AB. As in section 3.1, keeping the tempera-
ture ® xed, the pressure is a monotonically positive in-
creasing function of K. p* has a minimum value
T *C(1 /2T *) at K = 1 /(2T *) . Pressures greater than
this minimum, for an assigned value of T *, determine
a single value of K.

Conversely, keeping K ® xed, the pressure is a mono-
tonically increasing function of the temperature, with
a minimum value at T * = 1 /(2K) given by p* =
C(K) /(2K) , diverging at T * = 1 /(2sK) .

The values of pressure and temperature where we ® nd
coexistence lie between the axis T * = 0, the curve
p* = T *C(1 /2T *) and the critical line p*

c( T *) =
g( T *,Kc) ( ® gure 2 (b) ). The latter becomes a straight
line when e AB ® ¥ ( ® gure 2 (a) ). Below this line, it is
not possible to ® nd immiscibility states for every value
of e AA and e AB.

For pressures greater than p*
m = C(Kc) /(2Kc) , the

system displays a bell shaped phase diagram which
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Figure 1. Plot of p*
c versus T * obtained from equation (11)

for the two-dimensional Onsager solution of the Ising
model for the cases e AA > 0 and e AB > e AA /2. The region
between this curve and the T * = 0 axis corresponds to the
region of phase separation.



ends in an upper critical point. Below this pressure there
is coexistence but no criticality. This happens because
the system becomes pure A before the mixture turns
critical. Thus one observes two pure phases of particles
A in coexistence.

3.2.2. e AA < 0 and e AB = 0
In this case, there is no interaction between the two

species A and B, so the only e� ect of particles B in the
mixture is to reduce the volume available to particles A.
Now equation (15) is not valid, since from (A 9 b) we
obtain K = 1 /2T *. Thus, we must use equation (14),
which de® nes the pressure as a function of the tempera-
ture and the fugacity of particles B. Because zB > 0, for
a speci® ed temperature, all pressures greater than

p* = T *C(1 /2T *) are allowed. The values of pressure
and temperature where there is coexistence are de® ned
in a similar way as in section 3.2.1 (® gure 2 (c) ), obtain-
ing bell shaped phase diagrams which end in an upper
critical point for pressures greater than p*

m =
C(Kc) /2Kc, and coexistence without criticality below
this pressure, in the same sense as in section 3.2.1.

3.2.3. e AA < 0 and e AB < 0
In this case interactions A± A and A± B are both at-

tractive, and we ® nd the richest phase diagram beha-
viour, including closed loops of immiscibility.

At ® xed T *, equation (15) de® nes the pressure as a
monotonically decreasing function of K in the interval
allowed (1 /2sT * < K < 1 /2T *) , with a minimum value
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Figure 2. Plot of p*
c against T * using equation (14) and e AA < 0: (a) e AB ® ¥ ; (b) e AB > 0; (c) e AB = 0; (d) e AB < 0 and

|e AB| < |e c
AB| < |e AA| /2; (e) ²AB < 0, |e c

AB| < |e AB| < |e AA| /2 and pm > C(Kc) /2Kc; ( f ) as for (e) but pm < C(Kc) /2Kc;
(g) e AB < 0 and |e AB| = |e AA| /2; (h) e AB < 0 and |e AB| > |e AA| /2; and ( i) e AB ® - ¥ .



T *C(1 /2T *) at K = 1 /(2T *) , diverging when
K ® 1 /(2sT *) . As a consequence, the region of the
(p*, T *) plane where there are coexistence states is, as
in preceding cases, de® ned between the critical line
p*

c ( T *) , the curve p* = T *C(1 /2T *) , and the axis
T * = 0. But the di� erent behaviour of p*

c( T *) , depend-
ing on the value of e AB ® xed the value of e AA , leads to
di� erent types of phase diagram.

The ® rst case is |e AB| < |e AA| /2 and corresponds to
values of the parameter s > 1, so we obtain coexistence
at low temperatures. The variety of phase diagrams that
one can observe in this case is mirrored in the behaviour
of the critical line. The latter cannot be obtained exactly
for arbitrary lattices. However, from a knowledge of Kc

and C(Kc) this is possible. We shall consider the critical-
line behaviour in all the cases represented in [10], Table
I. For small values of |e AB|, the critical curve p*

c ( T *) is a
monotonically decreasing function of T * ( ® gure 2 (d) ),
and the phase diagram looks similar to those in sections
3.2.1 and 3.2.2, with the di� erence that the critical tem-
perature decreases with p*, instead of increasing, due to
the opposite sign of the e AB interaction. The e� ect of
applying a larger pressure is to favour mixing, hence the
critical demixing point is lowered, while in the case with
a repulsive e AB interaction (section 3.2.1) the critical
point is driven towards higher values.

By increasing the value of |e AB|, there is a crossover
value of this parameter, e

c
AB at which a critical point of

in¯ ection appears, i.e., the ® rst two derivatives of the
critical pressure with respect to the temperature
vanish. For |e c

AB| < |e AB| < |e AA | /2 the critical curve
shows non-monotonic behaviour, with a local mini-
mum, corresponding to the pressure p*

m, followed by a
local maximum p*

M ( ® gure 2 (e) ). The value of p*
m be-

comes lower as |e AB| increases, and can even be smaller
than C(Kc) /2Kc, when |e AB| ~ |e AA | /2 (® gure 2 ( f ) ). So
for pressures greater than p*

M, we have bell shaped phase
diagrams with an upper critical point. For pressures
between p*

m and p*
M a closed loop of immiscibility ap-

pears, which is characterized by an upper and a lower

critical point, with p* > C(Kc) /2Kc. Conversely, if
p* < C(Kc) /2Kc, one ® nds a loop with a single critical
point, the lower one. In addition to the loop with one or
two critical points, we have a bell shaped coexistence
line at low temperatures which ends at an upper critical
point. At p*

m the lower upper critical point and the lower
critical point coalesce into a double critical point, and
we obtain a bottleneck shaped coexistence curve for
lower values of the pressure, with an upper critical
point for p* > C(Kc) /2Kc and none for lower pressures.
These di� erent types of behaviour with pressure are
shown in ® gure 3.

The second case |e AB| = |e AA| /2 is important because
it discriminates between two di� erent types of be-
haviour, |e AB| > |e AA| /2 and |e AB| < |e AA | /2, with an
attractive interaction between unlikeparticles. As in the
former case, we consider the behaviour of the critical
line pc( Tc) . At T * = 0 this function vanishes and has a
positive derivative. As a consequence, there is no coex-
istence at low temperatures. If the derivative at
T * = 1 /2Kc has a negative value, we shall have non-
monotonic behaviour. This is obtained if the expression

f (Kc) =
C(Kc)
2Kc

- t

e2Kc - 1
(16)

has a negative value. When this happens it can be shown
that the critical line has a single maximum (® gure 2 (g) ).
We have evaluated f (Kc) in the di� erent cases presented
in table 1, obtaining a negative value, as is expected
since in the ® rst case just described we have obtained
non-monotonic behaviour. Let us call the value of the
pressure at the maximum p*

M. For pressures greater than
p*

M the system is completely miscible. For pressures be-
tween p*

M and C(Kc) /2Kc we obtain closed loops of
immiscibility with an upper and a lower critical point,
and for pressures lower than C(Kc) /2Kc we obtain
closed loops with only a lower critical point, because
the upper critical point has disappeared, ending the
coexistence region when system becomes pure com-
ponent A.
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Table 1. Critical parameters of the Ising model for di� erent lattices (see text).

Lattice D t Kc C(Kc)
2t Kc

exp (2Kc) - 1
uD,t (Kc,0)

Honeycomb 2 3 0.6585 0.037 34 1.446 - 1.1547
KagomeÂ 2 4 0.4666 0.041 65 2.420 - 1.4880
Square 2 4 0.4407 0.048 322 2.493 - 1.4142
Triangular 2 6 0.2747 0.055 63 4.502 - 2.0000
Diamond 3 4 0.3698 0.0938 2.701 - 0.864
Simple cubic 3 6 0.2217 0.113 4.768 - 0.9852
Body-centered cubic 3 8 0.1575 0.126 6.806 - 1.080
Face-centered cubic 3 12 0.1021 0.129 10.817 - 1.470



The third case is |e AB| > |e AA | /2 and corresponds to
values of s < 0, so K can be lower than zero, which can
lead to a solid± liquid-like transition at high pressures.
The types of phase diagram behaviour are determined
by studying the shape of the critical line for every lattice
considered in table 1. For values of |e AB| near |e AA| /2
the qualitative features of the critical line are similar to
the critical line in the second case (® gure 2 (h) ), and
similar phase diagram behaviour is obtained, as in
® gure 4, for di� erent pressures. When |e AB| is increased,
there is a value of this parameter, e

C
AB, where the critical

line monotonically increases, and for |e AB| > |e C
AB| the

critical line is monotonic, and becomes a straight line
when |e AB| ® ¥ ( ® gure 2 ( i) ). The phase diagram we
obtain comprises closed loops without an upper critical
point for p* < C(Kc) /2Kc, and the system is completely
miscible for p* > C(Kc) /2Kc.

4. Conclusion

We have studied the properties of an asymmetric mix-
ture as a function of the dimensionality and of the
coupling strength between the components and the tem-
perature. Our results show that the model can display a
richer phase diagram than that reported previously. The
predicted behaviour ranges from simple coexistence of
two immiscible phases to closed loops of coexistence

terminated by two critical points or to closed loops of
immiscibility with a single lower critical point. Tempera-
ture versus composition phase diagrams are presented
for a variety of situations. In a forthcoming study we
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Figure 3. Coexistence curves
for e AB = 9/20e AA with e AA <
0 obtained from the two-
dimensional Onsager solution,
with crosses showing the loca-
tion of the critical points: (a)
p* > pM; (b) pm < p* < pM;
(c) C(Kc) /2Kc < p* < pm; and
(d) p* < C(Kc) /2Kc.

Figure 4. Coexistence curves for e AB = e AA and e AA < 0:
the continuous line corresponds to p* < C(Kc) /2Kc; the
dotted line indicates p*

M > p*
1 > C(Kc) /2Kc; and the

dashed line shows p*
M > p*

2 > p*
1.



shall address the issue of the inhomogeneous Lin± Taylor
model with particular emphasis on its wetting be-
haviour. Finally, we remark that the presence of two
or three critical points may lead to the unusual phenom-
enon of their coalescence. This possibility as we shall
show elsewhere has interesting physical repercussions
in the critical point behaviour [3].
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Appendix A

Derivation of the grand canonical potential
We present the derivation of the grand potential used

in the text, which follows Lin and Taylor’s previous one.
The partition function for the mixture can be written

as the following trace over the con® gurations of the
system {ni}:

N = å
{ni}

e
b ¹A å i

ni - b e AA å k i, j l ninj

N B({ni}) , (A 1)

where ni is an occupancy variable relative to the i th cell,
which takes on the values one or zero if a particle A is
present or not; the symbol k i, j l restricts the double sum
to nearest neighbour cells only. N B({ni}) is the partition
function for particles B, subject to a ® xed con® guration
of particles A.

Since the pairs B± B do not interact one can easily
evaluate N B({ni}) .

[ å
MF

lF= 0 ( MF

lF ) e b ¹ BlF][ å
MI

lI= 0 ( MI

lI ) e b ¹BlI e- b e ABlI]
= (1 + zB) MF (1 + zB e- b e AB ) MI . (A 2)

The total number M of subcells available to particles B
has been divided into two classes: MF represents the
number of subcells which do not share a face with a
cell occupied by A, while MI is the number of those
subcells where the particles B experience the A± B inter-
action.

The numbers MF and MI satisfy the relations:

M = MI + MF (A 3 a)

MI = t å
i

ni - 2 å
k i,j l

ninj, (A 3 b)

MF = t N - t å
i

ni - MI

= t N - 2t å
i

ni + 2 å
k i,j l

ninj . (A 3 c)

Substituting these equalities into equation (A 1) , the
grand canonical partition function reads

N = (1 + zB) t N å
{ni}

exp{[- b e AA + 2 ln (1 + zB)

- 2 ln (1 + zBe- b e AB)]å
( i,j)

ninj}
´ exp{[b ¹A - 2t ln (1 + zB) + t ln (1 + zBe- b e AB)]å

i
ni} .

(A 4)

From equation (A 4) one concludes that the binary mix-
ture is equivalent to a pure lattice gas model, after re-
de® ning the pair interaction and the chemical potential.
The e� ective couplings of the èquivalent’ lattice gas
depend upon the temperature, the fugacity of species B
and the coupling strength A± B, according to the equa-
tions

( b e ) eff = b e AA - 2 ln( 1 + zB

1 + zBe- b e AB ) =
e AA

kBT * , (A 5a)

( b ¹) eff = b ¹A - t ln( (1 + zB) 2

1 + zBe- b e AB ) =
¹ *

kB T * . (A 5b)

These relations allow us to de® ne a renormalized tem-
perature T * and chemical potential ¹ * as functions of
the real temperature and the chemical potential of the
species A and B. The grand canonical potential can be
written as

X mixture(T,¹A,¹B) = - kBT ln N

= - NkBT t ln (1+ zB) +
T
T* X lattice(T*,¹*) .

(A 6)

Now, X lattice is not known exactly for arbitrary lattices
and dimensionalities; nevertheless it can be calculated
rigorously, whenever the corresponding Ising problem
has a known solution. This is possible only for D < 2.
To obtain the solution of our model it is convenient to
transform from the occupation variables (ni = 0,1) to
the Ising variables (si = 6 1) :

si = 2ni - 1. (A 7)

Substituting this relation in expression (A 4) we obtain

N = eNH- N t
2 K(1 + zB) N t ZD,t (K,H) , (A 8)
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where the e� ective magnetic ® eld H and the coupling are
given by:

H =
b ¹A

2 - t
b e AA

4 - t

2
ln (1 + zB) , (A 9 a)

K = 1
2 ln( 1 + zB

1 + zBe- b e AB ) - b ²AA

4 , (A 9 b)

and ZD,t is the canonical partition function of the asso-
ciated Ising model. By taking the logarithm we obtain
the grand potential and derive the thermodynamic prop-
erties of the model.

Appendix B

Properties of
~
C(K,H)

In this appendix we study the behaviour of the func-
tion

~
C(K,H) .

Let us write the Hamiltonian of the Ising model as:

b H = - K[N+ + + N- - - N+- ]- H(N+ - N- ) , (B 1)

where N+ + , N- - and N+- represent the number of
nearest-neighbour pairs of spin that are (+1,+1) ,
(- 1, - 1) and (+1, - 1) , respectively, and N+ and N-
are the numbers of spins with s = +1 and s = - 1, re-
spectively. Since

2N+ + + N+ - = t N+ (B 2 a)
and

2N- - + N+ - = t N- , (B 2 b)

Equation (B 1) can be written also as

b H = - 4K( N+ + - t N+

2 ) - 2HN+ - t N
2

K + HN

= - t N
2

K + HN + 2KN+- - 2HN+ . (B 3)

The function
~
C(K,H) , which is proportional to the

pressure of a pure ¯ uid with interaction parameter given
by equation (A 10 b) and chemical potential shift pro-
portional to 2H, can be expressed as

~
C(K,H) =

1
N

ln Z - t K
2

+ H

=
1
N

ln( å
N+ ,N+-

g(N+ ,N+- )e- 2KN+- e2HN+ ) . (B4)

The sum is over all con® gurations, and g(N+ ,N+ - )
counts the number of states characterized by N+ up
spins and N+ - up± down nearest pairs. As we can see,
C(K,H = constant) , is a monotonically decreasing
function of K. When K ® 0, this function tends to
ln (1 + e2H ) , and in the thermodynamic limit, when
K ® ¥ , this function tends to 2H if H > 0 and to
zero if H < 0.

¶
~
C(K,H) / ¶ K at H constant can be written as

( ¶
~
C(K,H)

¶ K ) H
=

- b UD,t (K,H)
NK

- t

2
- H

K
mD,t

= - 2
N k N+- l K,H < 0, (B5)

where UD,t is the internal energy of the associated Ising
model, and mD,t is the magnetization per site. Physic-
ally, the derivative is proportional to the thermal
average of the up± down nearest neighbour pairs. This
function tends to zero when K ® ¥ (the only states
with probability di� erent from zero are those with
N+- = 0) and tends to - 2t /[(eH + e- H ) 2]when K ® 0.

It can be shown that ( ¶ C / ¶ K)H is a monotonically
increasing function with K, since its derivative respect to
K, at H constant, is

( ¶ 2C
¶ K2 ) H

=
4
N[k (N+- - k N+ - l ) 2 l ]> 0. (B6)

Let us de® ne C(K) º
~
C(K,H = 0) . The following re-

lations hold:

C(K) > 0, (B 7a)

C(0) = ln 2, C(K ® ¥ ) = 0. (B 7b)

The derivatives of C with respect to K have the fol-
lowing properties:

CÂ (K) < 0, (B7 c)

CÂ (0) =
- t

2
, CÂ (K ® ¥ ) = 0, (B 7d)

and
CÂ Â (K) > 0. (B7 e)

Thus, C(K) varies from ln 2 to zero monotonically in
the interval 0 < K < ¥ .
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