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Inhomogeneous entropy production in active crystals with point imperfections
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The presence of defects in solids formed by active particles breaks their discrete translational
symmetry. As a consequence, many of their properties become space-dependent and different from
those characterizing perfectly ordered structures. Motivated by recent numerical investigations
concerning the nonuniform distribution of entropy production and its relation to the configurational
properties of active systems, we study theoretically and numerically the spatial profile of the entropy
production rate when an active solid contains an isotopic mass defect. The theoretical study of
such an imperfect active crystal is conducted by employing a perturbative analysis that considers
the perfectly ordered harmonic solid as a reference system. The perturbation theory predicts a
nonuniform profile of the entropy production extending over large distances from the position of the
impurity. The entropy production rate decays exponentially to its bulk value with a typical healing
length that coincides with the correlation length of the spatial velocity correlations characterizing
the perfect active solids in the absence of impurities. The theory is validated against numerical
simulations of an active Brownian particle crystal in two dimensions with Weeks-Chandler-Andersen
repulsive interparticle potential.

I. INTRODUCTION

Active matter comprehends many systems of biolog-
ical and technological interest such as bird flocks, cell
colonies, spermatozoa, and Janus particles, to mention
just a few of them [1, 2]. All these systems are capa-
ble of self-propulsion, namely a mechanism that converts
energy from the environment into directed and persis-
tent motion and drives them out of equilibrium. Based
on experimental evidence, such a self-propulsion or active
force is represented at a coarse-grained level by a stochas-
tic process with memory. In other words, the value of the
active force acting on a given particle at a given instant
is correlated with the values it took in the past.

In this study, we shall focus on the properties of active
matter at high density, a regime characterizing several
systems ranging from biological tissues and cell mono-
layers [3–5] populating our skin, to dense colonies of
bacteria [6–8] capable of self-organizing into active two-
dimensional crystals of rotating cells [9]. Moreover, solid-
like configurations have been observed in systems of ac-
tive Janus colloids [10–13] and active granular parti-
cles [14–18]. Several numerical and theoretical studies
investigate the effect of the active force on high-density
phases of active matter, such as liquid, hexatic, and
solid [19–27]. In two dimensions, the activity shifts the
liquid-hexatic and hexatic-solid transition to larger val-
ues of the density [28, 29], somehow, increasing the effec-
tive temperature of the system and broadens the size of
the hexatic region that in the passive case is quite nar-
row [28]. More recently, it has been found that dense
phases of active matter display spatial velocity correla-
tions [30–35] a feature absent in equilibrium systems but
observed in active glasses [36–38]. This is a phenomenon
of dynamical origin determined by the tendency of the
particle velocities to align spontaneously even in the ab-

sence of direct alignment force [39]: it results from the
combined action of the persistence of the direction of mo-
tion and the steric repulsion among the particles, while
attractive interactions can even induce a flocking transi-
tion [40].

To mark the difference between an active and an equi-
librium solid with similar structural properties, one can
apply the tools of stochastic thermodynamics [41, 42]. In
particular, the so-called entropy production rate (EPR)
provides a quantitative measure of the distance of a sys-
tem from equilibrium [43–46]. This analysis discrimi-
nates between non-equilibrium steady states which pro-
duce entropy [47–51] and truly equilibrium states whose
EPR is zero. The non-vanishing of the EPR is a univer-
sal feature of non-equilibrium systems and occurs when
their dynamics break the time-reversal symmetry, i.e. the
detailed balance condition is violated. In the present
problem, the system produces both entropy and steady
probability currents, a situation that never occurs under
equilibrium conditions.

Being intrinsically out of equilibrium, active mat-
ter is an ideal platform to investigate entropy produc-
tion and shed light on several general properties of
non-equilibrium systems. However, except for specific
cases [52, 53], such as non-interacting active particles [54,
55] and harmonically confined systems [56, 57], analytical
results for the EPR are difficult to achieve: in general,
the EPR for non-linear confining forces or interacting sys-
tems has been obtained numerically [58, 59]. Other nu-
merical investigations focused on the study of the EPR
of systems spatially inhomogeneous through particle-
resolved simulations [60–62] or using field-theoretical de-
scriptions [63–66].

Recently, we have studied active crystals and found
that their vibrational excitations are of two different
kinds: the first is identified with the conventional col-
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lective oscillatory modes, known as phonons, and the
second describes additional vibrational excitations, ab-
sent at equilibrium and termed entropons because are the
modes associated with the entropy production of the sys-
tem [67]. Under small deviations from equilibrium con-
ditions, entropons coexist without interfering with the
conventional phonons, the equilibrium-like excitations.
Entropons vanish in equilibrium whereas dominate over
phonons when the system is far from equilibrium. While
we have a satisfactory description of the EPR in an ideal
solid phase much less is known when its order is altered
by the presence of imperfections such as surfaces, defects,
or other departures from the perfect periodic arrange-
ment of the active particles.

The aim of this paper is to investigate the EPR in ac-
tive systems with inhomogeneities and determine its spa-
tial distribution in the non-equilibrium steady-state. We
consider a case that lends itself to analytical and numeri-
cal scrutiny: the active crystal containing point imperfec-
tions that are due to particles with different masses and
destroy the periodic order characterizing perfect crys-
talline structures. This is a classical problem of Solid
State Physics [68] where it is studied to understand the
localization of the phonon modes near the impurity. We
employ this model to shed some light on the EPR in ac-
tive systems with broken translational invariance by de-
veloping a suitable perturbation theory around the per-
fect crystal state by considering a small defect mass. Our
method predicts analytically the spatial profile of the
EPR as a function of the distance from the lattice im-
perfection and relates this feature to the existence of a
velocity correlation profile.

The paper is structured as follows: in Sec. II, we
present the model to describe a solid formed by active
particles and calculate the entropy production employing
a path-integral technique. Section III reports the main
results of the paper: we derive the perturbative method
introduced to calculate the spatial profile of the EPR in
the presence of a mass impurity in the solid. We evaluate
explicitly the zeroth-order perturbative EPR, i.e. the en-
tropy production rate of a perfectly ordered crystal, and
the first-order perturbative correction that describes the
effect of the point imperfection that breaks the transla-
tional discrete symmetry of the periodic array. Details
about the derivations are presented in the appendices to
render the exposition. Finally, the conclusions are pre-
sented in Sec. IV.

II. MODEL

We investigate a solid formed by N ABP’s [39, 69–75]
in two dimensions, in a square box of size L × L and
apply periodic boundary conditions. The evolution of
the position, xp and velocity, vp = ẋp of each ABP of
mass mp (with p = 1, ..., N) is governed by the following

an underdamped stochastic equation

mpv̇p = −γvp + Fp +
√

2Tγ ξp + fap (1)

where ξp is a white noise with zero average and unit vari-
ance. The coefficients γ and T are the friction coefficient
and the temperature of the solvent bath, respectively.
For equal masses, the ratio, mγ corresponds to the typ-
ical inertial time, τI , representing the relaxation time of
the velocity in equilibrium systems (we remark that in ac-
tive systems the relaxation of the velocity is determined
both by τI and τ [32]).
The active force, fap , provides a certain persistence of

the particle trajectory and drives the system out of equi-
librium. In the absence of any other force but the friction,
fap and for τI → 0 the ABP’s would travel at the swim
velocity, v0, as shown by the relation:

fap = γv0np . (2)

The stochastic vector n = (cos θp, sin θp) is a unit vector,
whose orientation is determined by the angle θp, subject
to Brownian motion

θ̇p =
√

2Drηp , (3)

where ηp is a white noise with zero average and unit vari-
ance and Dr is the rotational diffusion coefficient. Dr de-
termines the persistence time of the dynamics τ = 1/Dr,
i.e. the average time needed by a particle to change direc-
tion [76, 77]. The analysis of the mean square displace-
ment in the independent particle limit leads to the intro-
duction of the so-called active temperature, Ta = v20γτ ,
that is an increasing function of both τ and v20 .
The force Fp represents the inter-particle interaction

due to a pairwise potential, Utot =
∑

i>j U(|ri − rj |),
that we choose as a purely repulsive and given by the
shift-and-cut WCA potential

U(r) = 4ǫ

[

(

d0
r

)12

−
(

d0
r

)6
]

+ ǫ , (4)

for r < 21/6 and zero otherwise. The parameters ǫ and
d0 represent the energy scale and the particle diameter,
respectively. To consider a solid configuration in numer-
ical simulations, the packing fraction of the system is set
to φ = ρd20π/4 = 1.1 that for the range of parameters
explored in this study will result in a solid configuration
as in the phase diagram reported in Ref. [30].
Above a certain density, the particles spontaneously

arrange themselves to form an almost regular triangular
lattice. Assuming that this configuration corresponds to
the minimum of the total potential energy of the system,
we Taylor expand Utot around it up to second order in
the displacements, up. [30, 78]. These are defined as the
deviations of the particles’ coordinates from the perfect
lattice positions, r0p, through the relation up = rp − r0p.
Within this approximation, the force Fp acting on the p
particle reads:

Fp ≈ mω2
E

∑

j

(uj − up) , (5)
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Mass defect

Active crystal

Figure 1. A typical solid-like snapshot of the ABP’s. The
red-yellow particle has a mass m+δm, whereas the remaining
grey-black particles have mass m. The different colors of each
half-disk represent the instantaneous orientation, along the
normal to the diameter, of the active force acting on each
particle. The hexagons have been drawn to emphasize the
presence of the triangular lattice.

where the sum is restricted to the first neighbor particles
and ωE is the Einstein frequency of the solid:

ω2
E =

1

2m

(

U ′′(x̄) +
U ′(x̄)

x̄

)

. (6)

ωE depends explicitly on the derivatives of U calculated
at x̄, i.e. the average distance between neighboring par-
ticles of the solid (i.e. the lattice constant), which is
determined by the packing fraction.

A. Calculation of entropy production

The stochastic thermodynamics [41, 42, 79, 80] is a
powerful tool to measure how far from thermodynamic
equilibrium is a system, i.e. its degree of irreversibility.
Such information is contained in the so-called entropy
production rate (EPR), ṡ, which can be determined by
considering the probabilities of the trajectories connect-
ing two different states of the system. The EPR is ex-
pressed in terms of path-probability by resorting to path-
integral techniques [50, 81–83] as

ṡ = lim
t→∞

1

t

〈

log

( P
Pr

)〉

, (7)

where the symbol 〈·〉 represents the steady-state average
performed over the realizations of the noise and P and Pr

are the path probabilities of the forward and backward
trajectories of the system, respectively. These probabili-
ties depend on the whole time history of the dynamical
variables of the system (xp,vp, f

a
p ) conditioned to their

initial values (xp(0),vp(0), f
a
p (0)). In the case of equilib-

rium systems, in virtue of the detailed balance condition,
which is tantamount to the probabilistic time-reversal
symmetry, this ratio is one and the EPR vanishes. To es-
timate P and Pr, let us remark that the probability of the
trajectory of a stochastic system is uniquely determined
by the probability of observing a path-trajectory of the
stochastic noises, that in our case have a Gaussian distri-
bution. Therefore, one performs a transformation from
the noise variables to the dynamical variables by using
the equation of motion (1) together with Eq. (3). In do-
ing so, we neglect the determinant of the transformation
because, in the present case of additive noise, this term
does not contribute to the EPR. Applying this procedure,
the probability of forward and backward trajectories are
expressed as P ∼ eA and Pr ∼ eAr , respectively, whereA
and Ar are actions associated to backward and reverse
dynamics. The action A is obtained by expressing the
Gaussian distribution of the noise variables, ξp, in terms
of the state variables (xp,vp, f

a
p ) using the relation be-

tween the two sets of variables given by Eq. (1) with the
result:

A = −
∑

p

m2
p

4Tγ

∫

dt

[

v̇p −
Fp

mp
−

fap

mp
+

γ

mp
vp

]2

(8)

Here, we have not included in the action the contribu-
tion associated with the rotational noise, ηp, since it is
known that the simple Brownian process of Eq. (3) does
not generate entropy. The action of the backward tra-
jectory Ar can be obtained by applying the time-reversal
transformation to the dynamics (1) and considering the
parity of the dynamical variables, (xp,vp, f

a
p ), under this

transformation. By denoting with the subscript r the
time-reversed variables, we assume:

xr → x (9a)

vr → −v (9b)

far → fa (9c)

for each particle (above, the particle index has been sup-
pressed for notational convenience). In this way, the
backward action, Ar, reads

Ar = −
∑

p

m2
p

4Tγ

∫

dt

[

v̇p −
Fp

mp
−

fap

mp
− γ

mp
v

]2

, (10)

where we have again neglected the irrelevant contribu-
tion of the angular dynamics, for the same reasons given
above.
Performing algebraic calculations, the expression for ṡ

can be analytically derived and reads:

ṡ =
∑

p

ṡp (11)
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where ṡp is the entropy production generated by a single
particle given by

ṡp =
1

T
〈fap · vp〉+ b.t. . (12)

The expression b.t. means boundary terms, i.e. the ad-
ditional terms that do not contribute to the steady-state
entropy production and vanish in the long-time limit.
Such a result holds, in general, for underdamped active
particles subject to a persistent active force and in con-
tact with a thermal bath, independently of their density
and of the dimension of the system.
By introducing the spatial Fourier transform of the

dynamical variables denoted by hat-symbols, and by ne-
glecting boundary terms, ṡp can be calculated in the
Fourier space, in particular, in the frequency domain,
obtaining

ṡp = lim
t→∞

1

t

∫

dω

2π

〈f̂ap (−ω) · v̂p(ω)〉
T

+ c.c. (13)

where f̂ap (ω) and v̂p(ω) are the Fourier transforms in the
frequency domain of the active force and velocity of the
p particle, respectively, defined in appendix A and the
symbol ”c.c” stands for complex conjugate. The EPR, ṡ,
is proportional to the frequency integral of the real part
of the cross-correlation between the Fourier components
of active force and velocity. We also introduce the spec-
tral entropy σp(ω) for each particle as the integrand in
Eq. (13)

σp(ω) = lim
t→∞

1

t

〈v̂p(ω) · f̂ap (−ω)〉
T

+ c.c. (14)

Note that this term corresponds to the spectral dissipa-
tion of the particle p due to the active force, divided by
the temperature of the bath.

III. ENTROPY PRODUCTION OF ACTIVE

SOLIDS WITH IMPURITIES

A real solid may contain various kinds of imperfections
or surfaces which affect the properties of the perfect crys-
tal. For the sake of simplicity, we confine ourselves to iso-
lated defects such as substitutional particles of different
mass [68].
To understand the effect of substitutional impurities

on the EPR, we modify the mass of one particle, setting
m1 6= m and mp = m for all remaining particles. Since
this operation breaks the discrete translational symme-
try of the lattice, both the displacement and the EPR,
ṡp, become position dependent. In the continuum limit,
the local EPR, ṡp → ṡ(r), becomes a function of the dis-
tance r from the location of the impurity. A sketch of the
model is shown in Fig. 1. Notwithstanding the problem
described by Eqs.(1) and (5) is linear and one could use
a numerical matrix inversion method to determine with

great accuracy the solution up and ṡ(r), we are inter-
ested in getting explicit predictions. Therefore, we apply
an analytical perturbative approach choosing the mass
difference δm = (m1 −m) as a small parameter.

A. General strategy of the perturbation scheme

To proceed analytically, we choose m1 = m + δm
with |δm| ≪ m and apply a perturbative method by
expanding the solution in powers of the small parameter
δm/m ≪ 1. Explicitly the modified equation of motion
for the imperfect lattice reads

(m+ δp0δm)v̇p = −γvp + Fp +
√

2Tγξp + fap (15)

where the Kronecker delta function δp0 selects the parti-
cle p = 0 corresponding to the imperfection. The force
Fp is approximated within the harmonic approximation
of Eq. (5).
By introducing the continuous Fourier transforms in

the frequency domain ω of the displacement ûp = ûp(ω),

the velocity v̂p = iωûp(ω), the active force f̂
a
p (ω) and the

white noise ξ̂p(ω) Eq. (15) can be rewritten as

Lpk(ω)ûk − δmω2û0δp0 = f̂ap +
√

2γT ξ̂p (16)

where the time-Fourier transform of a generic observable
is denoted by the hat symbol and the Einstein summation
convention used. The matrix elements Lpk(ω) have the
following form

Lpk(ω) = (−mω2 + iωγ)δpk −mω2
E

∗
∑

j

δp,k+j (17)

where the sum over the index j runs over the nearest
neighbors (k+j) of the particle p. When δm = 0, Eq. (16)
corresponds to the dynamics of a perfect lattice and can
be rewritten with the help of the lattice Green’s function,
Gpn(ω), in the ω-representation as:

ûp(ω) = Gpn(ω)(f̂
a
n +

√

2γT ξ̂n) . (18)

where Gpn(ω) is expressed with the help of the discrete
spatial-Fourier transform:

Gpn(ω) = L−1
pn (ω) =

1

N

∑

q

e−iq·(r0n−r
0
p)

−mω2 + iωγ +mω2(q)
,

(19)
where the sum runs over the dimensionless reciprocal
lattice wave vectors q (see appendix C). The quantity
ω(q) represents the dispersion relation of the vibrational
modes of the lattice and depends on the Einstein fre-
quency, ωE and on the lattice structure. It is obtained
by solving the secular equation associated with the lat-
tice harmonic oscillations [84]. Since the perturbative
method discussed below is independent of the specific lat-
tice structure, being the relative information contained in
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ω(q), we postpone (see Eq. (34)) the presentation of the
explicit expression of ω(q) for the case of the triangular
lattice in two dimensions and nearest neighbor interac-
tions. By solving Eq. (16) when δm 6= 0, we obtain

ûp(ω) = Gpn(f̂
a
n +

√

2γT ξ̂n) + δmω2Gp0 û0 . (20)

The entropy production ṡ can now be calculated by us-
ing Eq. (13), which requires the knowledge of the cross-
dynamical correlation between the active force and ve-
locity. We multiply Eq. (20) by fan(−ω), take the average
over the realizations of the noise, and obtain

〈ûp(ω)f̂
a
p (−ω)〉 =Gpn(ω)〈f̂an(ω)f̂ap (−ω)〉

+ δmω2Gpn〈ûn(ω)f̂
a
p (−ω)〉δn0 .

(21)

Multiplying both sides of Eq. (21) by (iω) we find a re-

lation for the average 〈v̂p(ω)f̂
a
p (−ω)〉. To proceed fur-

ther, we need the explicit expression of the correlation

〈f̂ap (ω)f̂ap (−ω)〉, which is estimated by approximating the
ABP dynamics with the AOUP model [85–89]. This
strategy has been often adopted with success in the liter-
ature to get analytical predictions [43, 90–92]. We obtain

lim
t→∞

1

t
〈f̂an(ω)f̂ap (−ω)〉 = 2v20γ

2 τ

1 + ω2τ2
δnp , (22)

and

〈f̂ap (ω)〉 = 0 (23)

as discussed in Appendix D. By replacing the expres-
sion (22) in Eq. (21), we finally get the equation describ-
ing the dynamical cross correlation between active force
and velocity

lim
t→∞

1

t
〈v̂p(ω)f̂

a
p (−ω)〉 = 2iωGnp(ω)v

2
0γ

2 τ

1 + ω2τ2
δnp

+ lim
t→∞

i

t
δmω3Gp0(ω)〈û0(ω)f̂

a
p (−ω)〉 .

(24)
By dividing by the temperature T and taking the real
part of Eq. (24), we obtain the equation to determine
σp(ω), that reads

Tσp(ω) = −2ωv20γ
2 τ

1 + ω2τ2
Im[Gnp(ω)]δnp

− lim
t→∞

1

t
δmω3Im[Gp0(ω)〈û0(ω)f̂

a
p (−ω)〉] .

(25)

Equation (25) is not closed and cannot be used to deter-
mine the entropy production rate because contains the

dependence on the unknown correlation 〈û0(ω)f̂
a
p (−ω)〉.

To proceed we employ a perturbative method and expand
the solution in powers of λ = δm/m ≪ 1:

ûp(ω) = û(0)
p (ω) + λû(1)

p (ω) + λ2û(2)
p (ω) + ... . (26)

where the superscript (n) denotes the order of the per-
turbative solution that is consistent with a perturbative
solution of the spectral entropy production:

σp(ω) = σ(0)
p (ω) + λσ(1)

p (ω) + λ2σ(2)
p (ω) + ... . (27)

and of its integral over ω, i.e. ṡ, so that

ṡp = ṡ(0)p + λṡ(1)p + λ2ṡ(2)p + ... . (28)

Note that the zeroth-order entropy production is inde-
pendent of the particle index p, which can be dropped
at this order. Instead, the EPR is spatially dependent
starting from the first correction in δm/m.

In our discrete formalism, this implies that ṡ
(0)
p = ṡ(0)

and σ
(0)
p (ω) = σ(0)(ω) for every p, while, in general, we

expect a dependence on p, or in other words a spatial
dependence, only starting from the first correction in
δm/m.

B. Zeroth-order result: the homogeneous solid

The zero-order solution of Eq. (25) (obtained for δm =
0) corresponds to the spectral entropy, σ(0)(ω), of the
homogeneous solid, in the absence of the impurity.
Setting δm = 0 in Eq. (25), we obtain the zeroth-order

value of the spectral entropy production per particle

Tσ(0)(ω) =− 2ωv20γ
2 τ

1 + ω2τ2
Im[G00(ω)] , (29)

which is independent of the position. By integrating over
ω, we get the zeroth-order expression for the entropy pro-
duction rate

T ṡ(0) =
2

N

∑

q

∫ ∞

−∞

dω

2π

τγ

1 + ω2τ2
ω2v20γ

2

m2(ω2(q)− ω2)2 + ω2γ2

=
v20τγ

τ + τI
G00.

(30)
The second equality introduces the propagator, G00,
whose expression is:

G00 =
1

N

∑

q

1

1 + τ2τI
τ+τI

ω2(q)
. (31)

The ω-integration in Eq.(E1) leading to Eq.(31) is re-
ported in appendix E (see Eq.(E1)). In practice, we con-
vert the sum over wave-vectors into an integral over the
Brillouin zone of volume Ω by replacing 1

N

∑

q →
∫

Ω
dq
Ω

and G00 → G(0). The prefactor in Eq.(30) is identified
with the EPR of the non-interacting system, ṡfree, ac-
cording to the relation:

ṡfree =
v20τγ

T

1

τI + τ
, (32)

and rewrite:

ṡ(0) = ṡfreeG(0) . (33)

The quantity ṡfree is a function of the ratio between the
active temperature, v20γτ , and the thermal temperature.
At fixed active temperature, it decreases as the persis-
tence time, τ , and inertial time, τI increase . Instead,
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the term G00 accounts for the interactions among the
particles in the solid, is 1 in the non-interacting limit,
and G00 ≤ 1 for the interacting case since ω2(q) ≥ 0. In
other words, the interaction decreases the value of the
EPR with respect to the free-particles case because the
interactions characterizing the solid hinder the particle’s
ability to move with the same speed as free particles so
that |v| ≪ v0. As a consequence, the entropy production
of a solid formed by N active particles is always smaller
than the entropy production of N potential-free active
particles, ṡ ≤ ṡfree.

1. Explicit evaluation of the zeroth-order correction

To obtain an explicit expression for the zeroth or-
der EPR of Eq.(30) we, now, compute analytically G(0)
whose value depends on the dimension of the system and
the lattice structure. In the case of a triangular lattice,
which is the structure found in our simulations at high-
density, the dispersion relation reads:

ω2(q) = 2ω2
E

(

3− cos(qxx̄)− 2 cos
(

qx
x̄

2

)

cos

(√
3

2
qyx̄

))

.

(34)
The summand appearing in Eq.(31) when |q| → 0 be-
comes of the Ornstein-Zernike form ∝ (1 + ξ2q2)−1 and
thus we can define a correlation length ξ from the rela-
tion:

ξ2 =
3

2
x̄2 τ2

1 + τ/τI
ω2
E . (35)

This length coincides with the correlation length of the
spatial velocity correlation of an active solid, 〈v(r) ·v(0)〉
and, as already discussed in Ref.[23], is an increasing
function of τ and of τI . The integral can be computed
exactly as shown in the appendix B where we find

G(0) = 1

1 + ξ2
6

πz
√
c
K[k] (36)

where the parameters c, z and k are also given in ap-
pendix and K[k] is the complete elliptic integral of the
first kind [93].
In Fig. 2, the theoretical EPR, ṡ(0), is compared with

the one obtained in numerical simulations of the solid
phase. Results are plotted as a function of the rescaled in-
ertial time τI/τ : ṡ

(0) increases from zero, attains a max-
imum value before vanishing for large values of τI/τ , a
behavior consistent with the Clausius inequality, ṡ ≥ 0,
being ṡ = 0 at equilibrium. In fact, when the persis-
tence time, τ , is the shortest time scale of the system,
(τI/τ → ∞), the active force fap can be assimilated to
a Brownian process (persistence time ≈ 0) whose EPR
is null: it is easy to verify from Eqs.(31) and (33) that
when ξ → 0 also ṡ → 0 because the factor ṡfree van-
ishes. This situation corresponds to an underdamped
colloidal solid under equilibrium conditions, described

τI / τ

10
-3

10
-2

10
-1

10
-2

10
-1

10
0

10
1

10
2

s
 τ

I

Figure 2. EPR of a perfect two-dimensional crystal with
triangular structure, ṡ, rescaled by the inertial time, τI =
m/γ, as a function of the reduced inertial time τI/τ ). Points
are obtained by numerical simulations obtained by integrating
the dynamics (1) in the absence of defects, i.e. mp = m
for every i, while the solid black line is calculated from the
theoretical prediction (33). The parameters of the simulations
are N = 104 and φ = 1.1.

by standard Boltzmann statistics. By decreasing τI/τ
(i.e. increasing the persistence time), the system departs
from equilibrium and ṡ increases. For small deviations
from equilibrium, the growth of ṡ is essentially deter-
mined by the factor ṡfree because G(0) remains close to 1
and the EPR scales as ṡ ≈ ṡfree ∼ τ/(τ + τI) ≈ τ/τI for
τI/τ ≫ 1. Such a linear increase continues up to values
of τI/τ where G(0) sensibly departs from 1. This situ-
ation occurs when the size of coherent domains of the
velocities becomes relevant, as revealed by the increas-
ing velocity correlations. Indeed, when the correlation
length of these domains reaches the size of the particle
diameter, ξ ≈ σ, the entropy production rate attains its
maximum. A further decrease of τI/τ leads to the de-
crease of ṡ because the most relevant contribution to the
EPR stems from the boundaries of the domains, whereas
the particles (whose velocities are more aligned) located
in their interior provide less relevant contributions. As
a consequence, ṡ → 0 when τI/τ → 0, the limit where
ξ → ∞. We remark that this decrease is in agreement
with the presence of arrested states observed numerically
in systems of dense active particles in the infinite persis-
tence time limit [94, 95] for which ṡ ≈ 0.

C. First-order result: the effect of an impurity

Imperfections always break the discrete spatial transla-
tional symmetry of the crystal. Hence, some observables,
including the local entropy production rate, are expected
to become spatially dependent on the distance from the
defect and take a constant value away from it, the one
characterizing the perfect crystal.
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To analytically predict the local EPR, we employ

the first-order perturbative expression, σ
(1)
p (ω), given by

Eq. (25):

Tσ(1)
p (ω) =−mω3Im[Gp0(ω)〈û(0)

0 (ω)f̂ap (−ω)〉] , (37)

where û
(0)
0 (ω) is the unperturbed displacement at the

location of the impurity. Eq. (20) gives the expression

û
(0)
0 (ω) = G0n(f̂

a
n+

√
2γT ξ̂n) that substituted in Eq. (37)

yields:

Tσ(1)
p (ω) =−mω3Im[Gp0(ω)G0n(ω) lim

t→∞

1

t
〈f̂an(ω)f̂ap (−ω)〉]

=−mω3Im[Gp0(ω)G0p(ω)]
2v20γ

2τ

1 + ω2τ2
.

(38)
where we employed the correlator of the active force,
Eqs.(22), to obtain the last equality.
After replacing the expression for G0p(ω) and Gp0(ω)

using Eq.(19) and integrating over the frequency ω, we
obtain the first-order perturbative correction to the EPR.
Since the calculations are rather lengthy, here, we show
only the final results while details of the derivation are
reported in Appendix C:

ṡ(1)p = − v20τγτI
T (τ + τI)2

G0pGp0 = − ṡfreeτI
τ + τI

G0pGp0 , (39)

where

G0p =
1

N

∑

q

e−iq·r0p

1 + τ2τI
τ+τI

ω2(q)
(40)

and Gp0 = G∗
0p. By approximating the sum

∑

q by an
integral,

G0p → G(r) =
∫

Ω

dq

Ω

e−iq·r0p

1 + τ2τI
τ+τI

ω2(q)
. (41)

The above integral depends on the distance from the im-
purity, r and converges to the value G(0) as r → 0. Thus,
the first-order correction to the entropy production, at
distance r from the impurity, becomes:

ṡ(1)p → ṡ(1)(r) = −ṡfreeG(r)2
τI

τI + τ
. (42)

.
According to Eq. (42) the first order perturbative cor-

rection to the EPR at the position of the impurity, r = 0,
is

ṡ(1)(0) = − ṡfreeτI
τ + τI

[G(0)]2 = −ṡ(0)G(0) τI
τ + τI

. (43)

We estimated numerically ṡ(1)(0) from the difference
(ṡ(0) − ṡ(0)), i.e. by subtracting the zeroth-order EPR
from the total EPR obtained from the simulations. The
resulting value of ṡ(1)(0) together with the zeroth-order
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Figure 3. Entropy production rate, ṡ(0) (rescaled by τI =
m/γ) calculated at the position of the defect, as a function of
the reduced inertial time, τI/τ . The yellow curve denotes the

zeroth-order prediction ṡ(0) i.e. the bulk value of the EPR
theoretically predicted (see Eq. (33)). The blue light curve
and the light blue points are the first-order correction of the
entropy production, ṡ(1)(0), calculated at the same position.
The solid line represents the theoretical predicition (43), while
points are obtained from numerical simulations conducted by
integrating the dynamics (1) with |δm|/m = 0.2. The values

of the blue points, ṡ(1)(0), are estimated from the difference

ṡ(0) − ṡ(0) between the theoretical bulk value ṡ(0) and the
numerical value of ṡ(0). The parameters of the simulations
were fixed at N = 104 and φ = 1.1.

theoretical prediction ṡ(0), shown for comparison, is plot-
ted in Fig. 3 as a function of the reduced inertial time
τI/τ . Both ṡ(0) and ṡ(1)(0) are bell-shaped curves but the
two maxima do not coincide. Indeed, ṡ(1)(0) tends to zero
as equilibrium is approached, i.e. when τI/τ ≫ 1. By
decreasing the ratio τI/τ the system departs from equi-
librium and ṡ(1)(0) grows, as ṡ(0) also does, and reaches
a peak for τI/τ ≈ 10. Such an increase when τI/τ de-
creases is mainly due to the prefactor ṡfree in Eq. (43).
In the large persistence regime, τI/τ ≤ 10, the first-

order correction ṡ(1)(0) displays a decrease similar to ṡ(0).

From Eq. (43) we see that
∣

∣

∣

ṡ(1)(0)
ṡ(0)

∣

∣

∣
= G(0) τI

τ+τI
≤ 1 . The

inequality holds because both G(0) and τI/(τ+τI) are less

or equal to 1. Moreover, ṡ(1)(0)
ṡ(0)

is a decreasing function
of τ and an increasing function of τI . In the limit of
infinite τ , the system approaches an arrested state (with
decreasing speed, |v|), and, as a consequence, not only
the entropy production of the bulk ṡ(0) decreases but also
the EPR due to the imperfection at r = 0 does.

1. Spatial profile of the entropy production generated by the

impurity

To obtain explicitly the spatial profile of the entropy
production, we consider G(r). Since we could not find an
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exact expression for it, we evaluated the integral (41) by
approximating τ2τI/(τ + τI)ω

2(q) ≈ ξ2q2 and extending
the integration to the whole reciprocal space. Within this
approximation, the resulting formula reads:

G(r) ≈ K0(r/ξ) ≈
(

πξ

2r

)1/2

e−r/ξ (44)

where K0(r/ξ) is the zeroth-order modified Bessel func-
tion of the second kind [93] and the length ξ is given by
Eq. (35). The divergence at r = 0 is the result of the
absence of an upper cutoff in the q-integral caused by
the replacement of the Brillouin zone with an infinite in-
tegration domain. Since this problem can be easily fixed
by recalling the exact evaluation of G(0), Eq. (36), we
have an estimate of the long distance (r ≫ ξ) exponential
behavior of G(r).
By using the approximation (44), the first order cor-

rection to the profile of ṡ(r) is given by

ṡ(1)(r) = − τI
τI + τ

ṡfree [K0(r/ξ)]
2

≈ − τI
τI + τ

ṡfree

(

πξ

2r

)

e−2r/ξ .
(45)

It displays an exponential-like decay towards its bulk
value 0, since the EPR of the homogeneous crystal is
just ṡ(0). The spatial profile of ṡ(1)(r) is shown in Fig. 4
for two values of the reduced inertial time τI/τ and re-
veals a good agreement between the prediction (45) and
simulations where ṡ(1)(r) was estimated from the differ-
ence (ṡ(r) − ṡ(0)), which is exact except for terms order
(δm/m)2.
The spatial profile of ṡ(r) indicates that ξ/2 is the typ-

ical distance beyond which the entropy production is un-
changed by the presence of the impurity: therefore, for
large values of ξ an impurity affects the entropy produc-
tion of the crystal even at long distances from its position.
We recall that ξ increases as τ for τ/τI ≪ 1 (in the un-
derdamped regime), and as ξ ∼ √

τ for τ/τI ≫ 1 (in the
overdamped regime), while in general the value of ξ de-
creases as the inertia is increased (with the growth of τI).
Interestingly, ξ/2 coincides with half of the correlation
length of the spatial velocity correlations characterizing
active crystals. The correlation between the velocities of
two distant particles means a transfer of information that
is reflected in the value of the entropy production.
Let us remark that the sign of the first-order correction

to ṡ(r) depends on the sign of δm: a defect of the crystal
with a mass larger than the one of the remaining particles
(heavy impurity) decreases the total entropy production
of the system, while an impurity with smaller mass (light
impurity) increases the total entropy production. This
phenomenon occurs because a light impurity means more
freedom to move for the particles close to the imperfec-
tion, whereas a heavy impurity reduces the amplitude of
their displacements. Regarding higher order terms in the
perturbative expansion, it is possible to carry on the cal-
culation using the same method as reported in appendix

r/�

s
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) (
r)

 /
 s

(1
) (

0
)

0.04

0.2

1

0 2 4 6 8 10 12 14

τ
I
/ τ= 10

−1

τ
I
/ τ= 1

Figure 4. Spatial profile of the EPR, ṡ(1)(r)/ṡ(1)(0) as a func-
tion of the distance from the defect, r/σ, calculated for two
different values of the reduced inertial time τI/τ as indicated
in the plot. Points are obtained by numerically integrating the
dynamics (1) with |δm/m| = 0.2, while the solid colored lines
are calculated from the theoretical prediction (45). The EPR

profiles, ṡ(1)(r), are estimated from the difference ṡ(r) − ṡ(0)

between the numerical value, ṡ(r) and the theoretical bulk

value ṡ(0). The parameters of the simulations were fixed at
N = 104 and φ = 1.1.

E3 where we have derived a theoretical formula valid for
two imperfections up to order (δm/m)2. However, its ap-
plication to the present problem is complicated because
one would need higher statistics in the numerical simu-
lations. This task remains to be carried out in future
work.

IV. CONCLUSIONS

As shown in the recent literature the EPR is an impor-
tant theoretical tool to characterize the physics of active
and living systems which often involve the presence of
many degrees of freedom. However, in the case of nonuni-
form systems such a tool becomes much more accurate if
instead of employing a global description in terms of the
total EPR we use its local version, the space dependent
EPR. In general, this goal is complicated to achieve be-
cause of the high dimensionality of the state space. In
this paper, we have analytically and numerically investi-
gated the space dependent EPR in the case of a active
solid with point imperfections These lattice defects break
the discrete translational symmetry of the crystal and in-
duce a spatial dependence of the observable quantities.
This work provides an explicit representation of the spa-
tial variation of the EPR in a very simple model of a
nonuniform system. Our analytical results for the en-
tropy production in the non-equilibrium steady-state of
an active harmonic solid, derived utilizing a perturbative
expansion in powers of the mass of the impurity, agree
fairly well with the numerical data obtained by computer
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simulation of the active solid with a soft repulsive shift
and cut WCA interparticle potential and ABP dynamics.
The non-uniform profile of the EPR has been calculated
as a function of the distance from the impurity position.
The zeroth-order result of the perturbation theory gives
the value of the entropy production of a homogeneous
solid [67], whose explicit expression has been reported in
the case of a two-dimensional active crystal, while the
first-order result accounts for the spatial dependence of
the entropy production. Our study demonstrates that,
in regimes of large persistence, an impurity affects the
properties of the crystal also at a large distance from the
impurity. Interestingly, the typical length scale that rules
the spreading of information, described by the EPR, is
the same length that controls the extent of the spatial
velocity correlations in active crystals [30, 78]. Finally,
we remark that the lattice imperfection is the cause of
the non uniform EPR, but would not cause any velocity
correlation profile in the case where only thermal noise
would be present. This is in agreement with the argu-
ment that 〈vp · vj〉 = 2Tδij for any equilibrium system.

Future work should extend our approach to binary and
polydisperse crystals, to active crystals in three dimen-
sions and to different kind of defects (dislocations, discli-
nations, grain boundaries) [96].
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Appendix A: Fourier transforms

Continuous Fourier transforms in the frequency domain ω of the generic variable On are defined as:

Ôn(ω) =

∫ ∞

−∞

dteiωtOn(t) (A1)

and its inverse is

On(t) =

∫ ∞

∞

dω

2π
e−iωtÔn(ω) (A2)

We also employ, in order to decouple the dynamical degrees of freedom, the following discrete spatial Fourier transform
of a lattice variable On

Oq =
1

N

∑

n

One
−iq·r0n (A3)

where n spans the indices identifying the N particles of the lattice. Using both the time and lattice Fourier transform
the perfect lattice dynamics (mn = m) takes a particularly simple form since in this representation each q-mode
(wave) becomes independent from the remaining modes and we can write:

−mω2ũq = −iωγũq −mω2(q)ũq +
√

2Tγ ξ̃
q
+ f̃a

q
(A4)

where the tilde symbol stands for the Fourier time and spatial simultaneous transformations and

ω2(q) = 2ω2
E

[

3− cos(qxx̄)− 2 cos(
1

2
qxx̄) cos(

√
3

2
qyx̄)

]

(A5)

Such a structure function representing the dispersion relation of the triangular lattice is obtained as follows. One
considers the six vectors giving the displacements connecting an arbitrary lattice site to its nearest neighbors:

s(n1, n2) = n1a1 + n2a2 (A6)
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where

(n1, n2) = ±(1, 0) (A7)

(n1, n2) = ±(0, 1) (A8)

(n1, n2) = ±(1, 1) (A9)

and a1, a2 are the two primitive vectors of the triangular Bravais lattice:

a1 =
x̄

2
x̂−

√
3

2
x̄ŷ (A10)

a2 =
x̄

2
x̂+

√
3

2
x̄ŷ (A11)

The dispersion relation is obtained by performing the following sum:

ω2(q) = ω2
E

(

6−
∑

n1,n2

exp(−iq · s(n1, n2))
)

(A12)

Appendix B: Variable transformation

In order to perform the integration over the wavevector q in Eq.(31) it is convenient, following the literature [97],
perform the following change of variables and define two new phases k1 and k2 via the transformation:

k1 =
1

2
qxx̄−

√
3

2
qyx̄ (B1)

k2 =
1

2
qxx̄+

√
3

2
qyx̄. (B2)

With this mapping, the q-integration domain, that is the hexagonal Brillouin-zone, becomes a square domain and
the resulting integrations analytically simpler: we first substitute these relations in eq. (34) and set k ≡ (k1, k2):

ω2(q) → 6ω2
E

(

1− r(k)
)

. (B3)

The last equality defines the new function, r(k) =
(

cos(k1 + k2)+ cos(k1) + cos(k2)
)

, the so-called structure function

of the triangular lattice in two-dimensions. Thus we rewrite

G(0) =
∫

Ω

dq

Ω

1

1 + τ2τI
τ+τI

ω2(q)
=

1

1 +
6ω2

E
τ2

1+τ/τI

∫ π

−π

dk1
2π

∫ π

−π

dk2
2π

1

1− 1+τ/τI
6ω2

E
τ2 r(k)

(B4)

The result of the last integration can be found in Ref. [97] and reads:

G(0) = 1

1 + ξ2
6

πz(ξ)
√

c(ξ)
K[k(ξ)] (B5)

where K(k) is the complete elliptic integral of the first kind and z(ξ), c(ξ) and k(ξ) are explicit functions of the
parameters of the model and are given by:

z(ξ) =
1

1 + x̄2

4ξ2

(B6)

c(ξ) =
9

z(ξ)2
− 3 + 2

√

3 +
6

z(ξ)
(B7)

k(ξ) = 2

(

3 + 6
z(ξ)

)1/4

c(ξ)1/2
. (B8)

ξ2 =
3

2
x̄2 τ2

1 + τ/τI
ω2
E .
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Appendix C: Lattice Green’s function and perturbative solution

Let us multiply Eq. (16) at the right by the inverse operator L−1 = G such that GpnLnk = δpk and get:

ûp(ω) = Gpn(ω)
(

f̂an +
√

2γT ξ̂n

)

+ λmω2Gp0û0 (C1)

where λ is a small perturbative parameter. This equation is solved by iteration using λ as a smallness parameter:

ûp =
(

Gpm(ω) + λGpn(ω)bn(ω)Gnm(ω) + λ2Gpn(ω)bn(ω)Gnk(ω)bk(ω)Gkm(ω) + . . .
)(

f̂am +
√

2γT ξ̂m

)

(C2)

where bn = mω2δn0 for a single impurity sitting at site 0. The explicit representation of the matrix element Gpn(ω)
is obtained by first solving the homogeneous eigenvalue problem:

Lpn(ω)φn(q) = λ(q, ω)φp(q) (C3)

with eigenvalues

λ(q, ω) = −mω2 + iωγ +mω2(q) (C4)

and eigenvectors

φn(q) =
1√
N

e−iq·r0n

that depend on the wavevector q. The resolvent or Greens’s function has the following spectral representation:

Gpn(ω) =
∑

q

1

−mω2 + iωγ +mω2(q)
φ∗
p
(q)φn(q) (C5)

Appendix D: Active Ornstein-Uhlenbeck approximation and derivation of Eq. (22)

Here, we discuss the argument justifying the replacement of the ABP dynamics with the AOUP dynamics. The
motivation is twofold: i) the theoretical manipulation of the AOUP equations of evolution is simpler than the ABP
equations used in the numerical work, ii) there is a correspondence between the two models based on the property
that the respective autocorrelation functions of the active force have the same form. To prove the second statement,
consider that the ABP dynamics of fan , described by Eqs. (2) and (3), can be expressed in Cartesian coordinates
as [32, 77]:

ḟan = −Drf
a
n + γv0

√

2Drηn × fan , (D1)

where we adopt the Ito convention to interpret the second term in the r.h.s.. The noise vector ηn = (0, 0, ηn) is
normal to the plane of motion (x, y) ηn isa white noise with zero average and unit variance. It is easy to show (see
Ref. [76]) that the autocorrelation function of fap is an exponential of the form:

〈fan(t) · fam(0)〉 = δnmv20γ
2e−|t|/τ (D2)

where τ = 1/Dr. As anticipated, in theoretical work, it is convenient to modify the dynamics of fa while preserving
the form of its autocorrelation function. This goal is achieved by replacing the ABP noise term,

√
2Drηn × fan ,

by a two-dimensional white noise vector of white noises, ζn such that 〈ζn(t)ζm(0)〉 = δnmδ(t). This replacement
corresponds to approximate the dynamics of fap by the following two-dimensional Ornstein-Uhlenbeck process

ḟan = −Drf
a
n + γv0

√

2Drζn. (D3)

It is easy to verify that this new equation for the active force yields the same autocorrelation function as the ABP
model. Equation (D3) together with Eq. (1) corresponds to the active Ornstein-Uhlenbeck particles (AOUP) model.
The dynamics (D3) in the Fourier Space (in the frequency ω domain), can be obtained by applying the Fourier

transform and is given by

iωτ f̂an(ω) = −f̂an(ω) + v0γ
√
2τ ζ̂n(ω) , (D4a)
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and allows to find the explicit solution for f̂an(ω) as

f̂an(ω) =
v0γ

√
2τ

1 + iωτ
ζ̂n(ω) . (D5)

By multiplying by f̂am(−ω), taking the average over the realizations of the noise, dividing by t, and applying the limit
t → ∞, we obtain Eq. (22).

Appendix E: Integrals over the frequency domain

This appendix contains some details about the derivation of the formula for first order correction to the EPR. We
first compute the following integral over frequencies which appears in Eq.(??)

I2(q) =

∫ ∞

−∞

dω

2π

1

1 + ω2τ2
ω2

m2(ω2(q) − ω2)2 + ω2γ2
=

1

2γm

1
[

1 + γτ/m+ τ2ω2(q)
] (E1)

1. Zeroth order EPR

Using the result (E1) we evaluate the zeroth order entropy production:

T ṡ(0) =
2

N

∑

q

∫ ∞

−∞

dω

2π

τγ

1 + ω2τ2
ω2v20γ

2

m2(ω2(q) − ω2)2 + ω2γ2
=

v20γ

m
τγ

1

N

∑

q

1
[

1 + γτ/m+ τ2ω2(q)
]

T ṡ(0) = v20τγ
1

τ + τI

1

N

∑

q

1
[

1 + τ2τIω2(q)
τ+τI

]

By using (see Eq.(40))

G0p =
1

N

∑

q

e−iq·r0p

1 + τ2τI
τ+τI

ω2(q)
→
∫

Ω

dq

Ω
e−iq·r0p

1

1 + τ2τI
τ+τI

ω2(q)

We arrive at

T ṡ(0) = v20τγ
1

τ + τI
G00

2. First order EPR

According to the second equality in Eq.(38) We now consider the first order correction. We need to perform the
following frequency integral

(E2)

T ṡ(1)p = −2mv20γ
2τ

∫ ∞

−∞

dω

2π

ω3

1 + ω2τ2
Im[Gp0(ω)G0p(ω)] =

−2mv20γ
2τ

N2

∑

q,q′

ei(q−q
′)·r0p

∫ ∞

−∞

dω

2π

ω3

1 + ω2τ2
Im[

1

mω2 − iωγ −mω2(q)

1

mω2 − iωγ −mω2
q′

] (E3)

We use the following identity

( 1

ω2 − ω2
q − iωγ/m

)( 1

ω2 − ω2
q′ − iωγ/m

)

=
1

ω2
q − ω2

q′

( 1

ω2 − ω2
q − iωγ/m

− 1

ω2 − ω2
q′ − iωγ/m

)
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After multiplying the previous expression by ω3

1+ω2τ2 and taking its imaginary part, we arrive at the following form of

the frequency integral appearing in Eq.(E3) which is evaluated by residue theorem method:

γ/m

ω2(q)− ω2
q′

∫ ∞

−∞

dω

2π

ω4

1 + ω2τ2

( 1

(ω2 − ω2(q))2 + ω2γ2/m2
− 1

(ω2 − ω2
q′)2 + ω2γ2/m2

)

=
1

2

1

(1 + γτ/m+ ω2(q)τ2)(1 + γτ/m+ ω2
q′τ2)

(E4)

Finally, inserting this result in Eq.(E3) and performing separately the two independent integrations over q′ and q we
find:

(E5)
∫ ∞

−∞

dω

2π

ω3

1 + ω2τ2
Im[Gp0(ω)G0p(ω)] =

=
1

m2

1

2N2

∑

q,q′

ei(q−q
′)·r0p

(1 + τ/τI)2
1

1 + τ2τI
τ+τI

ω2(q)

1

1 + τ2τI
τ+τI

ω2(q′)
=

1

2m2

1

(1 + τ/τI)2
G0pGp0 (E6)

where we used Eq.(40). Finally, we write:

Ts(1)p (ω) =− 2mv20γ
2τ

∫ ∞

−∞

dω

2π
ω3Im[Gp0(ω)G0p(ω)]

1

1 + ω2τ2
= − v20τγτI

(τ + τI)2
G0pGp0 (E7)

3. Calculation of EPR up to Second order

Here we consider two impurities at positions a and b and having mass defects δma and δmb, respectively. To study
the EPR due to two defects we need to carry on a second order calculation in the perturbation parameters δm. Thus
we write the expression of the average of the product between the active force and the velocity of a single particle as
a function of its lattice position, p:

〈f̂a
p (−ω)V̂p(ω)〉 = iω2v20γ

2 τ

1 + ω2τ2

(

Ĝpp(ω) + λ
[

b̂a(ω)Ĝpa(ω)Ĝap(ω) + b̂b(ω)Ĝpb(ω)Ĝbp(ω)
]

+

λ2
[

b̂2a(ω)Ĝpa(ω)Ĝaa(ω)Ĝap(ω) + b̂2b(ω)Ĝpb(ω)Ĝbb(ω)Ĝbp(ω) + b̂a(ω)b̂b(ω)Ĝpa(ω)Ĝab(ω)Ĝbp(ω)

+b̂a(ω)b̂b(ω)Ĝpb(ω)Ĝba(ω)Ĝap(ω)
]

)

(E8)

where b̂a(ω) = δma ω
2 and we truncate the expansion at the second order in λ. To obtain the second order correction

to the EPR, we add its complex conjugate (c.c) and divide by a factor 2 and the resulting formula must be integrated
over ω.
Since we have already computed the expansion up to the first order, we here write only the second order correction

contained in the long expression (E8). In the following, for conciseness, we set ω2
n = ω2(qn).

Using the Fourier representation of the lattice Green’s functions (19) the second order correction involves the
following type of integrals over frequencies and sums over wavevectors:

∫ ∞

−∞

dω

2π

iτω5

1 + ω2τ2
Ĝp0(ω)Ĝ00(ω)Ĝ0p(ω) + c.c

= −
( 1

N

1

m

)3∑

q1

∑

q2

∑

q3

∫ ∞

−∞

dω

2π

iω5τ

1 + ω2τ2
(

e−iq1·r
0
p

ω2 − iγω/m− ω2
1

)(
1

ω2 − iγω/m− ω2
2

)(
eiq3·r

0
p

ω2 − iγω/m− ω2
3

) + c.c.

(E9)

Using the residue theorem to perform the above ω-integral we arrive at:
∫ ∞

−∞

dω

2π
〈f̂a

p (−ω)V̂p(ω)〉 = v20γ
2τ(δm)2

( 1

N

1

m

)3∑

q1

∑

q2

∑

q3

e−iq1·r
0
pe−iq3·r

0
p×

×
{ 1

(1 + τ/τI + ω2
1τ

2) (1 + τ/τI + ω2
2τ

2) (1 + τ/τI + ω2
3τ

2)

}

(E10)
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Gathering all together, we find the following nice formula for the EPR:

∑

n

ṡp =
1

2T

∑

p

(

〈Vp(ω)f
a
p (−ω)〉+ c.c

)

=
1

T

v20γ
2

m
τ
∑

n

{ 1

1 + τ/τI
Gpp − (

1

1 + τ/τI
)2
(δma

m
GapGpa +

δmb

m
GbpGpb

)

+(
1

1 + τ/τI
)3
(δm2

a

m2
GpaGaaGap +

δm2
b

m2
GpbGbbGbp + 2

δmaδmb

m2
GpaGabGbp

)}

+ . . . (E11)

The propagators Gaa and Gbb are equal but the prefactors depend on the signs and amplitudes of the mass ratios.
Switching to continuous notation Gab → G(rab). It decays exponentially with the separation rab between two lattice
points and a characteristic length ξ. Perhaps, the most interesting term is the last because describes the local value
of the EPR (i.e. at rp) due to the combined effect of two imperfections sitting at ra and rb, respectively.
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arXiv preprint arXiv:2207.02369 (2022).
[68] J. M. Ziman, Principles of the Theory of Solids (Cam-

bridge university press, 1972).
[69] Y. Fily and M. C. Marchetti, Physical Review Letters

108, 235702 (2012).

[70] A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar,
Y. Kafri, M. E. Cates, and J. Tailleur, Physical review
letters 114, 198301 (2015).

[71] J. T. Siebert, F. Dittrich, F. Schmid, K. Binder,
T. Speck, and P. Virnau, Physical Review E 98, 030601
(2018).

[72] C. B. Caporusso, P. Digregorio, D. Levis, L. F. Cuglian-
dolo, and G. Gonnella, Physical Review Letters 125,
178004 (2020).

[73] J. Martin-Roca, R. Martinez, L. C. Alexander, A. L.
Diez, D. G. Aarts, F. Alarcon, J. Ramı́rez, and C. Va-
leriani, The Journal of Chemical Physics 154, 164901
(2021).

[74] H. D. Vuijk, J.-U. Sommer, H. Merlitz, J. M. Brader, and
A. Sharma, Physical Review Research 2, 013320 (2020).

[75] L. Hecht, S. Mandal, H. Löwen, and B. Liebchen, Phys-
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