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We study a system of purely repulsive spherical self-propelled particles in the minimal set-up
inducing Motility-Induced Phase Separation (MIPS). We show that, even if explicit alignment in-
teractions are absent, a growing order in the velocities of the clustered particles accompanies MIPS.
Particles arrange into aligned or vortex-like domains. Their sizes increase as the persistence of the
self-propulsion grows, an effect that is quantified studying the spatial correlation function of the
velocities. We explain the velocity-alignment by unveiling a hidden alignment interaction of the
Vicsek-like form, induced by the interplay between steric interactions and self-propulsion. As a
consequence, we argue that the MIPS transition cannot be fully understood in terms of a scalar
field, the density, since the collective orientation of the velocities should be included in effective
coarse-grained descriptions.

Fishes [1], birds [2] or insects [3] often display fashinat-
ing collective behaviors such as flocking [2, 4] and swarm-
ing [5], where all units of a group move coherently pro-
ducing intriguing dynamical patterns. A different mode
of organization of living organisms is clustering, for in-
stance in bacterial colonies [6], such as E. Coli [7], Myx-
ococcus xanthus [8] or Thiovulum majus [9], relevant for
histological cultures in several areas of medical and phar-
maceutical sciences. Out of the biological realm, the
occurrence of stable clusters [10–13], stable chains [14]
or vortices [15] in activated colloidal particles, e.g. au-
tophoretic colloids or Janus disks [16, 17], offers an inter-
esting challenge for the design of new materials.

Even if the microscopic details differ case by case,
a few classes of minimal models with common coarse-
grained features have been introduced in statistical
physics. Units in these models are called “active” or “self-
propelled” particles [18–20] to differentiate them from
Brownian colloids which passively obey the forces of the
surrounding environment. Propelling forces may be ei-
ther of mechanical origin (flagella or body deformation),
or of thermodynamic nature (diffusiophoresis and self-
electrophoresis) [21, 22]. In some simple and effective
examples, self-propulsion is modeled as a constant force
with stochastic orientation, as in the case of Active Brow-
nian Particles (ABP) [23, 24]. Thermal fluctuations play
only a marginal role and stochasticity is usually due to
the unsteady nature of the swimming force itself.

It is well-known that dumbells, rods and, in general,
elongated microswimmers display a marked orientational
order even in the absence of alignment interactions [25–
28]. Instead, in the literature, it is believed that explicit
aligning velocity-interactions are crucial to observe veloc-
ity alignment between spherical self-propelled units [29].
This kind of interaction, such as that in the seminal Vic-
sek model [30], consists in a short-range force that aligns
the velocity of a target particle to the average of the

neighboring ones. Vicsek interactions lead to long-range
polar order [31–33], density inhomogeneities in the form
of traveling bands [34, 35] or periodic density waves [36].
Recently, models with orientation-velocity couplings have
been implemented to obtain a global polar order without
assuming any explicit velocity-alignment between neigh-
boring particles [37, 38]. Instead, the interplay between
steric interactions and self-propulsions is recognized to
be the minimal requirement for phase-separation in self-
propelled systems. This occurs even in the absence of
any attractive force [39], at variance with passive Brow-
nian particles. Such a phenomenon, known as Motility-
induced Phase Separation (MIPS) has been largely inves-
tigated [40], starting from the pioneering work of Fily and
Marchetti [41]. The coexistence of clustering and veloc-
ity ordering has been recently considered, and, even if its
role in MIPS is still an open question [42–45], it has been
shown that may induce freezing in dense regimes [46].
The alignment, characterizing Vicsek-like models [47],
and the ABP phase-separation are phenomena which are
usually thought to be generated by two distinct types of
interactions between particles.

In the present study, we challenge the widespread idea
that explicit alignment interactions are necessary to ob-
serve a growing orientational order or - equivalently - that
the velocity alignment observed in Vicsek-like models do
not appear in purely repulsive, spherical ABP particles.
To the best of our knowledge, previous studies aimed to
measure the polarization, i.e. the existence of a common
orientation of the self-propelling force, but overlooked the
possibility of ordering in the real particles’ velocity, that
is the crucial observation of the present report.

We consider a suspension of N interacting self-
propelled particles, for simplicity (and without loss of
generality) in two dimensions. The evolution of the cen-
ter of mass coordinate of each microswimmer, xi, is de-
scribed by an over-damped equation of motion with self-
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propulsion embodied by a time-dependent external force
with constant modulus, v0, and orientation vector, ni,
of components (cos θi, sin θi). According to the ABP
scheme, the orientational angles, θi, evolve as indepen-
dent Wiener processes. Interactions are purely repulsive
and no explicit aligning forces are included. Therefore
the dynamics reads:

γẋi = Fi + γv0ni (1a)

θ̇i =
√

2Drξi , (1b)

being Dr the rotational diffusivity (thermal diffusion is
usually negligible) while γ is the constant drag coeffi-
cient. Steric interactions are modeled by the force Fi =
−∇iUtot, being Utot =

∑
i<j U(|rij |) with rij = xi − xj .

We choose U(r), with as a purely repulsive potential of

the WCA type, namely U(r) = 4ε
[(
σ
r

)12 −
(
σ
r

)6]
+ε, for

r ≤ 21/6σ and zero otherwise. The constant σ represents
the nominal particle diameter while ε is the energy scale
due to interactions.

Numerical integration of Eq. (1a) is performed for a
system of N particles in a square box of length L, with
periodic boundary conditions. We set a packing fraction
φ = 0.64, where MIPS is known to occur at small enough
values of Dr [41]. Indeed, Fig. 1(a) shows the coexistence
of a stable dense cluster and a dilute disordered phase,
at Dr = 0.2. The boundary of the cluster is highly dy-
namical: continuously in time, particles join the cluster
and leave it, in such a way that the average cluster pop-
ulation does not change. In Fig. 1 (b-d) we enlarge three
representative regions of the system. The bulk displays
a highly ordered close-packing configuration [48]. The
study of the pair correlation function, g(r), shown in the
Supplemental Materials (SM), reveals that the main peak
occurs at a distance r̄ < σ in the cluster: particles attain
a steady-state configuration with large potential energy,
where each microswimmer climbs on the repulsive poten-
tial exerted by the surrounding ones. Besides, the occur-
rence of a second double-split peak reveals a hexagonal
lattice structure, in agreement with the direct observa-
tion and previous studies [48]. The colors in Figs. 1(a-
d) encode the orientation, n, of the self-propelling force
which appears to lack any kind of alignment.

In Fig. 1 (c-d) we give evidence of the main novel phe-
nomenon reported here. We draw with blue arrows the
velocities, ẋi, of each microswimmer which is in gen-
eral different from the orientation of the active force,
i.e. ẋi 6= niv0. Despite the absence of any alignment
interaction, the velocities of the microswimmers in the
bulk of the cluster align, self-organizing in large oriented
domains inside the cluster. Even if each ni points ran-
domly, particles in large groups move in the same direc-
tion (Fig. 1 c)). Such domains dynamically self-arrange
continuously in time and, in some cases, evolve into vor-
tex structures as evidenced in Fig. 1 d). The average

Figure 1. In panel (a) we plot a snapshot configuration, dis-
playing MIPS, enlarging a window near the surface of the
cluster. Colors encode the self-propulsion direction. Panel
(c) and (d) are windows of the bulk where we plot the veloc-
ities of each particle with blue arrows, showing aligned and
vortex domains, respectively. Data are obtained by simula-
tion with v0 = 50, Dr = 0.2 and the other parameters as
described in the text.

velocity of each domain is quite smaller than v0 (the typ-
ical speed in the absence of interactions). Further details
about the velocity distributions in the different phases
are contained in the SM.

The global alignment of the particles or polarization is
commonly measured by considering the propulsion ori-
entation, ni, of each particle, while here we focus on the
velocity ẋi. A possible order parameter is represented

by the sum
∣∣∣∑N

k=1 e
iψk(t)

∣∣∣, where ψk is the angle formed

by the particle velocity with respect to the x axis. Such
a parameter has the property of being zero for particles
without any alignment while it returns one for perfectly
aligned particles. Unfortunately, even if restricted to par-
ticles inside a cluster, such a quantity does not reveal a
clear polarization of the system because of the presence
of several domains with different orientations. Thus, we
introduce the spatial correlation function of the velocity
orientation, Qi(r). We define the angular distance be-
tween two angles dij = min[|ψi−ψj |, 2π−|ψi−ψj |], and
measure the velocity alignment between particle i and
the neighboring particles in the circular crown of mean
radius r = kr̄, with integer k > 0, and thickness r̄, in
such a way that

Qi(r) = 1− 2
∑
j

dij
Nkπ

, (2)

where the sum runs only over the particles in the circular
shell selected by k and Nk is the number of particles in
that shell. Then, we define Q(r) =

∑
iQi(r)/N , which

reads 1 for perfectly aligned particles in the k-th shell, −1
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for anti-aligned particles and 0 in the absence of any form
of alignment. Q(r) can quantify partial alignment even
in the absence of global polarization. Panel (b) of Fig. 2
shows Q(r) for different values of Dr in a set of simula-
tions with v0 = 50 (the other parameters are fixed in the
same way as before). In generalQ is a decreasing function
of r. At large Dr where MIPS does not occur, the align-
ment measured by Q(r) is absent or very weak, affecting
no more than the first two shells. In the MIPS configura-
tion, the degree of alignment increases and spans larger
and larger distances, when Dr is reduced. Three snap-
shots with color-encoded velocity orientation are shown
in panels (c-e) of Fig. 2, showing the growth of velocity-
aligned domains in the cluster phase. In fig. 2(a) we
investigate the nature of this ordering phenomenon by
measuring the following order parameter

R =

∫
Q(r)dr . (3)

The integral is performed over the whole cluster domain
while in the absence of phase separation we consider the
whole box.

To evaluate the relationship between this growing spa-
tial velocity order and MIPS, we compare R with an es-
tablished order parameter for phase separation. Local
packing fractions show a unimodal distribution when the
system is not phase-separated and a bimodal one when
phase separation occurs. The height of the peaks in the
distribution identifies the most probable values of the
packing fraction in the unimodal case, it corresponds
to the homogeneous phase φg ≈ φ. Instead, in the bi-
modal case, the cluster phase is identified by the peak
with φc > φ while the disordered phase by that with
φg < φ. These results are reproduced as a function of
1/Dr in Fig. 2(a). At 1/Dr ∼ 0.3 phase separation is re-
vealed by the transition from the single peak to the dou-
ble peak in the distribution of the packing fraction. In
our configuration, φg in the homogeneous phase follows
continuously the values outside the cluster, which forms
at a much higher packing fraction. The comparison with
the curve for R reveals the most interesting information
of our study, that is the coincidence between the MIPS
transition and the growing of the velocity-order. Indeed,
R reveals a two-steps behavior, being almost-zero before
1/Dr ∼ 0.3 and revealing a sharp, monotonic increase
starting from this point.

To shed light on the above phenomenology we perform
an exact mapping of the original ABP dynamics, Eqs. (1),
in the same spirit of the Ornstein-Uhlenbeck (AOUP)
model [49–51]. In particular, we obtain an equation of
motion for the microswimmer velocity, vi = ẋi, which is
an unprecedented result for ABP. In two dimensions, vi
follows:

µv̇i = −γ
N∑
j=1

Γij(rij)vj + Fi +
√

2γ(µv2
0)ξi × ni , (4)

Figure 2. Panel (a): density, φg (red upper triangles) and
φc (blue lower triangles) for the dilute and the cluster phase,
respectively, as a function of 1/Dr. Velocity-alignment or-
der parameter, R (green diamonds), as a function of 1/Dr.
For presentation reasons, R is rescaled by a factor 6. Black
dashed lines are eye-guides: the vertical one identifies the
value of 1/Dr at which the MIPS-transition occurs. Instead,
the horizontal lines refer to the nominal density (∼ 0.64) and
the value of R in absence of velocity alignment (∼ 0). Panel
(b): Q(r) for different values of Dr, as shown in the legend,
where we specify the presence or not of the phase separation.
Panel (c), (d) and (e): Snapshot configurations for three dif-
ferent values of 1/Dr. Panel (c) is obtained for Dr = 3, panel
(d) for Dr = 1 and panel (e) for Dr = 0.2. Colors are asso-
ciated with the direction of the velocity of each particle. All
the simulations are realized with numerical density ∼ 0.64,
v0 = 50 and the other parameters specified in the text.

where ξi is the stochastic vector with components
(0, 0, ξi) and both vi and xi belong to the plane xy. The
effective mass is µ = γ/Dr and the viscosity matrix Γij
has the following structure:

Γαβij (rij) = δijδαβ +
1

Drγ
∇iα∇jβ

∑
k<l

U(|rkl|) , (5)

where Latin and Greek indices refer to the particle num-
ber and the spatial vector components, respectively. The
derivation of Eq. (4) is reported in the SM. Eq. (4) is
the equation of motion of an underdamped particle un-
der the action of a space-dependent Stokes force and a
multiplicative noise both in the velocity and in the posi-
tion of the target microswimmer. The noise term always
acts perpendicularly to ni, because of the cross product.
The most interesting information contained in Eq. (4) is
the fact that the dynamics of the i-th particle is strongly
influenced not only by the positions but also by the ve-
locities of the surrounding particles, through the matrix
Γij which - because of the factor 1/Dr - is dominated
by the velocity coupling terms. We recall that Eq. (4) is
almost identical to the equation of motion of interacting
AOUP particles [52], the only difference being the noise
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term, which in AOUP is additive and uncorrelated, i.e.
ξi × ni is replaced by a noise vector with independent
components.

Inside a cluster Eq. (4) can be further simplified, taking
advantage of the hexagonal spatial order: we may assume
that a particle in the bulk of the cluster has 6 neighbors
at relative positions r̄ij with j = 1..6, with constant mod-
ulus r̄ = |r̄ij | < σ, as revealed, for instance, by the g(r).
With these assumptions, one gets for the particle at the
center of the hexagon

µv̇ = − 1

Dr

6∑
j=1

Ĥj · (v−vj)−γv +
√

2γ(µv2
0)ξ×n , (6)

where Ĥj is the matrix coupling the central particle to
the j-th particle and its elements depend on r̄ and on the
angle formed by xij = xj−xi and the x-axis. The matrix

elements of Ĥj are reported in the SM. Equation (6) can
be rewritten in terms of the average velocity vector of the
6 neighbors v∗ =

∑6
j=1 vj/6 and takes the form

µv̇ = − Ĵ

Dr
·(v−v∗)+

1

Dr

6∑
j=1

Ĥj ·(vj−v∗)−γv+k , (7)

with Ĵ =
∑6
j Ĥj = 3

[
U ′′(r̄) + U ′(r̄)

|r̄|

]
I, being I the

identity matrix and k the noise vector of Eq. (6).
Eqs. (6) and (7) are derived in the SM. We notice that(
U ′′(r̄) + U ′(r̄)

|r̄|

)
> 0 which means that the first term

in the rhs of Eq. (7) is a Vicsek-like force aligning the
velocity of the central particle towards the average ve-
locity vector v∗ [34]. In two special cases the second
force in the rhs of Eq. (7) vanishes: i) trivially when the
6 neighbors have identical velocities vj = v∗; ii) when
the 6 neighbors have velocities arranged according to a
vortex-like pattern. This statement is proved in the SM.
In both cases at large 1/Dr the dynamics of µv̇ is domi-
nated by the Vicsek-like aligning force (first term in the
rhs of Eq. (7)) and one has a rapid convergence v→ v∗.
At the end of this convergence, i.e. when the velocity of
the central particle is exactly aligned with the 6 neigh-
bors, the aligning force disappears and the sub-dominant
bath-like terms −γv +

√
2γ(µv2

0)ξ × n perturb the ve-
locity. At this stage, the Vicsek-like force comes back
into play and restores the alignment. For more general
cases (i.e. when the 6 neighbors are not aligned or are
arranged in a vortex pattern), a second force, depending
on the deviations vj − v∗ with a large pre-factor 1/Dr,
comes into play. However, when particles are close to
alignment, the terms vj−v∗ are small and uncorrelated,
so that their sum is even smaller and does not alter sig-
nificantly the aligning term, as numerically checked. A
rigorous general estimate of the fate of Eq. (7) is difficult.

Our analytical description in terms of effective veloc-
ities could be adapted to describe the emergent polar

order of rod-like [27, 53, 54] or dumbell [55, 56] par-
ticles, introducing the angular velocity induced by the
self-propulsion.

To derive the exponential-like form of the spatial ve-
locities correlations, we assume all particles sitting on
an infinite hexagonal lattice, with each particle’s veloc-
ity connected to its 6 neighbors by Eq. (6). Since n and
v are roughly uncorrelated in the bulk, we replace the
multiplicative noise with an additive uncorrelated noise,
as in the AOUP case [57]. The evolution of this veloc-
ity field can be mapped, by Fourier transforming, onto a
Langevin equation for each mode in the reciprocal lattice.
Its steady-state solution gives the velocity structure fac-
tor or, equivalently, the spatial correlations of the veloc-
ity field. This analysis demonstrates that the correlation
length of the velocity field reads

λs ≈ r̄
[

3

4γDr

(
U ′′(r̄) +

U ′(r̄)

|r̄|

)]1/2

, (8)

whose derivation is reported in the SM. This argument
suggests a correlation length growing with 1/Dr in qual-
itative agreement with Fig. 2 a) and b). We suspect
that terms at small wavelengths can be important, for
instance, in the explanation of the vortex structures.

Our study demonstrates an unprecedented strong con-
nection between velocity ordering and MIPS transitions.
In the absence of any microscopic force that explicitly
aligns velocities, we observe the emergence of velocity
patterns, aligned or vortex-like domains in a dense clus-
ter, which become more and more pronounced as the
persistence of the active force increases.

We stress here the deep non-equilibrium nature re-
vealed by our study. Such a velocity order cannot be
observed in any passive Brownian suspensions of spheri-
cal particles, since, in those cases, particles’ velocities are
distributed according to independent Boltzmann distri-
butions. Thus, the growth of order in the velocity field
cannot be explained in equilibrium-like theories unless
an effective aligning force is introduced in a macroscopic
“Hamiltonian” which is absent in the microscopic model.
This would be in line with previous equilibrium-like ap-
proaches where effective attractive interactions were in-
troduced to explain phase separation [58, 59] also at the
level of an effective free-energy functional [60–63] or em-
ploying an effective Cahn-Hilliard equation [64, 65]. All
such strategies were already challenged by observations
about pressure [66, 67], negative interfacial tension be-
tween the coexisting phases [68, 69] and different temper-
atures inside and outside the cluster [70], all inconsistent
with any equilibrium-like scenario. The phenomenology
discussed here represents an additional argument in favor
of a purely non-equilibrium approach.

In virtue of our results, we argue that the full com-
prehension of MIPS cannot be obtained in terms of the
density field only, but requires, at least, the employment
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of another vector field to account for the velocity align-
ment. The introduction of a vectorial field to model the
velocity alignment, for instance in the framework of field
theories [71–76], may offer a new interesting perspective
to increase the understanding of MIPS combined with the
alignment phenomenology presented in this manuscript.
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407, 367 (2015).

[11] J. Palacci, S. Sacanna, A. Steinberg, D. Pine, and
P. Chaikin, Science , 1230020 (2013).

[12] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen,
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[43] J. Barré, R. Chétrite, M. Muratori, and F. Peruani,
Journal of Statistical Physics 158, 589 (2015).

[44] M. N. van der Linden, L. C. Alexander, D. G. Aarts, and
O. Dauchot, arXiv preprint arXiv:1902.08094 (2019).
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SUPPLEMENTAL MATERIAL OF “SPONTANEOUS VELOCITY ALIGNMENT IN
MOTILITY-INDUCED PHASE SEPARATION”

In this Supplemental Materials, we provide more details about the main phenomenology and the derivations of the
analytical results reported in the main text In Sec. , we show the pair correlations and the distribution function of
the velocity modulus inside and outside the cluster. Sections and are devoted to the detailed derivations of Eq. (4),
Eq. (6) and Eq. (7) of the main text, i.e. the equations of motion for the velocity and the effective equation ruling
the particles’ dynamics inside the cluster. Instead, the form of the spatial velocity correlation, i.e Eq. (8) of the main
text, is derived in Sec. . Finally, In Sec. , Eq. (7) is evaluated for the typical velocity-patterns reported in Fig. 1 of
the main text, namely aligned and vortex-like domains.

NUMERICAL ANALYSIS, PAIR CORRELATION FUNCTION AND SINGLE PARTICLE VELOCITY
DISTRIBUTION

The numerical analysis of Eqs.(1) of the main text has been performed using a finite-difference scheme with periodic
boundary conditions in a square box of size L = 125. The number of particles have been fixed to N = 104, obtaining
a packing fraction, φ = 0.64. The WCA potential, described in the main text, is choosen fixing ε = 1 and σ = 1,
for the sake of simplicity. We always fix the self-propulsion strength to v0 = 50, since we focus on the effect of the
persistence time, 1/Dr, varied from 10−2 to 10.

To understand the structure of an active suspension of N particles we study the pair correlation function defined
as g(r) =

∑
i

∑
j 6=i〈δ (x− xij)〉A/N2, being A the area occupied by the system, the sum runs over the distances

between the particles’ pairs, xij and x denotes the target distance. The brackets indicate a circular average over x
such that |x| = r. In Fig. 3 a) we evaluate g(r) within (blue curve) and outside (red curve) the cluster for a typical
set of parameters displaying MIPS, namely v0 = 50 and Dr = 0.2. The pair correlation within the cluster shows the
typical solid-like shape [48] with the occurrence of a second split peak, while g(r) outside the cluster is more similar
to the pair correlation corresponding to a liquid. The first peak of g(r) inside the cluster, which measures the typical
inter-particle distance between neighboring particles, occurs at a distance r̄ < σ. This means that particles “climb
on the repulsive potential”. Instead, g(r) outside the cluster goes rapidly towards one, displaying only the initial
peak, placed at position ∼ σ. This peak has not a Brownian counterpart, being the density very low: a Brownian
suspension of particles with the same area fraction shows a peak-less g(r) regardless of the temperature value [51].
The occurrence of such an initial anomalous peak means that particles prefer to form unstable couples or small groups
at variance with an equilibrium-like gas.

Figure 3. Panel (a): Pair correlation function, g(r), computed within (blue) and outside (red) of the main cluster. The inset
enlarges the first peak of the g(r) as shown in the Figure. Panel (b): probability distribution function of the velocity, p(v),
within (blue) and out (red) of the main cluster. The observables are obtained from a simulation with v0 = 50 and Dr = 0.2.
The other parameters are the same described in the main text.

In fig. 3 b), we also study the probability distribution function, P (v), of the velocity modulus, v = |v|, within (blue)
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and outside (red) of the cluster for a simulation with v0 = 50 and Dr = 0.2, displaying MIPS. Particles inside the
cluster have a mean velocity, 〈v〉, slower than v0, which is instead the typical speed value of particles in the disordered
phase, as emerged by the presence of the large peak at v = v0. We observe that a consistent fraction of particles in
the disordered phase is not interaction-free as revealed by two tails for v smaller and even larger v0.

THE VELOCITY OF AN ACTIVE BROWNIAN PARTICLE: DERIVATION OF EQ.(4)

Eq. (1b) of the main text, i.e. the dynamics of the angle θi, corresponds to the following vectorial equation for the
associated orientation vector ni:

ṅi =
√

2Drξi × ni , (9)

being ξi a three dimensional vector with components (0, 0, ξi) and 〈ξi(t)ξj(t′)〉 = δ(t − t′), while ni is a unit vector
belonging to the xy-plane. In Eq. (9) the noise has multiplicative character and is integrated with the Stratonovich
convention. Taking the time derivative of Eq. (1a) of the main text and defining vi = ẋi, we get:

dvi = − 1

γ

∑
j

∇i∇jUtot · vjdt+ v0dni . (10)

In order to compute the variation dni we switch to Ito calculus and find after some standard manipulations:

dni =
√

2Dr ξidt× ni −Drni dt , (11)

where by ξidt we denote the Wiener process dW i = ξidt. Putting Eq. (11) into Eq. (10) we obtain:

dvi = − 1

γ

∑
j

∇i∇jUtot · vjdt−Drv0nidt+ v0

√
2Dr ξidt× ni .

Finally, using Eq. (1a), we get:

γ

Dr
dvi = −γvidt−

1

Dr

∑
j

∇i∇jUtot · vjdt−∇iUtotdt+ v0

√
2
γ2

Dr
ξidt× ni .

Considering the definition of the matrix Γ given by Eq. (5) and µ = γ/Dr, we obtain Eq. (4) of the main text.

EFFECTIVE EQUATIONS FOR PARTICLES WITHIN THE CLUSTER: DERIVATION OF EQ.(6) AND
EQ.(7)

Let us start from Eq. (4) for a system of particles placed on a perfect hexagon, as in the bulk of the cluster. A
target particle interacts only with its six neighbors at distance r̄ < σ due to the the nature of the potential that
cuts off the interactions with particles located at distances larger than σ. By symmetry, in Eq. (4) the external force
contribution, Fi, on the target particle, turns out to be zero and the only contribution to the dynamics comes from
the noise source and from the velocities-dependent terms,

∑
j Γij · vj , which explicitly read:

∑
j

Γij · vj =
∑
j

vj ·
[
I +

γ

Dr
∇i∇jUtot

]

= vi +
γ

Dr

6∑
j=1

vi · ∇i∇iU (rij) +
γ

Dr

6∑
j=1

vj · ∇i∇jU (rij) ,

(12)

being rij the distance between the i-th and j-th particle. The last two terms of Eq. (12) can be explicitly evaluated
by considering the derivative with respect to the spatial components denoted by Greek upper indices:

∇αi ∇
β
i U (rij) =

[
U ′′(rij) +

U ′(rij)

|rij |

]
rαijr

β
ij

|rij |2
− δαβ

U ′(rij)

|rij |
, (13)
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being rαij = rαi − rαj , with α = x, y. Denoting with δj the angle formed (with respect to the x-axis) between the j-th
and the i-th particle, we can note that rαij/|rij | reads cos (δj) and sin (δj) for α = x, y, respectively. Since particles
belong to a perfect hexagon we can express the angle as a function of j in such a way that δj = δ0 + jπ/3. The
orientation of the hexagon with respect to the reference frame is fixed by the angle δ0, which we set to zero for the
sake of simplicity. Expressing the matrix elements of Eq. (13) in terms of trigonometric functions, we get:

Ĥj =

U ′′(r̄) cos2(jπ/3) + U ′(r̄)
|r̄| sin2(jπ/3)

[
U ′′(r̄)− U ′(r̄)

|r̄|

]
cos(jπ/3) sin(jπ/3)[

U ′′(r̄)− U ′(r̄)
|r̄|

]
cos(jπ/3) sin(jπ/3) U ′′(r̄) sin2(jπ/3) + U ′(r̄)

|r̄| cos2(jπ/3)

 . (14)

Since the potential depends only on the inter-particle distance the following property holds:

∇αi ∇
β
j U = −∇αi ∇

β
i U , (15)

and we can easily find Eq. (6) of the main text, assuming that rij = r̄ for every j.
The derivation of Eq. (7) of the main text comes directly from Eq. (6) ibid., by separating the force ∝ v from the

one ∝ vj . In particular, we observe that the sum over j of the matrix element of Ĥj gives rise to a very simple shape
in the hexagonal configuration:

6∑
j=1

Ĥj = 3

(
U ′′ +

U ′

r̄

)
I ≡ Ĵ . (16)

Such a simplification comes from the following properties holding in general for every δ0:

6∑
j=1

cos2

(
δ0 +

jπ

3

)
=

6∑
j=1

sin2

(
δ0 +

jπ

3

)
= 3 , (17)

6∑
j=1

cos

(
δ0 +

jπ

3

)
sin

(
δ0 +

jπ

3

)
= 0 . (18)

Finally, adding and subtracting J · v∗, being v∗ =
∑6
j=1 vj , we obtain Eq. (7).

MODES ANALYSIS OF THE VELOCITY FIELD IN THE HEXAGONAL LATTICE

In this Section, we derive Eq. (8) of the main text discussing the approximations involved. Let us start from Eq. (6)
of the main text: Replacing the multiplicative noise term by the additive noise

√
2γ(µv2

0)ξ and applying the discrete
Fourier transform to the corresponding equation we obtain

µ
∂

∂t
ṽ(k, t) = −γṽ(k, t)− 1

Dr
H̃(k)ṽ(k, t) +

√
2γµv2

0 ξ̃(k, t) , (19)

being ṽ(k, t) and ξ̃(k, t) the Fourier transform of v and ξ, respectively. The symmetric matrix H̃(k), according to
Eq. (14), has the following matrix elements

H̃xx(k) =

(
U ′′(r̄) + 3

U ′(r̄)

r̄

)[
cos(

kxr̄

2
) cos(

√
3ky r̄

2
)− 1

]
+ 2U ′′(r̄)[cos(kxr̄)− 1] , (20)

H̃yy(k) =

(
3U ′′(r̄) +

U ′(r̄)

r̄

)[
cos(

kxr̄

2
) cos(

√
3ky r̄

2
)− 1

]
+ 2

U ′(r̄)

r̄
[cos(kxr̄)− 1] , (21)

H̃xy(k) =
√

3

(
U ′′(r̄) + 3

U ′(r̄)

r̄

)
sin(

kxr̄

2
) sin(

√
3ky r̄

2
) . (22)

Eq. (19) can be easily solved

ṽ(k, t) = ṽ(k, 0)e−α(k)t +
√

2γµv2
0

∫ t

0

dt′ e−α(k)(t−t′) ξ̃(k, t) , (23)
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where, for the sake of simplicity, we report α(k) in the small k limit, obtaining:

α(k) = Dr +
3

4γ

(
U ′′(r̄) +

U ′(r̄)

r̄

)
|k|2 r̄2 . (24)

The corresponding equal time velocity-correlation is

〈v̂x(k, t)v̂x(−k, t)〉+ 〈v̂y(k, t)v̂y(−k, t)〉 =
2v2

0

1 + λ2
s |k|

2 , (25)

where

λs ≈ r̄
[

3

4

1

γDr

(
U ′′(r̄) +

U ′(r̄)

|r̄|

)]1/2

. (26)

The expression (26) corresponds to Eq. (8)of the main text. Coming back to the real space representation, Eq. (25)
turns into:

〈v(x + r, t)v(x, t)〉 ≈ 2v2
0

( λs
8πr

)1/2

e−r/λs . (27)

We outline that the correlation length, Eq. (26), and the exponential shape of the space correlation, Eq. (27), are the
results of the expansion for small k.

FORCES CONTRIBUTIONS IN THE ALIGNED AND VORTEX DOMAINS

In this Section, we calculate the velocity dependent force on a target particle due to the six surrounding particles
having velocities, vj , with j = 1, ..., 6. The particle with j = 1 is placed on the x direction at coordinates (r̄, 0).
The others are placed sequentially in the anti-clockwise sense at reciprocal angular distance π/3 and at distance r̄
from the origin of the reference frame. We check that in the ideal cases of aligned domains and vortex structures the
only relevant force contribution in Eq. (7) is the alignment term, ∝ Ĵ · (v − v∗), while the other forces vanish or are
irrelevant. Let us start from Eq. (7) of the main text, which we rewrite below, for completeness:

µv̇ = − 1

Dr
Ĵ · (v − v∗) +

1

Dr

6∑
j=1

(Ĥj −
Ĵ

6
) · vj − γv +

√
2γ(µv2

0)ξ × n , (28)

The last two terms of the right-hand side of Eq. (28) are irrelevant in the large persistence regime, where Dr is small.
Instead, the second addend of the right-hand side of Eq. (28) needs to be computed:

T ≡ 1

Dr

6∑
j=1

(Ĥj −
Ĵ

6
) · vj . (29)

By symmetry, the contributions on T due to the particles placed at he opposite vertices of the hexagon are equal.
Thus, in our notation, we have H1 = H4, H2 = H5 and H3 = H6. Below, we write explicitly each term:

Ĥ1 −
Ĵ

6
= Ĥ4 −

Ĵ

6
=

(
U ′′(r̄)− U ′(r̄)

r̄

)(
− 1

4

√
3

4√
3

4
1
4

)
, (30)

Ĥ2 −
Ĵ

6
= Ĥ5 −

Ĵ

6
=

(
U ′′(r̄)− U ′(r̄)

r̄

)(
− 1

4 −
√

3
4

−
√

3
4

1
4

)
, (31)

Ĥ3 −
Ĵ

6
= Ĥ6 −

Ĵ

6
=

(
U ′′(r̄)− U ′(r̄)

r̄

)(
1
2 0
0 − 1

2

)
. (32)

Using the above expressions for Hj we get:

Tx =
1

4Dr

(
U ′′(r̄)− U ′(r̄)

r̄

)[
2v6x + 2v3x − v1x − v2x − v4x − v5x +

√
3(v1y + v4y − v2y − v5y)

]
, (33)

Ty =
1

4Dr

(
U ′(r̄)− U ′′(r̄)

r̄

)[
2v6y + 2v3y − v1y − v2y − v4y − v5y +

√
3(v1x + v4x − v2x − v5x)

]
. (34)
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Both components of the force vanish in the following cases: i) when all velocities are identical, i.e. in the case of
aligned domains. ii) When the velocity of the six neighboring particles are arranged in a vortex configuration, for
instance, described by the following velocity profile:

vj = v0

[
− sin

(
j
π

3

)
, cos

(
j
π

3

)]
. (35)

In this last case, the corresponding average velocity vaninshes, i.e. v∗ = 0.
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