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The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized phase field
model, which describes the dynamics of an ordering nonconserved fieldf ~e.g., solid-liquid order parameter!
coupled to a conserved field~e.g., thermal field!. After obtaining the rules governing the evolution process, by
means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full
solutions of the exact self-consistent equations for the model are also obtained and compared with computer
simulation results. In addition, in order to check the validity of the present model we compare its predictions
with those of the standard phase field model and found reasonable agreement. Interestingly, we find that the
system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e., on the initial
condition. Such a phase is characterized by large fluctuations of thef field. @S1063-651X~97!05505-0#

PACS number~s!: 64.60.Cn, 64.60.My, 64.60.Ak
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INTRODUCTION

In the past few years considerable effort has been dev
to the study of systems far from equilibrium@1#. Well-known
examples are provided by phase separating systems, init
prepared in a state of equilibrium, and rendered unstable
modifying a control parameter such as temperature, press
or magnetic field. To restore stability they evolve toward
different equilibrium state determined by the final value
the controlling fields. Such evolution can be very slow and
often characterized by nonuniform, complex structures
both space and time.

Two simple dynamical models, often called modelA @2#
and modelB @3#, have been introduced in the literature
order to understand kinetic ordering phenomena~see also
@4,5#!. ModelA describes the growth process, when the or
parameter is nonconserved, whereas modelB is appropriate
if the order parameter is conserved. In the first case, the
stage growth is driven by the tendency of the system to m
mize the energy cost due to the presence of interfaces
tween regions separating different phases. Thus, as the
vature decreases the process slows down and the domain
L(t) grows in time according to the lawL(t);t1/2. In the
conserved case, the approach to equilibrium is limited by
diffusion of the aggregating material, as larger domains
grow only at the expense of smaller ones. The average
L(t) increases proportionally tot1/z, where the dynamica
exponentz is 3 for scalar order parameters and 4 for vec
order parameters.

Another model, known as the phase field model~PFM!, is
somehow intermediate betweenA andB and consists of two
fields coupled bilinearly: one field represents a nonconser
ordering parameter, with type-A dynamics, whereas the se
561063-651X/97/56~1!/77~11!/$10.00
ed

lly
by
re,
a
f
s
n

r

te
i-
e-
ur-
ize

e
n
ze

r

d

ond is a temperature shift field subject to a diffusion equat
supplemented by a source term. The model can be cast in
form of coupled partial differential equations for a nonco
served order parameter interacting with a time-depend
conserved field. Its dynamics is very rich since it displa
features characterizing both the pureA and the pureB mod-
els as it is revealed from the analysis of the structure fu
tions at different times. In other words, after a rapid init
evolution one observes an intermediate stage in which
growth is curvature driven and an asymptotic regime dur
which diffusion-limited behavior is seen.

The PFM, introduced and physically motivated by Lang
@6# provides a theoretical framework for many natural pr
cesses. It is designed to treat situations where the relaxa
dynamics of the order parameter associated with the pres
of a liquid or a solid is coupled to the diffusion of he
released during the change of state.

An example is the growth of a solid nucleus from i
undercooled melt, a phenomenon encountered in rapidly
lidifying materials, such as metals, where the growth is li
ited by the rate of transport of the heat of fusion away fro
the solid-liquid boundary@7#. As the heat released by th
solid accumulates at the interface, it slows down the grow
because diffusion must act over a thicker and thicker reg
This mechanism has implications also in the morphology
the growing phases and is responsible for the instability o
planar solid-liquid interface with respect to a perturbation
its shape; one realizes immediately that a protrusion of
solid phase into the liquid advances faster than its neighb
ing regions because it explores a region where the underc
ing is greater, so its growth becomes faster. The solid-liq
surface tension eventually provides the necessary bala
and prevents the interface from being eroded by fluctuati
77 © 1997 The American Physical Society
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78 56MARCONI, CRISANTI, AND IORI
of very short wavelength@8,9#.
Another very closely related problem is the growth of t

solid phase in multicomponent solutions, where one of
components is to be diffused away from the interface in
der to form a stable crystal@7#. In the present paper, we sha
confine the discussion to the thermal case for the sak
clarity and investigate the kinetic ordering of a spherical v
sion of the phase field model. This study extends our pre
ous investigations@10–12# to include a nonvanishing orde
parameter. In our opinion it can be useful because it provi
the few models whose static properties can be obtained
actly in arbitrary dimensionality and whose relaxation beh
ior can be analyzed in great detail by means of analytical
numerical methods. We note that in the field of orderi
kinetics there exist only a few models for which the rela
ation can be studied without performing extensive numer
calculations. In particular the late-stage behavior of p
cesses with conserved dynamics is hardly observable
merically due to computer limitations@12,13#. Besides the
examples cited above, this study may be of some help
treating analytically some models introduced recently w
the aim of describing irreversible aggregation phenom
@14#.

In the present paper we generalize the model, introdu
previously by two of us@10,11#, to the case of off-critical
quenches, e.g., to initial conditions corresponding to non
nishing values of the fields. The structure of the paper is
following. In order to make the paper self-contained we ha
included two sections~I and II! where we recall some basi
notions, which lead to the thermodynamic derivation of t
phase field model@6,15–17# and the construction of the
Lyapunov functional, from which the coupled equations
motion of the PFM can be derived. In Sec. III we state
spherical phase field model and write explicitly the closed
of equations, which we discuss qualitatively in Sec. IV.
Sec. V comparisons with numerical simulations ind52 at
zero temperature are illustrated. The predictions of
spherical model are compared with those of a more real
scalar order parameter phase field model and the similar
and differences are stressed in the Conclusion.

I. THERMODYNAMIC PRELIMINARIES

Let us consider a material that under suitable conditi
of pressure and temperature can exist in two distinct ther
dynamic phases: a liquid and a solid. If the pressure is h
constant at the value corresponding to solid-liquid equi
rium and the temperatureT is varied one can favor the soli
phase forT,TM or the liquid phase forT.TM , whereTM
is the melting temperature at which the equilibrium fir
order transition takes place. One usually calls an underco
melt a material brought below its melting temperature,
still in the liquid phase.

We shall consider the situationT,TM , which is experi-
mentally and technologically more interesting. BelowTM the
value of the thermodynamic Gibbs potential of the so
phase is lower than that of the liquid phase, which is o
metastable. A convenient way of studying the solidificati
process is to adopt a phenomenological Ginzburg-Lan
description by introducing a suitable crystalline order para
eterf, which assumes the conventional valuef l in the liq-
e
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uid phase andfs in the solid phase. One then employs
field-theoretic free-energy functional of the form

F@f#5eE ddx Fj22 ~¹f!21 f ~f!G , ~1!

where f (f) is a function of the order parameterf with the
property of having two minima of equal depth atf5f l and
f5fs .

The constante has dimensions of energy over volume a
is for the moment arbitrary. The gradient term represents
energy cost necessary to create an inhomogeneity in the
tem and the quantityj has the dimension of length and
associated with the scale over which an inhomogeneity in
system vanishes. Upon minimizingF@f# with respect tof
and selecting the nonuniform localized solution of the var
tional Euler-Lagrange equation corresponding to the low
value of the Gibbs free energy one obtains the surface
sions of the model, which is proportional to the correlatio
length

s;ej ~2!

and thus to the interface thickness. The numerical coeffic
is of order 1 and will be ignored because it does not infl
ence our discussion.

In order to include undercooling or overheating effec
i.e., a temperature different fromTM , we introduce a dimen-
sionless field

u~x !5
cp
L

@T~x !2TM# ~3!

proportional to the local temperature shift@T(x)2TM#. The
constantscp andL are, respectively, the specific heat at co
stant pressure and the latent heat of fusion per unit volu
The local fieldu acts as an external field, conjugate to t
crystalline order parameterf, favoring the solid phase fo
u,0 and the liquid phase foru.0. Foru50 the two phases
coexist.

As usually done for a first-order phase transition, metas
bility is taken into account by eliminatingf in favor ofu via
a Legendre transform. One then introduces the Gibbs po
tial

G@u#5F@f#2leE ddx u~x !f~x !, ~4!

wheref5f@u# is obtained from

dF@f#

df~x!
5leu~x! ~5!

andl is a nondimensional parameter. A convenient way
relatel to the known thermodynamic parameters is to co
sider the entropy difference between the pure uniform so
(f5fs) and liquid (f5f l) phases at the melting temper
ture. This is related to the latent heat by the relation

Sl2Ss5
LV

TM
, ~6!
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56 79SOLUBLE PHASE FIELD MODEL
whereSl andSs are the entropies of the liquid phase and
the solid phase, respectively, andV is the volume of the
system. By using the thermodynamic relation

]G

]T
52S, ~7!

Eq. ~3!, and the expression~4! for uniform fields, we get

LV

TM
52

]G

]T U
f l ,TM

1
]G

]T U
fs ,TM

5leV~f l2fs!
cp
L
, ~8!

from which we obtain

l5
L2

ecpTMDf
, ~9!

whereDf5f l2fs .
Next consider a solid spherical drop of radiusR@j im-

mersed in an undercooled melt (u,0). The Gibbs potentia
G with the drop is@see Eq.~4!#

G5G01leu
4p

3
R3Df14pR2s, ~10!

where the first term is the Gibbs potentialG without the
droplet, the second term is the gain in replacing the liq
with a solid in the droplet, and the third term is the cost
creating a surface separating the liquid and solid phase
equilibrium no energy is needed to create the droplet, soG is
stationary with respect to variation ofR. By imposing
dG50 we readily obtain the critical nucleation radiusRN ,

RN5
d0
uuu

, ~11!

where

d05
2s

Dfle
~12!

is a capillarity length, which, using the expression ofl, Eq.
~9!, can be written as

d05
2scpTM

L2
. ~13!

Finally, from Eqs.~9! and ~12! it follows that we can write
the dimensionless parameterl as the ratio two length

l5
j

d0
, ~14!

where we have definede j5(2/Df) s @cf. Eq. ~2!#. We see
that l is small provided the interfacial thickness is mu
shorter than the capillary length.

II. PHASE FIELD MODEL

In this section we shall introduce relaxational dynam
into the model. A large body of work in the area of dynam
phase transitions has focused on the time-depen
Ginzburg-Landau~TDGL! model because of its ability to
describe a variety of problems. In equilibrium the fie
f(x) minimizes the Gibbs potentialG. Thus we assume tha
f

d

In

s

nt

the approach to equilibrium is described by

]f~x,t !

]t
52Gf

d

df~x,t !
G@f,u#

52Gf@2j2¹2f1 f 8~f!2lu#, ~15!

where the last equality is obtained using Eq.~4!. If the field
u varies on time scales much longer than those off it can be
considered ‘‘quenched’’ and Eq.~15! would be the standard
nonconserved TDGL equation, or modelA.

In the phase field model and in the absence of exte
sources,u(x,t) is assumed to evolve on time scales of t
same order of magnitude as those off towards a homoge-
neous configuration. The time evolution ofu is now coupled
to that off and cannot be neglected anymore. In fact, wh
a piece of material solidifies it expels some heat and
surrounding liquid melt warms up, causing the average te
perature to increase. When a region of solid melts in tur
adsorbs some heat and the liquid becomes colder.

As a consequence, Eq.~15! has to be supplemented wit
an equation foru. The thermal fieldu(x,t) is subject to the
Fourier equation of diffusion of heat plus an addition
source term that represents the latent heat of solidificat
accompanying the appearance of the solid phase.

The energy balance requires that the latent heat rele
at the transition equates the temperature change of the
multiplied by the specific heat, i.e.,

]u~x,t !

]t
5D¹2u~x,t !2

1

Df

]f~x,t !

]t
, ~16!

whereD is the thermal diffusivity and the last term on th
right-hand side is the amount of material that crystallizes
unit time and is thus proportional to the heat released du
the first-order transition@6#. The coefficientDf guarantees
the correct energy balance. Notice that the last term re
sents a source of heat when]f(x,t)/]t is negative, i.e.,
when the system solidifies, or a sink when it melts, for po
tive ]f(x,t)/]t. In other words, since we are considering
closed system the total amount of solid produced is prop
tional to the change of the average temperature of the
tem.

The two dynamical equations~15! and ~16! can be ob-
tained from a unique Lyapunov functionalF, which plays
the role of the time-dependent Ginzburg-Landau potentia
the present problem. In order to establish the form ofF we
perform the transformation

U5u1
f

Df
~17!

and eliminateu in favor of the new fieldU. One can then
write Eqs.~15! and ~16! as

]f~x,t !

]t
52Gf

dF
df~x,t ! U

U

, ~18!

]U~x,t !

]t
5D ¹2

dF
dU~x,t ! U

f

, ~19!

with the Lyapunov functional@13,12#
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80 56MARCONI, CRISANTI, AND IORI
F@f,U#5E ddx Fj22 ~¹f!21 f ~f!1
lDf

2 SU2
f

Df D 2G .
~20!

Note that the dynamics ofU is conserved. When the tem
perature field vanishes, i.e.,U5f/Df, the functionalF has
two equivalent minima, corresponding to two spatially u
form solutions: the uniform solid and liquid phases. In ge
eral, Eqs.~18!–~20! generate a complex dynamical behav
that has been the object of some studies.

In the long-time limit we may expect that whileu be-
comes homogeneous, the crystalline fieldf roughly assumes
only the two valuesf l andfs . If this is the case, from the
knowledge ofU andu we can compute the fraction of vo
ume occupied by the two phases. Indeed, we can w
f̄5xsfs1xlf l , wherexs andxl are the fractions of volume
occupied by the solid and liquid phases, respectively, and
overbar denotes spatial average. From Eq.~17! and the con-
dition xs1xl51, we get

xl52
fs

Df
1Ū2ū, xs5

f l

Df
2Ū1ū, ~21!

whereū.u is the asymptotic value andŪ is the initial value
its dynamics being conserved. From this it follows that if t
asymptotic value ofu is zero, i.e., the system relaxes towar
a two-phase coexistence, the fraction of volume occupied
each phase is determined only by the initial value ofŪ. We
also notice that when the system starts with an undercoo
ū521 and an order parameterm(t50)51, i.e., Ū, the la-
tent heat produced is just enough to heat the melt at the
equilibrium temperatureū50. In such a case the final vo
ume fraction of the solid is simplyxs51/22U and attains its
maximum forU521/2.

The functionalF decreases with time, as can be sho
using Eqs.~18! and ~19!:

dF
dt

5E ddx F dF
df~x,t !

]f~x,t !

]t
1

dF
dU~x,t !

]U~x,t !

]t G
52E ddx FGf S dF

df~x,t ! D
2

1D S ¹dF
dU~x,t ! D

2G<0.

~22!

So far we have discussed purely deterministic evolution
the order parameter and of the thermal field. Noises can
added to both equations to represent the effect of sh
wavelength fluctuations; in this case Eq.~22! does not hold.

III. SPHERICAL PHASE FIELD MODEL

The choice of the local functionf (f) is somehow arbi-
trary, as long as the general property

lim
f→6`

f ~f!51` ~23!

and two equal minima forf5fs andf5f l are satisfied.
An often used form forf (f) is
-
-

te

e

y

g

al

f
be
rt-

f ~f!52g S f2

2
2

f4

4 D , ~24!

which is even and has two equal minima atf5fs521 and
f5f l51, so that Df52. The parameterg gives the
strength of the local constraint. In the limit of a large positi
value of g the fieldf can take only the valuesfs andf l
~Ising-like variables!.

The phase field model described by Eqs.~18!–~20! con-
tains all the relevant ingredients necessary to describe
phase separation occurring in solid forming melts. Howev
due to the local nonlinear terms contained in the funct
f (f) the solution of the dynamical equations~18!–~20! are
far too difficult and are known only for some special situ
tions. In the general case the known results follow from
mensional arguments.

To overcome this difficulty, an alternative strategy is
modify the model into a simpler one, yet maintain the ge
eral properties. This can be achieved by replacing the lo
quartic term in Eq.~24!:

E ddx f~x !4→
1

V F E ddx f~x !2G2. ~25!

This kind of constraint is much softer than Eq.~24! since it
does not act on each site, but globally over the whole v
ume. In the following we shall denote it as aglobally con-
strained modelor spherical model@18–20#, in contrast to the
model ~18!–~20! where the constraint is local@21,22#.

The price one pays for this change is the loss of sh
interfaces between two coexisting phases. Abraham
Robert @23# showed several years ago that the spher
model in a zero external field displays two ordered pha
below the critical temperature, but no phase separat
Equivalently, one can say that a planar interface between
coexisting phases is unstable due to the presence of l
wavelength excitations analogous to spin waves, an insta
ity much stronger than the one due to the presence of ca
lary waves in the scalar order parameter case@24,25#. As a
consequence, while this choice is very convenient for a
lytic calculations, it changes the structures of the nonunifo
solutions in the static limit. Nevertheless, in spite of this fa
the model has a rich phenomenology, as we shall see be
and the approach to equilibrium remains highly nontrivia

From Eqs.~20!, ~24!, and ~25! the potentialF for the
spherical model reads

F@f,U#5E ddx Fj22 ~¹f!21
1

2 S l

2
2gD f21lU2

2lUf G1
g

4V S E ddx f2D 2, ~26!

which, substituted into

]f~x,t !

]t
52Gf

d

df~x,t !
F@f,U#1h~x,t !, ~27!

]U~x,t !

]t
5D¹2

d

dU~x,t !
F@f,U#1j~x,t !, ~28!
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56 81SOLUBLE PHASE FIELD MODEL
determines the time evolution of the fieldsf andU @26#. We
added to the evolution equations a noise term to simulate
effect of short-wavelength fluctuations. The two fieldsh and
j are independent Gaussian fields with zero mean and
point correlations:

^h~x,t !h~x8,t8!&52 Tf Gf d~x2x8!d~ t2t8!, ~29!

^j~x,t !j~x8,t8!&522 Tf D ¹2d~x2x8!d~ t2t8!,
~30!

^h~x,t !j~x8,t8!&50, ~31!

whereTf is the temperature of the final equilibrium stat
whereasD andGf are the kinetic coefficients appearing
Eqs.~27! and ~28!.

It is useful to separate the spatially uniform componen
fieldsf andU. Thus introducing the Fourier component
the fields we have

f~x !5(
k

f~k ! eik•x, f~k !

5~1/V! E ddx f~x ! e2 ik•x ~32!

and

f~k,t !5m~ t !dk,01df~k,t !, ~33!

U~k,t !5Q~ t !dk,01dU~k,t !, ~34!

where both df and dU are zero for k5uku50,
m(t)5f̄(t), andQ(t)5Ū(t).

To study the behavior at finite temperatureTf it is also
useful to introduce the equations of motion for the thr
equal-time real-space connected correlation fu
tions Cff(r ,t)5^f(R1r ,t)f(R,t)&c , CfU(r ,t)5^f(R
1r ,t)U(R,t)&c , and CUU(r ,t)5^U(R1r ,t)U(R,t)&c ,
whose Fourier transforms are the structure functions.
averagê & is over the external noisesh and j and initial
conditions.

Due to the special form of the nonlinear term in the eq
tion of motion, the set of evolution equations for the av
agesm(t),U(t) and the correlation functions is closed. I
deed, in the Fourier space these read

]f~k,t !

]t
5Ff~k !1h~k,t !, ~35!

]U~k,t !

]t
5FU~k !1j~k,t !, ~36!

whereFf,U are the Fourier transforms of the first term on t
right-hand sides of Eqs.~27! and ~28!. From Eq. ~26! we
have

Ff~k !5Mff~k,t !f~k,t !1MfU~k,t !U~k,t !, ~37!

FU~k !5MUf~k,t !f~k,t !1MUU~k,t !U~k,t !, ~38!

where the matrix elements are given by
he

o-

,

f

e
-

e

-
-

Mff~k,t !52Gf@j2k21r1gm2~ t !1gS~ t !#,

MfU~k,t !5Gfl, MUf~k,t !5Dlk2,

MUU~k,t !522Dlk2. ~39!

where r52g1l/2 and, in the limitV→`, the quantity
S(t) is the integratedf-structure function

S~ t !5
1

VE ddx^f~x,t !f~x,t !&2m2~ t !

5(
k

^f~k,t ! f~2k,t !&c ~40!

andm(t)5^f&.
As a consequence, we have

]m~ t !

]t
5Mff~0,t !m~ t !1MfU~0,t !Q~ t !, ~41!

]Q~ t !

]t
50, ~42!

expressing the conserved nature of the fieldU, and

1

2

]

]t
Cff~k,t !5Mff~k,t !Cff~k,t !1MfU~k,t !CfU~k,t !

1GfTf , ~43!

]

]t
CfU~k,t !5MUf~k,t !Cff~k,t !1@MUU~k,t !

1Mff~k,t !#CfU~k,t !1MfU~k,t !CUU~k,t !,

~44!

1

2

]

]t
CUU~k,t !5MUf~k,t !CfU~k,t !1MUU~k,t !CUU~k,t !

1DTfk
2. ~45!

We note that a closure at the same level would have b
obtained in the framework of a Hartree approximation for t
model with local constraint described by Eqs.~18! and~19!.
However, within the present model Eqs.~41!–~45! are exact
and not the result of an approximate decoupling of the c
relations.

IV. LONG-TIME BEHAVIOR

In this section we shall discuss the behavior of the sph
cal phase field model for long times, i.e.,t→`. The results
will be compared with those of direct numerical simulatio
in Sec. V.

We assume that at the initial time we have an undercoo
liquid with some supercritical solid seeds. This means t
ū,0, while m5f̄ lies in the interval (0,1). For a generi
initial configuration, the undercooled liquid is not in equilib
rium. Thus, at the initial stage the relaxation of the fieldf is
only slightly modified by the dynamics of the slower fie
U, which can be considered ‘‘almost quenched.’’ During th
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82 56MARCONI, CRISANTI, AND IORI
stage the size of the solid seeds grows with time, while
maximum of the structure function is located atk50 and
grows with time. If this regime is long enough, one c
recognize a typical nonconserved order parameter dyna
domain growth proportional tot1/2.

This kind of behavior persists until the typical size of t
domains reaches that associated with the conservedU field.
At this time the dynamics of the two fields becomes stron
correlated and the conserved order parameter dyna
eventually dominates. As a consequence, thef field slows
down, since the coupling with the conservedU field acts as
an additional constraint, whilem(t) becomes nearly constan
and equal to the asymptotic value, i.e.,m;f̄` .

The crossover timetc can be readily estimated from d
mensional arguments. An inspection of Eqs.~35! and ~36!
reveals that under a suitable transformation of parameter
which lt→t, the dimensionless parameterl can be traced
out.

This means that the crossover timetc to the conserved
dynamics is also of order;1/l. It can be shown that the
Langevin equations~35! and~36! obey detailed balance@11#
and that the stationary probability density is

Pst@f,U#}expS 2
1

Tf
F@f,U# D . ~46!

Using this we easily get the equilibriumff correlation
function, which reads

^ff&5
Tf

j2k21r1gS1gm22l/2
. ~47!

The appearance of an ordered phase, withmÞ0 for tempera-
turesTf below the critical temperatureTc , is revealed by the
divergence of thek50 mode. This implies that the equilib
rium ~i.e., whent→`) value ofm must satisfy the equation

r1gS1gm22l/250. ~48!

On the other hand, from the equation of motion~41! m must
be the solution of

rm1gm31gSm2lQ50. ~49!

The simultaneous solution of Eqs.~48! and ~49! requires

m52Q, ~50!

which, via Eq.~17! together withDf52, impliesū50. This
means that the system relaxes towards a nontrivial ph
coexistence state, with nonvanishing order parameter an
verging small-k fluctuations.

One sees that the condition~50! can be satisfied only fo
21/2<Q<1/2. If Q lies outside this interval the system
does not relax to a mixed phase, but instead settles
spatially uniform state without zero modes. Indeed, in t
caseS(t) vanishes andm relaxes for long times to the valu
given by @cf. Eq. ~41!#

rm1gm32lQ52gm~12m2!2lū50. ~51!

We note that Eq.~51! is equivalent to saying that a spatial
uniform fieldf(x) is a stable minimum of the potentialF.
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For large enough values ofuūu Eq. ~51! has a single solution
positive forū.0 and negative forū,0. These correspond to
a liquid phase above the melting temperature, i.e., posi
m and ū, and a solid phase below the melting temperatu
i.e., negativem andū. As uūu decreases two additional solu
tions eventually appear. One of these is unstable while
other represents a metastable spatially uniform state;
solid above the melting temperature (ū.0) and liquid below
the melting temperature (ū,0). These solutions, howeve
are unstable against fluctuations; indeed, the presenc
S(t), which vanishes only fort→`, prevents the dynamics
from reaching these metastable states. Therefore, for
value ofū the physical solution of Eq.~51! is the most nega-
tive one for ū,0 and the most positive one forū.0. For
small ū we havem5@122(l/g)ū# sgnū.

A more detailed analysis of the approach to equilibriu
can be done by employing a quasilinearization procedu
i.e., we assume that the quantityR(t)5r1gm(t)21gS(t)
can be treated as a constant, along different pieces of
trajectory@10#. One can verifya posteriori that the assump-
tion is valid and leads to useful predictions. Since the beh
ior at Tf50 is representative of the entire dynamics in t
ordered phase whenTf,Tc , we also setTf50, without los-
ing relevant information.

Assuming the quantityR(t) to be nearly constant, Eqs
~33! and~36! become a linear system whose solution has
form

f~k,t !5cf
1~k! ev1~k!t1cf

2~k! ev2~k!t,

U~k,t !5cU
1~k! ev1~k!t1cU

2~k! ev2~k!t, ~52!

wherev1(k) andv2(k) are the eigenvalues of theM ma-
trix,

v6~k!5
1

2
$2Gf~j2k21R!22Dlk2

6A@Gf~j2k21R!12Dlk2#214 GfDl2k2%.

~53!

For time t@1 the dynamical behavior of the solution is d
termined by the larger eigenvaluev1(k). For large values of
k2 the eigenvaluev1(k) decreases as2k2; thus, to discuss
the behavior of the solutions after the initial transient
small-k expansion ofv1(k) is sufficient. The form of this
expansion depends on the sign ofR(t). WhenR(t) is nega-
tive the appropriate expansion ofv1(k) is

v1~k!5GfuRu2FGfj22D
l2

uRuGk2. ~54!

Notice that in the regime where Eq.~54! is valid there is a
competition between the curvature termGfj2, which repre-
sents the driving force of the dynamics of the pure mo
A, and the termDl2/uRu due to the coupling to the hea
diffusion. ForR(t).0, the representation Eq.~54! breaks
down and one must instead consider the expansion

v1~k!52DlS l

2R
21D k22c4k

4, ~55!
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wherec4 is a positive coefficient.
Since the value ofR(t) as well as its sign changes alon

the trajectory, one must employ either Eq.~54! or ~55!, de-
pending on the stage of the growth process. On the o
hand, this kind of analysis is not applicable in the crosso
region wherem(t) andS(t) vary too rapidly andR(t);0,
but this fact does not invalidate our findings.

All the relevant behaviors can be classified according
the value of the conserved fieldQ. To this purpose one mus
treat separately the casesQ.0 andQ,0.

Let us consider first the caseQ,0 and assume
m(t50);1, i.e., the system initially is formed by an unde
cooled liquid. In the initial stage the fieldsf and U are
nearly uniform and characterized by small fluctuations.
the evolution equation form, U plays the role of a constan
field of valueQ; hence

]m

]t
52Gf @R~ t !m~ t !2lQ# ~56!

describes the relaxation ofm in a static fieldQ. During such
a stage the system relaxes towards the nearest fixed poin
makes the right-hand side of Eq.~56! vanish. Equating to
zero]m/]t we get the relation

R~ t !5l
Q

m
, ~57!

which is negative form.0 andQ,0, so that the relevan
expansion is Eq.~54!. Thus the liquid phase is unstable,
can be seen from Eq.~54!; in fact, as long asm(t) remains
positive the system develops strong fluctuations about
uniform modek50. Such a regime lasts for a time of ord
tc;1/l, after which the fluctuations eventually drive the sy
tem towards negative values of the order parameter so a
reduce the free-energy cost.

In the successive stage the system becomes preval
solid, which is signaled by the change of sign ofm. Also
R changes sign, so the expansions~54! becomes invalid.
However, for timest@1/l, long after the transition, the evo
lution of m slows down again, i.e.,]m/]t.0 andR.0, so
that Eq. ~55! is appropriate. Using the result~57!, the rel-
evant form ofv1(k) is

v1~k!5DlS m

2Q
21D k22c4k

4. ~58!

Such expression shows that wheneverm/2Q,1, all modes
of finite wave vector are damped and one cannot obse
growing modes: the system relaxes towards a spatially
form state.

On the other hand, ifm/2Q.1 fluctuations are large up t
a finite wave vector, because the fastest growing mod
located at a finitek. This case corresponds to a phase tha
spatially nonuniform with large fluctuations. Asymptoticall
m52Q and the peak positionkm moves towards vanishing
values ofk. This scenario is typical of the conserved ord
parameter dynamics. Indeed, as done in Refs.@10,11#, it can
be shown that in this regime the dynamics exhibits multisc
ing @10#.

In Fig. 1 we report the behavior of]m/]t versus the order
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parameterm. For small negative values oflQ, ]m/]t nearly
touches the horizontal axis and the evolution ofm becomes
very slow.

Let us now turn to theQ.0 case. In this case, from Eq
~57! it follows thatR(t).0, so that the relevant expansion
Eq. ~58!. In analogy with theQ,0 case, from Eq.~58! we
conclude that ifQ.1/2, the phasem;1 is stable, and the
final state is pure, i.e., it is characterized by small spa
fluctuations.

For smaller values ofQ, i.e., 0,Q,1/2, the coefficient
of the term of orderk2 of the eigenvaluev1 is positive and
the peak ofCff(k,t) is located at a finite wave vector. Thi
causes an instability of the initial pure phasem;1 and the
appearance of a mixed phase, characterized by a lower
still positive, value ofm(t).

V. NUMERICAL RESULTS

In what follows we shall consider the zero-temperatu
dynamics because it is known to be representative of
subcritical behavior. We have compared the numerical
sults with the predictions of the preceding section and fou
good agreement.

We have solved numerically the equations of motion~35!
and~36! in two dimensions by using a simple Euler secon
order algorithm and a discretization of the integrals on
N3N bidimensional lattice. We used periodic boundary co
ditions. The parameters employed are

j51, g51/2e2, l54L/e2,

Gf51/a, D5e2/8L, ~59!

with e50.005,L50.1, anda510. The time step used i
Dt5231025 and a lattice spacedx50.01. Different values
of N were used; here we report the results forN5256.

The system was initially prepared in a nonuniform initi
state formed by 70% of undercooled liquid and the rema
ing 30% of seeds of solid randomly distributed. This ensu
that at the initial time the order parameterm(t50) is posi-
tive and the correlations are small. As long as these
conditions are met, the results are not too sensitive to

FIG. 1. Schematic behavior of]m/]t as a function ofm, from
Eq. ~56!.



fa
f
o
r-
-

o
,
r

g

eg

te
ll

rm
fo

em

.e.,

c-

on

l

th

84 56MARCONI, CRISANTI, AND IORI
initial solid-liquid fraction. The thermal fieldu was taken to
be uniform, ui j (t50)5ū(t50), with both positive and
negative values. According to Eq.~17!, the conserved field
U was chosen to be equal to

Ui j ~ t50!5ū~ t50!1
1

2
f i j ~ t50!. ~60!

The model exhibits two different long-time regimes as
as the temperature field is concerned. The snapshots o
field f indeed reveal that changing from positive values
the conserved fieldQ to negative values the long-time mo
phology changes. ForQ.0 one observes solid drops im
mersed in a liquid andu<0, whereas forQ,0 liquid drops
become trapped in a solid matrix andu>0. This is in agree-
ment with the general results of thermodynamics. F
quenches with positiveQ the minority phase is the solid
thus we expect the solid drops to have positive curvatu
Indeed, relating the curvatureK to the temperature field, we
obtain from the Gibbs-Thompson conditionu52d0K @7# a
negative value ofu for Q.0. On the contrary, upon crossin
theQ50 line, the solid becomes the majority phase andu
changes sign since the curvature relative to the solid is n
tive.

In Fig. 2 we show the behavior of the order parame
m as a function of time for the four distinct regimes. In a
cases at the initial time we havem50.54. We note that in the
caseuQu.1/2 the system evolves towards a spatially unifo
state, which is a liquid above the melting temperature
Q.1/2 and positive initialū(t50) @case (a) in the figure#
or a solid below the melting temperature forQ,1/2 and
negative initialū(t50) @case (d) in the figure#. This state
minimizes the potentialF. In the caseuQu,1/2 the system
evolves towards a phase equilibrium state at the melting t
perature: we have fort→`, u5ū50 andm52Q, in agree-
ment with the analytical results of Sec. IV.

FIG. 2. Typical behaviors of the order parameterm as a function
of time for (a) Q.1/2, (b) 0,Q,1/2, (c) 21/2,Q,0, and
(d) Q,21/2. In all runs shown here we started wi
m(t50)50.54, while the other parameter were (a) ū(t50)50.4,
Q50.67,m(`)Þ2Q; (b) ū(t50)520.2, Q50.07,m(`)52Q;
(c) ū(t50)520.4, Q520.13, m(`)52Q; and (d)
ū(t50)521.0,Q520.73,m(`)Þ2Q.
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When the system starts from an undercooled state, i
u,0 at the initial time@cases (b) –(d) in Fig. 2#, despite the
fact that the liquid state is unfavorable,m increases for short
times. The system then evolves towards a liquid state,m
tends to saturate to a fixed value;1, and the fluctuations are
small. This state is, however, unstable with respect to flu
tuations, and indeed after a timetc we observe a transition
towards the asymptotically stable state, which depends
the value ofQ,1/2.

The timetc is a decreasing function ofl, as can be seen
in Fig. 3, where we reportm as a function of time for
21/2,Q,0 and various values ofl. In Fig. 4 we report
tc versusl for the curves of Fig. 3. The line is the theoretica
prediction tc;1/l. In this figure we definetc as the time
such that mintm(t)52Q. Other definitions are possible, for
example, whenm(t)50 or any other fixed value. All these
definitions leads to the same scaling withl.

FIG. 3. Order parameterm as a function of time for
Q520.3077 and different values ofl; from right to left
l5128,170,200,300,500. The plateau increases asl decreases. Ini-
tially the parameters arem50.385 andu520.5. The dashed line
denotes the value 2Q.

FIG. 4. Crossover timetc as a function ofl for the curves of
Fig. 3. The dashed line is the scaling 1/l. The crossover time is
defined as mint m(t)52Q.
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FIG. 5. Snapshot of thef field for the global constraint case and21/2,Q,0. The lattice index is reported on the axis.
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The scenario depicted here remains valid also for the lo
constraint case. This has been checked by numerically i
grating the appropriate equations. The main difference
tween the local and the global case shows up at the mor
logical level, as can be seen in the snapshots of Figs. 5 an
As one can see, while the phase field model with local c
straint has a sharp domain wall, the model with the glo
constraint presents smoother interfaces. We stress tha
spite this difference the circularly averaged correlation fu
tions and the structure factors for the two cases are q
similar. In Figs. 7~global! and 8~local! we report the circu-
larly averagedff correlation for the situations of Figs.
and 6~circles!, as well as for the caseuQu.1/2 ~diamonds!.
The average radius of the drops is identified by the first z
of correlation functions.

While the simulations confirm the scenario described
Sec. IV, we cannot extract the power-law exponent predic
by the nonconserved ordered parameter dynamics at s
times, as well as those of the conserved order param
dynamics for long times. Indeed, finite-size effects prev
us from reaching the conserved regime.

CONCLUSION

We have studied a model that reproduces many of
features that render appealing the scalar phase field m
and analyzed its equilibrium and off-equilibrium propertie
We transformed the original scalar model into a model w
global couplings, which is more amenable to analytic inv
tigations.
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In such a description the temperature shift from the co
istence temperature plays the role of an annealed field, w
changes during the process and settles to a value determ
by energetic considerations. Its dynamics are slow compa
to that of the order parameter field and the latter becom
eventually slaved by the first.

The long-time state can be either a pure state with v
ishing correlations, in the limitTf50, or a mixed state with
large spatial fluctuations in the order parameter. The type
equilibrium reached depends on the initial value of the s
tial average Q of the field U. Indeed, in the case
21/2,Q,1/2, the system shows a tendency towards se
ration into two phases in proportions given by the ru
m52Q and one observes drops of the minority phase i
sea formed by the majority phase. At the same time the th
mal field u vanishes, indicating thatT5TM in the whole
volume. The number of the drops decreases with time
minimize the free energy of the system, but for long tim
the total amount of solid remains fixed because the heat
leased by a growing solid drop can only be adsorbed b
shrinking solid drop. As a result, the solid order parame
f becomes nearly conserved, being mediated by the c
served heat field. At this stage the dynamics of the crystal
order parameter becomes a genuine conserved order pa
eter dynamics. One can, in fact, observe multiscaling if
volume of the systems is large enough. The existence
inhomogeneous structures is mirrored in the presence of
peak in the structure factor at finite wavelength and the p
nomenon is similar to the Ostwald ripening. The underco
ing initially present is not sufficient to promote the transfo
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FIG. 6. Snapshot of thef field for the local constraint case and21/2,Q,0. The lattice index is reported on the axis.
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mation of all the liquid into the solid state, and some drops
either phase remain trapped into the other.

To summarize the results we have established the foll
ing rules governing the evolution.

~i! The fieldU is constant in time.
~ii ! The order parameterm(t) as t→` tends to the

asymptotic value m52Q, if Q falls in the range
@21/2,1/2#. This fact in turn implies that the spatial avera
value ofu over the system vanishes ast→0 , i.e., the system

FIG. 7. Circularly averagedff correlation function as a func
tion of the lattice index for the global constraint case obtained
merically: circles representuQu,1/2 and diamonds refer to
uQu.1/2.
f

-

reaches two-phase coexistence asymptotically.
~iii ! In the above range ofQ, the correlation function is

large and centered at finite values of the wave vectork.
~iv! If uQu exceeds the threshold value 1/2 the syst

evolves towards a spatially uniform state withm;21 and
vanishing correlations andm is no longer equal to 2Q. In
this caseu reaches an equilibrium value that is nonzero a
the system is out of two-phase coexistence.

~v! Therefore, larger values of the undercooling cause

-
FIG. 8. Circularly averagedff correlation function as a func

tion of the lattice index for the local constraint case obtained
merically: circles refer to uQu,1/2 and diamonds represen
uQu.1/2.
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56 87SOLUBLE PHASE FIELD MODEL
melt to crystallize completely and thus correlations are
ymptotically suppressed as the system reaches an hom
neous state.

The above features are interesting because they mimic
behavior of the more realistic phase field model with lo
constraint.

We finally remark that perhaps the most serious flaw
the model is that it suffers from the same problem as
spherical model. In contrast to the local constrained ph
field model, which displays a region of metastability of t
liquid phase in thef-T plane, between the coexistence lin
and the spinodal line@27#, the globally constrained model i
always unstable inside the two-phase coexistence line. A
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consequence, no nucleation barrier needs to be overcom
the transformation from liquid to solid. In the initial stat
long-wavelength fluctuations grow and the system becom
unstable. The nucleation barrier is proportional to the surf
tension associated with the creation of a kink in the sca
model, whereas in the model with global couplings the e
ergy gaps between the ordered phase and the instanton
tions, i.e., the uniform solutions of the equation, vanish in
infinite volume limit. Thus the mechanism described is no
Arrhenius-like. This is also reflected in the absence of t
phase separation since the width of a domain wall diver
in the limit of a vanishing pinning fieldh ash21/2 @23#.
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