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Kinetic approach to granular gases
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We address the problem of the so-called ‘‘granular gases,’’ i.e., gases of massive particles in rapid move-
ment undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the
stationary state is the result of the balance between the dissipation and the random forces which inject energies.
These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy
and dissipated energy per particle are independent of the numberN of particles, for large values ofN. One has
two regimes: when the typical relaxation timet of the driving Brownian process is small compared with the
mean collision timetc the spatial density is nearly homogeneous and the velocity probability distribution is
Gaussian. In the opposite limitt@tc one has strong spatial clustering, with a fractal distribution of particles,
and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one
and two dimensions under theStosszahlansatzBoltzmann approximation confirm the scenario. Furthermore,
we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of
a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the
other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way,
how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the ana-
lytical results exhibits an excellent agreement.@S1063-651X~99!02404-6#

PACS number~s!: 81.05.Rm, 05.20.Dd, 05.40.2a
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I. INTRODUCTION: HYDRODYNAMICS AND GASES

Granular systems~sand, powders, seeds, cements, e!
have been extensively studied, in the last two decades
means of analytical investigations, experiments, and c
puter simulations. The rich and intriguing phenomenology
well known to engineers and the need of a better compreh
sion of granular behaviors is widely recognized in appl
sciences as well as in theoretical physics. A quite exhaus
review may be found in@1#. Problems in granular system
are roughly divided into quasistatic~sand piles, distribution
of static forces, compaction, fractures propagation, etc.! and
dynamical ones~all kinds of flows, convection, and segreg
tion, pattern formation, fluidized beds, etc.!. In the latter
class, large collections of inelastic particles are involved
fluidlike rapid dynamics, therefore the hydrodynamics a
proach seems to be the natural one. The main granular
drodynamics theories are reviewed in@2#: they are all based
on nonequilibrium conservation laws@3# for mass, momen-
tum, and energy:

dr

dt
1r¹•u50, ~1!

r
du

dt
52“• t̂1rg, ~2!

1

2
r

dT

dt
52¹•q1 t̂:¹u2G, ~3!
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wherer is the local density,u is the local velocity vector,

d/dt5]/]t1u•¹ is the Lagrangian derivative,t̂ is the total

stress tensor (t̂5 t̂s1 t̂c , as transport of momentum has tw
contributions: a ‘‘streaming’’ term and a ‘‘collisional’’ one!,
g is the body-force vector~gravity or else!, T is the so-called
granular temperature T5Š(u2^u&)2

‹, q is the flux vector of

‘‘granular heat,’’ t̂:¹u is the tensorial product for the
granular-temperature generation by shear work, andG is the
sink term due to dissipation into thermodynamic heat~i.e.,
energy lost in collisions!. The existing approaches differ i
the constitutive relations that maket,q, andG depend on the
other properties¹u,r,T and on all the parameters of th
system. Apart some heuristic relations~see, for example,@4#
or @5#!, there are many calculations based on the kine
theory of nonuniform dense gases@6#, making some assump
tion on the form of the single-particle distribution functio
f (x,v,t), that is the solution of the Boltzmann-Enskog k
netic equation. Before@7#, and the almost simultaneous@8#,
all the theories had assumed a Maxwellian velocity distrib
tion, but the nonzero off diagonal components in the strea
ing stress tensor~strongly apparent at low solid fractions!
indicate the need of a correction to Maxwellian distributio
In @7# and @8# accurate predictions of streaming stresses
the case of slightly inelastic and slightly rough smoo
spheres, are obtained. In@7# and@8# and in successive studie
~see@2#!, a certain degree of energy-equipartition breaking
assumed, considering two different temperatures for tran
tional and rotational degrees of freedom, respectively.
5582 ©1999 The American Physical Society
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PRE 59 5583KINETIC APPROACH TO GRANULAR GASES
The increasing power of computers awakened an inte
in ‘‘granular gases’’ simulations, that is the investigation
kinetics of granular systems far from close packing, e.g
granular phase diagram has been proposed in@9# to clarify
different regimes and distinguish between a gaslike ph
and two different high-density phases. Results from th
simulations have been compared to previous granular hy
dynamics predictions, showing a disagreement in various
pects.

Many simulations have been performed in the ‘‘cooling
situation ~@10–15#!: the particles evolve with no externa
forcing, dissipating in collisions all initial energy. Hydrody
namics predicts a time scaling of granular temperatureT
;t22 under the assumption of Maxwellian velocities at
times, but strong departures from this law are observed w
~at fixed volume! the number of particles grows or when th
restitution coefficientr decreases@11#. When N(12r )@1
@12# ~whereN is the number of particles! it is found that the
clustering instability~this can be derived@10# from Jenkins
& Richman hydrodynamics@8#! may degenerate in the so
called inelastic collapse, as particles may be trapped in
sequence of infinite collisions in a finite time~i.e., a diver-
gence of collision rate!. Inelastic collapse is found in one
dimensional and two-dimensional@13# simulations. Further-
more, equipartition between rotational and translatio
energy is found to be broken in cooling kinetics~see@15# and
references therein!.

Strong equipartition breaking is found in another class
models, that of driven granular gases, where the dissipa
of energy due to collisions is balanced by an external sou
~in realistic situations one has to vibrate or shake a gran
system, to keep italive!. We could divide these models i
two subclasses: elitary and democratic models, referring
the quantity of particles receiving energy from the exter
source. In elitary ~one-dimensional @16,17# and two-
dimensional @17#! models a wall of the container is th
unique energy source, therefore there are few particles~just
one, in one dimension! that transport energy from the sourc
to the rest of the system. In democratic models~one dimen-
sional @18,19# and two dimensional@20,21#! all particles re-
ceive energy, by means of a Brownian-like random veloc
kick at every time step. The model we propose in this pa
belongs to this last subclass.

Recently the Boltzmann-Enskog equation for granular
netic ~cooling or driven! has been analyzed, showing that t
velocity distribution is expected not to be Maxwellian. Es
pov and Po¨schel@22# have found, for cooling inelastic har
spheres, exponential tails while van Noije and Ernst@23#
have obtained the same tails in the cooling regime
;exp(2Av3/2) tails in the~democratic! driven regime.

A non-Maxwellian behavior has been, very recently, o
served experimentally in a vertically driven granular b
@24#. The measured velocity distribution in such experime
is in very good agreement with the results of our simulatio

To conclude this brief introduction, one has to remem
that, in modeling granular gases, the oversimplifying cri
rion is, sometimes, misleading. Brilliantovet al. have shown
@25# that the universally accepted picture of fixed restituti
coefficient is far from being obvious and that the behavior
granular gases~self-diffusion, as an example! may change
drastically if this coefficient is taken dependent on the imp
st
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velocity. McNamara and Luding@26# have recently stresse
the importance of keeping into account rotational degree
freedom as well translational ones, and that of the partic
wall dissipation. Furthermore, the relevance of choosing
boundary energy source and the possibility of consider
soft particles instead of hard grains have been investiga
by Geisshirtet al. @27#.

In Sec. II detailed results of simulations of a on
dimensional model of driven granular gas~already presented
in @28#! are reported. In Sec. III a one-dimensional and tw
dimensional version~in Boltzmann approximation! of the
same model is discussed, reporting analogous results. T
in Secs. IV and V, some theoretical interpretations are p
posed in order to understand non-Maxwellian behavior a
try to relate it to the clusterization phenomenon. Section
is devoted to conclusions and open problems.

II. INELASTIC HARD-ROD ONE-DIMENSIONAL MODEL

Such class of models originates from the seminal pape
Du, Li, and Kadanoff@16#, who consideredN identical hard
rods confined between a thermal and a reflecting wall. In
model one has a statistically steady state as the result o
balancing between the dissipation of the kinetic energy
to the collisions between the rods and the energy reinjec
due to the thermal wall; the latter supplies energy only to
last particle, which in turn transfers energy and moment
to the rest of the system, producing a somehow trivial clus
near the opposite wall. Such a state represents a breakd
of the equipartition of the energy in a stationary nonequil
rium system; however, its existence comes about as an
fact, since it is due to the peculiarity of the boundary con
tions. In fact, in the model introduced in Ref.@16# the mean
kinetic energy per particle,

E5
1

2N (
i 51

N

^v i~ t !2&, ~4!

and the mean dissipated energy per particle per unit tim

W5
1

Dt(j
^~DE! j& ~5!

„where (DE) j is the energy loss during thej th collision oc-
curred in the time interval@ t2Dt/2,t1Dt/2#, and^ & is the
time average…, decay exponentially with the numberN of
particles, as shown in Fig. 1. Finally, within the Kadano
model only a small region of parameter space can be
plored: sincer, the restitution coefficient, defined below
must satisfy the inequalityN(12r ),1 in order to avoid
inelastic collapse@10,12#.

Williams and MacKintosh@18# proposed an alternative
heating mechanism. The idea is to supply kinetic energy
every particle by means of a random acceleration at ev
time step. Since the dissipation due to inelastic collisions
not effective in balancing the increase of energy com
from the random kicks~the latter is independent from th
velocities, while the former is proportional to them!, the au-
thors subtract the average velocity of the center of mas
the system from the velocity of each particle at every tim
step in order to avoid energy divergence and total n
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5584 PRE 59A. PUGLISI et al.
conservation of the total momentum. Though this method
numerically efficient, it does not appear realistic from
physical point of view.

Hereafter, we propose a model@28# consisting ofN iden-
tical particles of mass 1 on a ring of lengthL. Between
collisions, each particle obeys to the following Langev
equation@29#:

dv i

dt
52

v i

t
1A2TF

t
f i~ t !, ~6!

dxi

dt
5v i~ t !, ~7!

where 1< i<N,t andTF are the relaxation time due to vis
cous effects and the thermal bath temperature, respecti
f i(t) is a standard white noise with zero average, a
^ f i(t) f j (t8)&5d i j d(t2t8).

In addition to these equations, the particles mutually c
lide according to the following rules:~a! only binary colli-
sions are considered,~b! each collision is instantaneous, an
~c! the post-collisional velocities are related to the p
collisional ones by the equations

v i85
12r

2
v i1

11r

2
v j ,

v j85
11r

2
v i1

12r

2
v j , ~8!

wherer is therestitution coefficient. In this way, the momen-
tum is conserved in the collisions, while the kinetic energy
center of mass is rescaled byr 2, i.e.,

~v i82v j8!25r 2~v i2v j !
2. ~9!

The elastic case isr 51, while for r 50 the colliding par-
ticles have no relative motion after the collision: they mo
together with the velocity of the center of mass. It has to
noted that, in one dimension, the size of the particles is n
significant parameter, because of the ‘‘hard’’ nature of co

FIG. 1. Kinetic energy and dissipated energy per particle@as
defined in Eqs.~4! and ~5!# vs N, in the model of Du, Li, and
Kadanoff @16#. Particle densityN/L5100 is kept constant andr
50.99.
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sions: the particles never deform~this effect is kept into ac-
count in the restitution coefficient picture! and therefore only
the length of spacings between particles is important, tha
L ~see@16#!.

In the absence of collisions, each particle would perform
Brownian motion reaching, fort@t, a stationary state with a
Gaussian velocity distribution:

P~v i !5
1

A2pTF

expS 2
v i

2

2TF
D ~10!

and a diffusive behavior,

^~xi~ t !2xi~0!!2&52Dt, ~11!

whereD5TFt/2 is the diffusion coefficient. The interpreta
tion of the model is straightforward: the environment su
plies kinetic energy to the system as a thermal bath at t
peratureTF . The viscous term~with characteristic timet) is
naturally introduced to take into account different frictio
effects, such as contact friction with boundaries, partic
fluid interaction, tangential interparticle friction and ener
transfer among different degrees of freedom. Experime
fluidized beds~see, for example,@30#! are an example of
phenomena in which a viscous damping and a noisy term
naturally present. As noted before, in@24# is presented an
experiment showing strong analogies with our model.

When collisions are considered, another characteri
time emerges, that is the average collision timetc between
two successive encounters. An estimate oftc , as a function
of average density and typical velocity, is

tc;
L

2NA^v2&
. ~12!

It is natural to assume that^v2& reaches a stationary valu
with statistical fluctuations~of order;1/N), as it is observed
in simulations. In the following we shall refer to the quanti

Tg5^v2&5 lim
~T2T0!→`

1

~T2T0!N (
i 51

N E
T0

T

v i~ t !2dt ~13!

as to thegranular temperatureof the system. Note that the
system is not at equilibrium, thereforeTg is not a tempera-
ture in a proper thermodynamic sense: it may be differen
one measures it at different scales or in different subsyst
~as it will be shown later!.

In all the simulations performed, we useL/N51 andTF
51 and the measuredTg<TF is almost always found to be
greater than 0.1~and never drops below 0.03). From Eq.~12!
we can estimate 0.5,tc,5.

The presence of two time scales (t andtc) leads to two
different regimes. Astc varies in a small range~less than
one order of magnitude!, we could tune the parametert to
observe these two phases:

~a! When t!tc the effect of collisions is rapidly over
whelmed by the Brownian motion~i.e., collisions are rare
events! and the system behaves as a collection of wea
interacting random walkers or, equivalently, as an ideal
in equilibrium at a temperatureTg not far from the tempera-



o
i

h
til
w

r
d

te

w
io

s

n
s-

t

m

ns

ta-
ea

on

equal

PRE 59 5585KINETIC APPROACH TO GRANULAR GASES
ture TF of thermal bath~one can be convinced of this als
looking to the Boltzmann equation of the system, reported
the next section!.

~b! In the opposite limittc!t the collisions dominate the
dynamics and strongly compete against the driving mec
nism. In this regime a statistically stationary state is s
observed, in the sense that macroscopic averages are
defined, and interesting phenomena emerge:~a! a strongly
inhomogeneous spatial distribution~clusterization! and~b! a
deviation of velocity distribution from Gaussian behavio
These phenomena are more and more pronounced with
creasing values of the restitution coefficientr.

The simulations have been performed using a fixed s
Dt integration of Eqs.~6! and~7! whereDt!tc and an event
driven check of collisions during every time step. For lo
values ofr we observed an exponential decrease of collis
time, much shorter than the integration timeDt. We dis-
carded these simulations, interpreting them as example
inelastic collapse@12#. The critical value ofr, for the appear-
ance of collapse, increases witht: in the limit t→` the
thermal bath disappears and the system becomes a gra
cooling model with critical value, for inelastic collapse, e
timated byN(12r );1 as noted before.

In Fig. 2 we reportTg andW vs. the restitution coefficien
r for different t.

A simple relation betweenTg and W may be obtained.
The variation of the kinetic energy due to Langevin dyna
ics is

„dE~ t !…Lang5
1

2N (
i 51

N

@v i~ t !1dv i~ t !#22
1

2N (
i 51

N

v i
2~ t !

5
1

2N (
i 51

N

@dv i~ t !#21
1

2N (
i 51

N

v i~ t !dv i~ t !,

~14!

wheredv i is the velocity variation during a time intervaldt
in Eq. ~6!, from which we obtain the relations

FIG. 2. The average granular temperatureTg and the average
dissipated energy per particleW vs the restitution coefficientr for
different values oft and N5200. From top to bottom:t50.01,
t52, t5100, t51000.
n
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lim
dt→0

K dv i~ t !2

dt L 5A2TF

t
, ~15!

lim
dt→0

K v i~ t !dv i~ t !

dt L 52
^@v i~ t !#2&

t
, ~16!

where thê •••& average is taken over different realizatio
of stochastic processf i(t). Recalling the definition ofTg ,
using Eqs.~4!, and~5!, and inserting Eqs.~15! and~16! into
Eq. ~14!, and assuming the ergodicity, one obtains

W5
TF2Tg

t
. ~17!

The numerical check of such relation is shown in Fig. 3.
Though the system is statistically stationary, the instan

neous density of particles is rapidly evolving. To get an id
of different density profiles in the two regimes~homoge-
neous and clusterized!, look at Fig. 4.

FIG. 3. Dissipated energy per particleW vs the granular tem-
peratureTg , for different t and differentr : t50.01 ~a!, t52 ~b!,
t5100 ~c!, t51000 ~d!. The dashed lines represent the relati
~17!.

FIG. 4. Instantaneous density profilesr(x) in two regimes:~a!
quasiequilibrium regime~t50.01,r 50.99) and~b! nonequilibrium
regime with clusters~t5100, r 50.6). In both histogramsN5200
and the dashed horizontal lines represent the average density,
to four particles per bin.
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5586 PRE 59A. PUGLISI et al.
The density distribution becomes fractal in the clusteriz
regime, as can be verified measuring the correlation dim
sion d2 @31# that we computed from the correlation functio

C~R!5
1

N2~T2t0!
E

t0

T

dt(
i , j

u~R2uxi~ t !2xj~ t !u!;Rd2

~18!

with t0 the time after which one can assume the system i
a typical situation andT is the duration of the simulation
C(R) is shown for homogeneous and clusterized situati
in Fig. 5. In Fig. 6 is presented a summary ofd2 measure-
ments as function of parameterst and r.

The clusterization may quantitatively characterized
means of anentropydefined as

hM52(
j 51

M
mj

N
ln

mj

N
~19!

where the ring of lengthL is divided inM equalboxes~i.e.,
segments! and mj is the number of particles in thej th box.
The entropyhM attains its maximum valuehM5 lnM when
mj5N/M for every boxj . hM decreases as the density d

FIG. 5. C(R) vs R for t5100, r 50.6 ~top!, and t5100, r
50.99 ~bottom! with N5200. The correlation dimension takes, r
spectively, the valuesd250.59 andd251.

FIG. 6. The correlation dimensiond2 vs r for different values of
t: from top to bottomt is 0.01, 2, 100, and 1000.N5200 in all
simulations.
d
n-

in

s

y

tributions becomes more and more clusterized. For a n
clusterized~but fluctuating! density, we have a Poisson dis
tribution for mj , that is~with l5N/M ),

f ~mj !5
lmj

mj !
exp~2l!, ~20!

from which it can be~numerically! calculated the effective
entropy for homogeneous regimehM* . In Fig. 7 are presented
many measurements ofHM /HM* , where HM5exp(̂ hM&),
HM* 5exp(̂ hM* &), and ^& is the time average. The quantit
HM /HM* basically gives an indication of the fraction of non
empty boxes in a typical snapshot.

In Fig. 8 is shown the distribution of velocities, obtaine
sampling the velocities of all particles for very long times,
the two different regimes~a quasiequilibrium case witht
50.01, r 50.99 and an out of equilibrium case witht
5100, r 50.7). In the quasiequilibrium regime the distribu
tion is very well fitted by a Gaussian. As a general res
when t@tc the velocity distribution ceases to be Gauss
and the high velocity tails decay more slowly to zero. T
deviation becomes more pronounced as the restitution c

FIG. 7. HM /HM* vs r for different t: from top to bottomt is
0.01, 2, 100, and 1000, withN5200 andM580(HM* '63).

FIG. 8. The rescaled velocity distributionP(v/s) vs v/s.
Pluses (1) are data from simulation witht5100, r 50.7. Crosses
are data witht50.01, r 50.99. The dot-dashed line represents t
Gaussian distribution, while the dashed line represents the fit
cussed in Sec. IV.
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PRE 59 5587KINETIC APPROACH TO GRANULAR GASES
ficient r decreases. In the figure a theoretical fit is also p
ted for the non-Gaussian distribution. This fit will be di
cussed below, in Sec. IV.

In Fig. 9 the density distributions in the homogeneous a
clusterized regimes are shown~respectively t50.01, r
50.99 andt5100,r 50.7, withN5300), i.e.,f M(m) where
m is the number of particles in a box when the ring is divid
in M boxes~this distribution, as all the others, is obtaine
sampling data for very long times!. The homogeneous re
gime is very well fitted by a Poisson distribution, as noted
Eq. ~20!. The clusterized regime presents an exponen
long tail and a power law for the low density boxes: t
function (1/m)e2cm with c50.14 fits very well the data and
is consistent with the theoretical interpretation given in S
IV.

Figure 10 represents thebox granular temperature
TM(m) as a function of the number of particlesm in a box:

TM~m!5
1

m (
j 51

m

~v j2^v&m!2, ~21!

where ^v&m is the average velocity~typically close to zero
whenm@1) in the box andM is the number of boxes on th

FIG. 9. Density distribution vsm for two different choices of
parameters:t50.01, r 50.99 andt5100, r 50.7, N5300, andM
5100. The former is fitted by a Poisson distribution withl53,
while the latter is fitted by (1/m)e20.14* m.

FIG. 10. Box granular temperatureTM(m) againstm, when t
50.01, r 50.99 andt5100, r 50.7 ~in this case the fitm20.5 is
plotted!.
t-

d

al

.

ring of lengthL. The figure shows this function~averaged
over very long times! for both the regimes: in the Gaussia
case~with t50.01 andr 50.99) we observe thatTM(m) is a
constant, while in the non-Gaussian case (t5100, r 50.7) it
is a power law, i.e.,TM(m);m2b with b50.5. The expo-
nentb depends on the values oft and r.

III. BOLTZMANN EQUATION APPROXIMATION

A natural question now arises: can we expect that
above results are general and independent from the dim
sionality of the system? Or are these an artifact of the o
dimensional dynamics? An answer may come from
Boltzmann equation for the one particle distributio
P(x,v,t) @32#:

]P

]t
1

]~vP!

]x
2

1

t

]~vP!

]v
2

TF

t

]2P

]v2
5

]P

]t
ucoll , ~22!

]P

]t
ucoll5

4L

~11r !2E dv8uv82vuP~x,v8,t !

3P„x,@2v2~12r !v8#/~11r !,t…

2LE dv8P~x,v8,t !P~x,v,t !uv82vu, ~23!

whereL;1/tc is the mean collision rate per particle. In th
limit of elastic collisions (r 51) the collision integral~23!
disappears and the stationary solution of Eq.~22! is
P(x,v,t)} exp(2v2/2TF). This is related to the fact that in
the elastic limit a collision between two particles is nothi
but a change of the labels of the two particles and there
the collisions are not relevant at all.

The main approximation in Eq.~22! is the Boltzmann
Stosszahlansatz, according to which the correlation betwee
two close particles is neglected and one writes

P2~x,x8,v,v8,t !5P~x,v,t !P~x8,v8,t !. ~24!

As Eq. ~22!, as far as we know, cannot be solved analy
cally, we consider a stochastic process based on the
algorithm @33#, the statistical features of which are identic
to those of the Boltzmann equation.N particles move on a
torus~in d dimensions! of linear sizeL ~i.e., the area of thed
torus isLd). The time is discretized in intervals of duratio
Dt. A collision timetc is fixeda priori: this means that two
particles collide, during Dt, with a probability p
5Dt/tc(Dt!tc , as usual!.

At each discrete timetk5kDt, positions and velocities
are upgraded according to Eqs.~6! and ~7!. Then for each
particle i a random numbery is extracted out of a uniform
distribution in the interval@0,1#: if y.p no collision occurs,
otherwise the particlei collides with a particlej such that
uxi(tk)2xj (tk)u, l ( l !L), chosen with probability propor-
tional to uv i(tk)2v j (tk)u. The collision rule, in one dimen
sion, is the same as before and it is extended to the two-
three-dimensional cases in a natural way: after a collis
vi82vj85r ê(vi2vj) where ê is a unit vector with random
orientation.
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It can be demonstrated@34# that for this process, in the
limit N→`,p→0,l→0,Dt→0, the evolution of the probabil
ity distribution P(x,v,t) of the Bird process is governed b
the Boltzmann equation~22!.

In this model there are two parameters,tc and l. The first
one was already an observable of the previous model~where
it was almost constant!. The second one, instead, represe
the collision range and replaces the radius of the particles
it is related, in some way, to the total volume fractionn
5kN/Ld with k the volume of one particle, which is no
explicitly considered in this model and in the previous on
Furthermore, we cannot expect to find a fractal scaling a
range lower thanl, and, moreover, no inelastic collapse c
be observed, as short-range correlations are neglecte
should be noted, finally, that the imposed collision timetc is
larger than~but of the same order of magnitude as! the one
really measured in the simulations,tc* , because a particle
collides with probabilityp5Dt/tc only if there is another
particle at distance lower thanl. One can expect thattc*
→tc as the clusterization becomes more and more p
nounced.

In all the simulations of this model we keptTF51 and
N/Ld51, we rarely changedtc and l and we explored the

FIG. 11. Snapshot of particle distribution in 2 dimensions in
clusterized regime.N55000, tc50.5, l 50.63, t5100, and r
50.01.

FIG. 12. C(R) vs R in the one-dimensional system.N52000,
tc50.5, andl 50.4. The top curve is fort5100,r 50.5, the bottom
one is fort50.01, r 50.99. The correlation dimension is, respe
tively, d250.55 andd251.
s
so

.
a

It

-

space of parameterst and r as in the previous section. Al
the results previously obtained were recovered in this
proximation with 1<d<3, showing that they are genera
properties of a granular system subject to such a hea
mechanism as that of Eqs.~6! and ~7!. A rapid overview of
significant measurements, in one and two dimensions,
lows.

We stress the fact that also in this model the syst
reaches a statistically stationary state after a transient,
also in this model there are two different regimes: the q
siequilibrium regime (t!tc) and the out-of-equilibrium one
(t@tc).

The clusterization phenomenon is shown in Figs. 11,
and 13 where the density snapshots and the correlation f
tionsC(R) @defined in Eq.~18!# are presented. It is observe
the predicted reduction of the fractal scale~more evident in
the two-dimensional model! due to Boltzmann approxima
tion.

The existence of a good thermodynamic limit is shown
the Figs. 14 and 15 where theN dependence of some obser
ables is plotted: we show the granular temperatureTg , the
fractal dimensiond2 , and the collision ratex51/tc* , all in

FIG. 13. C(R) vs R in two dimensions.N55000, tc50.5, l
50.71. Top curve is fort5100,r 50.5, while the bottom one is for
t50.01, r 50.99. The correlation dimension isd251.45 andd2

52, respectively.

FIG. 14. The granular temperatureTg , fractal dimensiond2 ,
and collision ratex vs number of particlesN, for the model in one
dimension, withtc50.5, l 50.4, t5100, andr 50.5.
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the out-of-equilibrium regime.
The same quantities are plotted in Figs. 16 and 17 aga

the restitution coefficientr in the same regime~these plots
are analogous to those of Figs. 2 and 6!. Note thattc* ap-
proachestc when r decreases, as it is expected. The dif
sion coefficients, also plotted in those figures, will be d
cussed in the conclusion.

The distributions of velocities are presented in Figs.
and 19. The non-Gaussian behavior in the second reg
(t@tc) is still clearly observed. In Fig.~20! a distribution of
velocities restricted in the following way is presented: w
sampled the velocities of one particle only when there w
other m (m51 andm55) particles in a box of radiusR( l
!R!L) centered on that particle. This is a sort of veloc
distribution at fixed density. The plot shows a less p
nounced deviation from the Gaussian, in agreement with
statement~discussed in Sec. IV! that there is a local equilib
rium with a temperature that depends upon the local den
in order to have a stationary distribution of clusters.

The analogues of Figs. 9 and 10 are Figs. 21 and 22
24 and 25, respectively. Again the density distributi
f M(m) is a Poisson function when the system is not clus

FIG. 15. The granular temperatureTg , fractal dimensiond2 ,
and collision ratex against number of particlesN, for the model in
two dimensions, withtc50.5, l 50.63,t5100, andr 50.5.

FIG. 16. The granular temperatureTg , fractal dimensiond2 ,
collision ratex, and diffusion coefficientD against restitution coef-
ficient r, for the model in one dimension, withN54000,tc50.5,
l 50.4, t5100, andr 50.5.
st
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-
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e
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ized and a function of the form exp(2am)/mb in the presence
of clustering. Thebox granular temperature TM(m) still pre-
sents a constant behavior~as expected! at equilibrium and a
power law m2g in the non-Gaussian regime. It does n
seem possible to easily find a relation betweena,b,g, and
the other observables~asd2 or Tg).

In summary, the exact model is perfectly reproduced
this Boltzmann approximation, at largeN, not only confirm-
ing the existence of a thermodynamic limit, but also show
that this system may be studied analytically in order to be
understand this kind of driven granular kinetics. In the fo
lowing sections some theoretical interpretations will be d
cussed.

IV. A MODEL TO EXPLAIN CLUSTERIZATION

In this section we address the problem of the microsco
origin of the clusterization. In order to do that, we study
class of models in which the system is composed byM boxes
and N particles in a mean-field model, assuming that t
boxes have infinite connectivity. One starts with a cert

FIG. 17. The granular temperatureTg , fractal dimensiond2 ,
collision ratex and diffusion coefficientD against restitution coef-
ficient r, for the model in two dimensions, withN53000, tc

50.5, l 50.63,t5100, andr 50.5.

FIG. 18. Distribution of velocities in a Gaussian (t50.01, r
50.99) and a non-Gaussian regime (t5100, r 50.5) for the one-
dimensional system. In both casesN52000, tc50.5, andl 50.4.
The dashed curve represents the Gaussian.
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configuration and let the system evolve with an excha
dynamics in which, at each time step, one particle mo
from one box to another, both boxes being chosen rando
The probability for each single exchange is model depend
and it will be our tuning parameter to scan the different p
nomenologies. Our goal is to understand in a quantita
way how the microscopic dynamics affects the cluster
properties of the system. In particular we shall try to reco
the results, obtained in the framework of the models pre
ously introduced, for the density distributions in the clust
ized and homogeneous cases~see Figs. 9, 21, and 22!.

The models are defined in terms of master equations
the probabilityPm of having a box withm particles, assign-
ing transition rates for landing in a box withm particles
Win(m) and for leaving a box withm particlesWout(m). It
must be

Win~N!5Wout~0!50 ~25!

and the normalization conditions must be satisfied:

(
m50

`

Pm51, (
m50

`

mPm5
N

M
5l, (

m50

`

Win~m!M Pm51.

~26!

FIG. 19. Distribution of velocities in a Gaussian (t50.01, r
50.99) and a non-Gaussian regime (t5100, r 50.5) for the two
dimensions case. It is alwaysN510 000,tc50.05,l 50.22, and the
dashed line represents the Gaussian.

FIG. 20. Distribution of velocities restricted to number dens
m51 ~pluses! andm55 ~crosses!, in a two-dimensional case, with
N510 000,tc50.05, l 50.22,t5100, andr 50.5.
e
s

ly.
nt
-
e
g
r
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The general question is: What is the asymptotic station
distribution for the average number of boxes withm par-
ticles, P(m)?

The simplest case we can consider is the one in wh
each single movement is independent of the state of the
parting and of the landing box. In this case there is no bia
the movements andWin(m) and Wout(m) do not depend
uponm:

Win~m!5Wout~m!5
1

M
~27!

and the general master equation reads

M2
dPm

dt
5Pm21S Pm212

1

M D12Pm11Pm21

1Pm11S Pm112
1

M D
1Pm11~12Pm2Pm112Pm21!

FIG. 21. Distribution densityf M(m) vs m for two one-
dimensional cases:t5100, r 50.5 andt50.01, r 50.99. In both
cases:N5500, tc50.5, l 50.4, and M512 000. There are two
curves superimposed: a Poisson function~with l5N/M'0.04) and
m21.95exp(20.26*m) fit for the clusterized regime.

FIG. 22. Distribution densityf M(m) vs m for two bidimensional
cases:t5100, r 50.5 and t50.01, r 50.99. In both cases:N
510 000,tc50.05, l 50.22, andM53200. There are two curve
superimposed: a Poisson function~with l5N/M53.125) and
m20.5exp(20.097*m) fit for the clusterized regime.
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1~12Pm2Pm212Pm112P0!Pm21

2Pm21Pm22PmS Pm2
1

M D2PmPm11

2Pm~12Pm212Pm2Pm11!

2~12Pm2Pm112Pm212P0!Pm ,

for 0,m,N, ~28!

M2
dP0

dt
5P1S 12P02

1

M D2~12P12P0!P0 ,

M2
dPN

dt
5P1PN212PNS 12

1

M D . ~29!

FIG. 23. Rescaled distributions of velocities~particular! for
three different choices of parameters, in two dimensions:~a! N
510 000,t50.01, r 50.99, with Gaussian fit;~b! N53000,t55,
and r 50.5 with the fit;exp(2v3/2/1.25); ~c! N510 000,t5100,
and r 50.2 with the fit ;exp(2v/0.7). In cases~a! and ~c! tc

50.05, l 50.22. In case~b! tc50.5 andl 50.63.

FIG. 24. Box granular temperatureTM(m) vs m for two one-
dimensional cases:t5100, r 50.5 andt50.01, r 50.99. In both
cases:N5500,tc50.5, l 50.4, andM512 000. The Gaussian cas
is constant, while the non-Gaussian case is fitted by;m20.8.
In the limit of M@1 one can neglect the 1/M terms in the
right-hand side of Eq.~28! and easily get the stationary so
lution @(dPm /dt)50#

Pm5Ae2cm ~30!

with A512e2c corresponding to the normalization cond
tion (0

`Pm51 and wherec is a constant depending onN and
M :c5 ln@11(1/l)# with l5N/M .

This result has to be compared with the probabil
f M(m) in the nonclusterized case of the previous sections
order to do this it is necessary to recall that this result
been obtained with a small value of the number of boxesM.
This means that one is very far from the limitM@1 and this
situation corresponds to a sort of coarse graining in the s
tem in which each box~big box! is actually composed by a
certain number of small boxes~the number of which is such
that M@1). The problem can thus be formulated in the fo
lowing way: given a system ofN particles distributed in
Msmall boxes with the distributionPm given by Eq.~30!,
what is the distributionPm* for the particles in a system o
Mbig boxes each one composed byR (R5Msmall /Mbig)
small boxes? The resulting distribution is easily written a

Pm* 5(
*

)
i 51

R

Pmi
5ARe2cmF~m,R!, ~31!

where(* indicates the sum on the$m1 , . . . ,mR% such that
( i 51

R mi5m,F(m,R) is the number of ways of distributingm
particles inR boxes and it is given by@35#

F~m,R!5S m1R21

m D . ~32!

With the help of Eq.~32! and using the Stirling formula
expression~31! becomes~for R@N@1)

FIG. 25. Box granular temperatureTM(m) vs m for two bidi-
mensional cases:t5100, r 50.5 and t50.01, r 50.99. In both
cases:N510 000,tc50.05, l 50.22, andM53200. The Gaussian
case is constant, while the non-Gaussian one is fitted by;m20.8.
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Pm* 5ARe2cm
~m1R21!!

m! ~R21!!

'ARe2cm
~m1R21!m~m1R21!R21

m! ~R21!R21

'ARe2cm
Rm

m!

5
AR

m!
exp($2m~ ln@11~Msmall /N!#2 ln~Msmall /N!

2 ln~N/Mbig!%!

'e2l* ~l* !m

m!
. ~33!

It has been used the definition ofR, the fact thatc5
ln(11Msmall/N) and thatMsmall /N@1. In the last passag
l* 5N/Mbig has been introduced andAR has becomee2l* ,
as can be verified whenl215Msmall /N@1. It has been
shown, therefore, that the coarse grained version of the
lution of Eq.~28! is exactly the Poisson distribution found
the simulations, in the nonclusterized regime~see Figs. 9, 21,
and 22!.

Let us consider now one case where the transition r
for the particle jumps depend on the contents of the dep
ing and landing boxes. This corresponds to impose some
of bias to the system that could well reproduce the situa
one has in the clusterized cases due to the inelasticity.
consider in particular the following case, defined by the tr
sition rates:

Win~0!5
1

M
,

Win~m!5~12P0!
m

N
, for 0,m,N,

Wout~m!5
m

N
, for 0,m<N. ~34!

These transition rates, which satisfy the relations~26!,
have the following interpretation. The probability of landin
on a box containing alreadym particles is proportional to the
number of particles because this mimics the inelastic co
sion with a cluster ofm particles. On the other hand, th
departure from a box containing alreadym particles has a
probability proportional tom because the probability to se
lect one particle in that particular box is proportional tom.

Neglecting as usual the terms of the order of 1/M , and
after simplifications, the stationary master equations writ

Pm11~m11!1~12P0!~m21!Pm212P0mPm50,

P12
N

M
P050,

P1

N
PN21~12P0!

N21

N
2PNS 12

1

M D 1

M
50.

~35!

The solution in this case is given by
o-

es
rt-
ort
n
e
-

i-

Pm5A
1

m
e2am, P0512e2a ~36!

with A5l(ea21) andl5N/M .A anda are related by an
implicit equation obtained imposing the condition(0

NPm

51, that in the limitN→` becomes

12e2a2A*ln ~12e2a!51. ~37!

In the clusterized case we expect the solution to be s
similar, in the sense thatPm has the same behavior ofPm* ,
and the coarse graining previously performed should
change the solution~36!, apart a rescaling ofl anda.

It must be noted that, asA must be finite, whenN→`
~andM is fixed! a has to go to zero, whilea diverges when
N/M goes to zero. It is natural to think toa as to the inverse
of the characteristic ‘‘mass’’ of a cluster, that is the typic
number of particles in it. In this sense the term exp(2am)
acts as a finite-size cut-off for the self-similar distributio
Pm;1/m.

The solution~36! is in excellent agreement with the nu
merical results obtained in the previous sections. In parti
lar, in the caseN5300M5100 of the one-dimensiona
model of Sec. II one recovers the density distribution w
the correct value ofa.0.14 ~see Fig. 9!.

To get the other observed behaviors of density distri
tion Pm;e2am/mb ~see Figs. 21 and 22!, it is enough to
change the transition rates appearing in Eqs. 34 into the
lowing:

Win~0!5
1

M
, ~38!

Win~m!5m~12P0!mb, for 0,m,N, ~39!

Wout~m!5mmb, for 0,m<N, ~40!

wherem is a normalizing constant:

m5S M(
i

N

PmmbD 21

. ~41!

Now, we can go a step further relating the clusteri
properties of the system to the velocity distribution. In ord
to do that we consider the following quantities: the distrib
tion of boxes,f M(m), containing a given numberm of par-
ticles and the velocity varianceTM(m), in a box occupied by
m particles. We consider first the nonclusterized caset
!tc and r .1). Within this regime we find from the simu
lations that

Tm
elas~m!.const, ~42!

f M
elas~m!5

lme2m

m!
. ~43!

By assuming in each box a Gaussian velocity distribut
with a constant varianceTM

elas(m) it turns out that the globa
velocity distributionPelas(v) is Gaussian. Let us recall tha
the Poisson distribution is the one associated with a proc
of putting independentlylN particles intoN boxes.
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Let us turn to the nonelastic case. Ift5100 andr 50.7,
considering the occupied boxes (m.0), we obtain from the
simulations the following relations:

TM
inel~m!;m2b, ~44!

f M
inel~m!5

e2am

m
, ~45!

with b.0.5 anda.0.14. Let us compute from these sca
ings the global velocity distribution. Taking into account th
the spatial probability distribution of the particles isf M(m)
and assuming that their local velocity distribution is Gau
ian, but with a varianceTM(m).m2b which depends on the
occupancy, we obtain, for the global velocity distributio
Pinel(v), and in the continuum limit:

Pinel~v !. (
m51

`

e[ 2~v2mb/2!]e2am. ~46!

We stress how the the distributions measured in the sim
tions are in very good agreement~see the dashed line in Fig
8! with the numerical computation of Eq.~46!, which, in
summary, has been obtained under only the following
pothesis:~i! non-Poissonian distribution for the box occ
pancy f M(m)}e2am/m; ~ii ! Gaussian distribution of veloci
ties in each box with a density-dependent varianceTM(m)
}m2b.

The hypothesis about the scaling relation between the
locity variance @i.e., TM(m)] and the local density, apar
from being justified numerically, can be understood in t
following way. The stationarity and the scale invariance
the cluster distribution implies a certain distribution of lif
times for the clusters. In particular each cluster has a lifet
that is inversely proportional to its size. The scale-invari
cluster-size distribution thus implies a scale-invariant dis
bution for the lifetimes. The cluster lifetime is strictly relate
to the variance of the velocity distribution inside the clus
itself. In order to ensure the stability of a cluster in a statio
ary state we have to require that the velocities of the parti
belonging to it are not too different, or equivalently that t
variance of the distribution is smaller the higher the dens
So, given a scale-invariant distribution of clusters one wo
expect a scale-invariant distribution of variances, that
TM(m);m2b.

In the next section the non-Gaussian distribution of vel
ity will be related to clusterization with the help of a mea
field model of driven granular gas.

V. A MODEL FOR THE CLUSTERING
AND THE NON-GAUSSIAN BEHAVIOR

In order to shed some light on the relationship betwe
the spatial clusterization and the anomalous velocity dis
bution observed above, we present a simple theore
model. For the sake of simplicity of notation, we discu
only the one-dimensional~1D! case. Let us treat the colli
sions in a mean-field-like fashion and modify the Lange
dynamics plus collision rules by the following set of coupl
equations for the velocities
t

-

a-

-

e-

e
f

e
t
-

r
-
s

.
d
s

-

n
i-
al

dv i

dt
52

v i

t
1

1

N (
j 51

N

g~v i2v j !1A2TF

t
f i~ t !, ~47!

where the second term in the right-hand side~r.h.s.! deter-
mines the velocity change of the particlei due to the colli-
sions with the remaining particles and is chosen to mimic
inelastic behavior. This requirement poses some constra
about the form of the functiong(v2v8): ~i! The momentum
conservation dictates the antisymmetric property,g(v2v8)
52g(v82v); ~ii ! The inelasticity of the collision proces
requiresg(v2v8)(v2v8)<0.

The Fokker-Planck equation corresponding to Eq.~47! is

] tPN~v1 , . . . ,vN ,t !2
1

t (
i 51

N
]

]v i
v i PN~v i , . . . ,vN ,t !

2
TF

t (
i 51

N
]2

]v i
2

PN~v1 , . . . ,vN ,t !

1(
i 51

N
]

]v i
F 1

N(
j 51

N

g~v i2v j !PN~v1 , . . . ,vN ,t !G
50. ~48!

From the above equation, using the fact that in the lim
N→` the mean-field approximation holds, one can obtain
evolution equation for the one-body velocity probability di
tribution that reads

]P~v,t !

]t
2

1

t

]„vP~v,t !…

]v
2

TF

t

]2P~v,t !

]v2

1
]

]vE dv8P~v,t !P~v8,t !g~v2v8!50, ~49!

i.e., a sort of self-consistent Boltzmann equation. From
~49! one observes that the quantity

E dv8P~v8,t !g~v2v8!5G~v !52
]U~v !

]v
, ~50!

which is a function ofv and a functional ofP(v), can be
considered as an effective force acting on the particle ge
ated by an effective potentialU. Integrating once with re-
spect to the velocity the stationary version of Eq.~49! one
can obtain the following equation:

S 2
v
t

1
TF

t

]

]v
1G~v ! D P~v !50. ~51!

The solution of Eq.~51! is

P~v !}expF2
t

TF
S v2

2t
1U~v ! D G . ~52!

In order to make some progress we consider the qua
tive shape ofg(v i2v j ). In Eq. ~47! the effect of collisions
between the particlesi and j in the unit of time is given by

d

dt
~v i2v j !ucoll5

2

N
g~v i2v j !. ~53!
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The variation of momentum in an intervaldt can be rewrit-
ten as

d~v i2v j !ucoll5dqi j ~v i2v j !, ~54!

where dqi j is the analogue ofq512r in the model dis-
cussed in Secs. II and III. The important difference is t
heredqi j represents the effect of all the collisions duringdt,
and thus can be associated to an effective restitution co
cient. Equation~54! may be rewritten as

d

dt
~v i2v j !ucoll5x i j q~v i2v j !, ~55!

wherex i j is the number of collisions between thei th and the
j th particles in the unit of time. Upon comparing Eqs.~53!
and ~55! one obtains an expression forg(v i2v j ):

g~v i2v j !5
2x i j q

N
~v i2v j !. ~56!

Now it is easy to understand thatx i j is a decreasing function
of uv i2v j u: indeed, a great number of collisions occurs wh
the pair i , j belongs to a cluster~where uv i2v j u is small!,
whereas the two particles rarely collide when they are ou
a cluster~and uv i2v j u is high!. We can, therefore, make
rough estimate ofg(v i2v j ), that is

ug~v i2v j !u;
uv i2v j u

tc
, inside clusters,

ug~v i2v j !u;uv i2v j ub8, outside clusters, ~57!

where b8,1. From Eq. ~50! it appears thatG(v);g(v
2v8)uv850 as the integration has to be performed with
spect to the measureP(v8,t)dv8 that is strongly peaked a
v850. Finally, one can conclude from the same Eq.~50! that

U~v !;
v2

tc
, v&ATg, U~v !;vb, v*ATg, ~58!

whereb5b811,2. It is clear now, looking at Eq.~52!, that
whent,tc ~i.e., in the nonclusterized regime! the argument
of the exponential is dominated byv2/t and therefore a
Gaussian is expected forP(v) with varianceTF . In the op-
posite regime, whent.tc the distribution is a Gaussian wit
variance (tc /t)TF at low velocities, a simple exponential~if
b51) at high velocities, and a Gaussian with varianceTF at
extremely high velocities, but this very far tail practical
cannot be observable. In Fig. 23 the tails of the distributio
of velocities~from the simulation of the model of Sec. III!
for three different choices of parameters are presented
case~a!, whent,tc , we observe a Gaussian distribution;
case~b!, when t.tc , we can fit the tail with the function
exp(2v3/2/b), and this is in agreement with the analytic
calculation performed by van Noije and Ernst@23#; finally, in
t

fi-

n

f
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s

in

case~c!, whent@tc we observe a simple exponential tail, a
we may expect from the argument presented above.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper a class of models ofgranular gasesin one
and two dimensions has been studied by means of comp
simulations and analytical investigations. We consider t
class of models as the natural, and more physical, exten
of previous models in the domain of granular kinetics@16–
20#. In the models here proposed, by effect of balance
tween Brownian driving and inelastic collisions, one has
good thermodynamic limit; furthermore, these mode
present a rich phenomenology as several regimes are
served by tuning the physical parameters, that is the time
viscous interactiont and the coefficient of restitution fo
inelastic collisionsr. The two extreme behaviors of thos
models are the Gaussian/homogeneous regime and the
Gaussian/clusterized one. In the homogeneous phase
system may be described almost as a perfect gas in equ
rium at a temperature close to that of the external driving~or
a bit lower!, showing the absence of densities instabiliti
and a Maxwellian distribution of velocities. The out-o
equilibrium phase, on the other hand, presents strong fl
tuations of density~clusters and collapse! with self-similar
density distribution and a stationary fractal dimension, wh
there is a strong enhancement of high energy tails in
distribution of velocities. This dramatic breaking of the e
uipartition law has to be taken into account in modeling t
hydrodynamics of granular media. Furthermore, we
plained the origin of the different degrees of clusterization
means of a class ofballs-in-the-boxesmodels, showing that
the effect of inelasticity may be viewed as a bias to t
transition rates of these random processes: in this contex
showed that the non-Gaussian distribution of velocities
recovered assuming a local equilibrium with a temperat
that depends on the local density. The non-Gaussian be
ior has been also analytically investigated with the help o
model in which the effect of collisions is treated as a me
field force on each particle and using the fact that this fo
has a different dependence on the impact velocity whe
the particle is in a cluster or outside of it. Diffusion of pa
ticles has been also investigated in the simulation of mod
of Sec. III: no anomalous diffusion has been observed. T
diffusion coefficients for the non-Gaussian regime have b
reported in Figs. 16 and 17 showing a weak~and apparently
nonmonotonic! dependency on the restitution coefficientr. A
measure of velocity correlation function̂v(t)v(t1t)&,
which appeared not to be a trivial exponential but likely
superposition of different exponentials~therefore still inte-
grable in time!, has convinced us that, even in the clusteriz
regime, the particles forget their previous velocities rath
quickly due to collisions, that is, they enter and exit a clus
frequently enough to not affect average diffusion; howev
in the clusterized regime the diffusion process is domina
by interparticle collisions, whereas in the homogeneous
the diffusion is dominated by the Brownian motion impos
by the model. This is only a rough picture, to be furth
investigated.

An important task to accomplish should be the research
an equation of state for this class of gases, useful in an e
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tual hydrodynamic description of them. The observed re
tion between local temperature and density~see Figs. 10, 24
and 25! and the discussion in Sec. IV! is the starting point in
this project. Analytical expressions of the pressure have
include the usual streaming termr^v2& ~wherer is the local
density and̂ & is an ensemble average! as well as a colli-
sional term which is important in the regions where the d
sity is high: the streaming term, as a consequence of
scaling^v2&;r2b; see the first of Eqs.~45!, is expected to
ev

-

f
,

J

s,

s.
-

to

-
e

be proportional to;r12b if the picture of local Gaussian
equilibrium is confirmed@36#.
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