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We address the problem of the so-called “granular gases,” i.e., gases of massive particles in rapid move-
ment undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the
stationary state is the result of the balance between the dissipation and the random forces which inject energies.
These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy
and dissipated energy per particle are independent of the nushtiieparticles, for large values . One has
two regimes: when the typical relaxation timeof the driving Brownian process is small compared with the
mean collision timer, the spatial density is nearly homogeneous and the velocity probability distribution is
Gaussian. In the opposite limi&> 7, one has strong spatial clustering, with a fractal distribution of particles,
and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one
and two dimensions under tf#&tosszahlansatBoltzmann approximation confirm the scenario. Furthermore,
we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of
a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the
other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way,
how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the ana-
lytical results exhibits an excellent agreemd®1063-651X99)02404-9

PACS numbg(s): 81.05.Rm, 05.20.Dd, 05.40a

I. INTRODUCTION: HYDRODYNAMICS AND GASES wherep is the local densityy is the local velocity vector,

d/dt=d/dt+u-V is the Lagrangian derivative;, is the total

ranular temgsan wder ment: . R
Granular systemssand, powders, seeds, cements,)etc stress tensor#= 75+ 7, as transport of momentum has two

have been extensively studied, in the last two decades, be(ontributions: a “streaming” term and a “collisional” one

means of analytical investigations, experiments, and com-". ) .
y 9 P is the body-force vectalgravity or elsg, T is the so-called

puter simulations. The rich and intriguing phenomenology i 5 ;
well known to engineers and the need of a better comprehesdranular temperature F{((u—(u))), q s the flux vector of

sion of granular behaviors is widely recognized in applied‘granular heat,” 7:Vu is the tensorial product for the
sciences as well as in theoretical physics. A quite exhaustivgranular-temperature generation by shear work, lansl the
review may be found id1]. Problems in granular systems sink term due to dissipation into thermodynamic héat.,
are roughly divided into quasistatisand piles, distribution energy lost in collisions The existing approaches differ in
of static forces, compaction, fractures propagation) eied  the constitutive relations that makeqy, andl” depend on the
dynamical onesall kinds of flows, convection, and segrega- other propertiesVu,p,T and on all the parameters of the
tion, pattern formation, fluidized beds, etcin the latter system. Apart some heuristic relatiofsee, for examplg4]
class, large collections of inelastic particles are involved inor [5]), there are many calculations based on the kinetic
fluidlike rapid dynamics, therefore the hydrodynamics ap-theory of nonuniform dense gadeéd, making some assump-
proach seems to be the natural one. The main granular hyion on the form of the single-particle distribution function
drodynamics theories are reviewed[R]: they are all based f(x,v,t), that is the solution of the Boltzmann-Enskog ki-
on nonequilibrium conservation law8] for mass, momen- netic equation. Beforg7], and the almost simultaneo{g],

tum, and energy: all the theories had assumed a Maxwellian velocity distribu-
d tion, but the nonzero off diagonal components in the stream-
P pV-u=0, (1)  ing stress tensofstrongly apparent at low solid fractions
dt indicate the need of a correction to Maxwellian distribution.

In [7] and[8] accurate predictions of streaming stresses, in
pd_“: ~V.7+pg, 2 the case of slightly inelastic and s_IightIy rou_gh sm(_)oth
dt spheres, are obtained.[lA] and[8] and in successive studies

(se€[2]), a certain degree of energy-equipartition breaking is
1 .dT v SVU-T 3 assumed, considering two different temperatures for transla-
2Pqr -V armvu—l, ©)  fional and rotational degrees of freedom, respectively.
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The increasing power of computers awakened an interestelocity. McNamara and Ludinf26] have recently stressed
in “granular gases” simulations, that is the investigation of the importance of keeping into account rotational degrees of
kinetics of granular systems far from close packing, e.g., dreedom as well translational ones, and that of the particle-
granular phase diagram has been proposd®jirio clarify ~ wall dissipation. Furthermore, the relevance of choosing the
different regimes and distinguish between a gaslike phaseoundary energy source and the possibility of considering
and two different high-density phases. Results from thesg0ft particles instead of hard grains have been investigated
simulations have been compared to previous granular hydrdy Geisshirtet al. [27].

dynamics predictions, showing a disagreement in various as- !N Sec. Il detailed results of simulations of a one-
pects. dimensional model of driven granular gadready presented

Many simulations have been performed in the “cooling” in_ [28]) are report_ed._ln Sec. llla one-dimgnsio_nal and two-
situation ([10—15): the particles evolve with no external dimensional version(in Boltzmann approximationof the
forcing, dissipating in collisions all initial energy. Hydrody- Same model is discussed, reporting analogous results. Then,

namics predicts a time scaling of granular temperaflire in Secs_. IV and V, some theoretical interpr.etations are pro-
~t~2 under the assumption of Maxwellian velocities at all posed in order to understand non-Maxwellian behavior and

times, but strong departures from this law are observed whely to relate it to the c_Iusterlzann phenomenon. Section VI
(at fixed volumé the number of particles grows or when the is devoted to conclusions and open problems.

restitution coefficientr decrease$11]. When N(1—r)>1

[12] (whereN is the number of particl@st is found that the  Il. INELASTIC HARD-ROD ONE-DIMENSIONAL MODEL
clustering instability(this can be derivedl10] from Jenkins

& Richman hydrodynamic$8]) may degenerate in the so-
called inelastic collapse as particles may be trapped in a
sequence of infinite collisions in a finite timee., a diver-
gence of collision rafe Inelastic collapse is found in one-
dimensional and two-dimensiongl3] simulations. Further-
more, equipartition between rotational and translational
energy is found to be broken in cooling kinetisge[15] and

Such class of models originates from the seminal paper of
Du, Li, and Kadanoff16], who considered\ identical hard
rods confined between a thermal and a reflecting wall. In this
model one has a statistically steady state as the result of the
balancing between the dissipation of the kinetic energy due
Lo the collisions between the rods and the energy reinjection
ue to the thermal wall; the latter supplies energy only to the
. last particle, which in turn transfers energy and momentum
references thgre)n. . L . fto the rest of the system, producing a somehow trivial cluster
Strong equipartition breaking is found in another class Ohear the opposite wall. Such a state represents a breakdown

models, that of drlve_n_gran_ular gases, where the d'ss'pa“ogf the equipartition of the energy in a stationary nonequilib-
O.f ener_gy_du_e to _colhsmns IS balan_ced by an extemnal SOUrCg m system; however, its existence comes about as an arti-
(in realistic situations one has to vibrate or shake a granulafr ’ :

sysem. o keep e We Coud dvide hese models n (oo e 12 e 1 he peculay of e boundary cond
two subclasses: elitary and democratic models, referring tQinetic energy per particle

the quantity of particles receiving energy from the external '
source. In elitary (one-dimensional[16,17] and two- 1 N
dimensional[17]) models a wall of the container is the E=— > (vi(1)?), (4)
unique energy source, therefore there are few partigless 2Ni=

one, in one dimensigrthat transport energy from the source o ) o

to the rest of the system. In democratic modelse dimen- ~and the mean dissipated energy per particle per unit time,
sional[18,19 and two dimensiondl20,21)) all particles re-

ceive energy, by means of a Brownian-like random velocity W= iE ((AE)) (5)

kick at every time step. The model we propose in this paper At J

belongs to this last subclass.

Recently the Boltzmann-Enskog equation for granular ki-(where AE); is the energy loss during the, collision oc-
netic (cooling or driven has been analyzed, showing that thecurred in the time intervdlt— At/2,t+ At/2], and( ) is the
velocity distribution is expected not to be Maxwellian. Esi- time averagg decay exponentially with the numbét of
pov and Pschel[22] have found, for cooling inelastic hard particles, as shown in Fig. 1. Finally, within the Kadanoff
spheres, exponential tails while van Noije and Erf3] model only a small region of parameter space can be ex-
have obtained the same tails in the cooling regime anglored: sincer, the restitution coefficient, defined below,
~exp(—Av®? tails in the(democrati¢ driven regime. must satisfy the inequalitifN(1—r)<<1 in order to avoid

A non-Maxwellian behavior has been, very recently, ob-inelastic collaps¢10,12.
served experimentally in a vertically driven granular bed Williams and MacKintosh[18] proposed an alternative
[24]. The measured velocity distribution in such experimentheating mechanism. The idea is to supply kinetic energy to
is in very good agreement with the results of our simulationsevery particle by means of a random acceleration at every

To conclude this brief introduction, one has to remembetime step. Since the dissipation due to inelastic collisions is
that, in modeling granular gases, the oversimplifying crite-not effective in balancing the increase of energy coming
rion is, sometimes, misleading. Brilliant@t al. have shown from the random kickgthe latter is independent from the
[25] that the universally accepted picture of fixed restitutionvelocities, while the former is proportional to thgnthe au-
coefficient is far from being obvious and that the behavior ofthors subtract the average velocity of the center of mass of
granular gasesself-diffusion, as an examplenay change the system from the velocity of each particle at every time
drastically if this coefficient is taken dependent on the impacstep in order to avoid energy divergence and total non-
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107! 107! sions: the particles never defortthis effect is kept into ac-
count in the restitution coefficient pictyrand therefore only
Ny the length of spacings between particles is important, that is
107 5 107 P A L (see[16)).
f In the absence of collisions, each particle would perform a
3 B 3 f f Brownian motion reaching, fae> 7, a stationary state with a
m 1071 i z 107 ¢ b Gaussian velocity distribution:
N\i \\
ol N I { ] P B p( v? ) .
vi)= e
I 27TT|: 2TF
-5 -5 . . .
107 F . 107 F , and a diffusive behavior,
0 100 200 0 100 200 )
N N ((xi()=x(0)2)=2Dt, (12)

FIG. 1. Kinetic energy and dissipated energy per parfiele WhereD=Tg7/2 is the diffusion coefficient. The interpreta-
defined in Egs.(4) and (5)] vs N, in the model of Du, Li, and tion of the model is straightforward: the environment sup-
Kadanoff[16]. Particle densityN/L=100 is kept constant and  plies kinetic energy to the system as a thermal bath at tem-
=0.99. peratureTe . The viscous ternfwith characteristic time’) is

naturally introduced to take into account different friction
conservation of the total momentum. Though this method igffects, such as contact friction with boundaries, particle-
numerically efficient, it does not appear realistic from afluid interaction, tangential interparticle friction and energy
physical point of view. transfer among different degrees of freedom. Experimental

Hereafter, we propose a mod@8] consisting ofN iden-  fluidized beds(see, for example[30]) are an example of
tical particles of mass 1 on a ring of length Between phenomena in which a viscous damping and a noisy term are
collisions, each particle obeys to the following Langevinnaturally present. As noted before, [i24] is presented an
equation[29]: experiment showing strong analogies with our model.

When collisions are considered, another characteristic
do; U 2T¢ time emerges, that is the average collision timebetween
—=——+\/—fi(1), (6) . . .
dt T T two successive encounters. An estimaterof as a function

of average density and typical velocity, is
E=vi(t), % L 12
T T
where I<i<N,7 and T are the relaxation time due to vis- 2NV(v?)
cous effects and the the.rmal beth temperature, respectively, |t is natural to assume théﬁ) reaches a stationary value
fi(t) is a standard v>/h|te noise with zero average, andyith statistical fluctuationgof order~ 1/N), as it is observed
(fi(f(t _)_>: Gijo(t—t"). ) ) in simulations. In the following we shall refer to the quantity

In addition to these equations, the particles mutually col-
lide according to the following rulega) only binary colli- 1 N
sions are considered)) each collision is instantaneous, and Tg=(v?%)=lim _> f vi(t)2dt (13
(c) the post-collisional velocities are related to the pre- (TfTo)HOC(T_TO)NFl To
collisional ones by the equations

as to thegranular temperatureof the system. Note that the
system is not at equilibrium, therefoflg is not a tempera-
o Ui ture in a proper thermodynamic sense: it may be different, if
one measures it at different scales or in different subsystems
(as it will be shown later

In all the simulations performed, we ukéN=1 andTg
=1 and the measuret,<T¢ is almost always found to be

wherer is therestitution coefficientin this way, the momen- dreater than 0.{and never drops below 0.03). From E#2)

tum is conserved in the collisions, while the kinetic energy ofWe can estimate 057.<5.
center of mass is rescaled by, i.e., The presence of two time scales énd ;) leads to two

different regimes. Asr, varies in a small rangéess than
one order of magnitudewe could tune the parameterto
observe these two phases:

The elastic case is=1, while for r=0 the colliding par- (8 When 7< 7, the effect of collisions is rapidly over-
ticles have no relative motion after the collision: they movewhelmed by the Brownian motiofi.e., collisions are rare
together with the velocity of the center of mass. It has to beevent$ and the system behaves as a collection of weakly
noted that, in one dimension, the size of the particles is not ateracting random walkers or, equivalently, as an ideal gas
significant parameter, because of the “hard” nature of colli-in equilibrium at a temperaturg, not far from the tempera-

. 1-r 1+r
Ui :Tvi+

5 Ujs (8)

(v{ —vj)?=r?(vi—v)> ©
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FIG. 2. The average granular temperatliggand the average FIG. 3. Dissipated energy per particlé vs the granular tem-

dissipated energy per particlf vs the restitution coefficient for peratureT,, for different 7 and differentr: 7=0.01(a), =2 (b),

different values ofr and N=200. From top to bottomz=0.01, = 7=100 (c), 7=1000 (d). The dashed lines represent the relation
=2, =100, 7=1000. @av.

looking to the Boltzmann equation of the system, reported in dt Tr (15
the next section
(b) In the opposite limitr.< 7 the collisions dominate the <

ture T of thermal bath(one can be convinced of this also . <5vi(t)2> . 2Tg
dt—0

dynamics and strongly compete against the driving mecha- lim
nism. In this regime a statistically stationary state is still dt—0
observed, in the sense that macroscopic averages are well
defined, and interesting phenomena emerge:a strongly ~ Where the(- - -) average is taken over different realizations
inhomogeneous spatial distributiéclusterization and(b) a  of stochastic procesk(t). Recalling the definition off g,
deviation of velocity distribution from Gaussian behavior. using Egs(4), and(5), and inserting Eqg15) and(16) into
These phenomena are more and more pronounced with d&d. (14), and assuming the ergodicity, one obtains
creasing values of the restitution coefficient

The simulations have been performed using a fixed step W= Te— Ty (17
At integration of Eqs(6) and(7) whereAt< 7, and an event T
driven check of collisions during every time step. For low
values ofr we observed an exponential decrease of collisionThe numerical check of such relation is shown in Fig. 3.
time, much shorter than the integration tindé. We dis- Though the system is statistically stationary, the instanta-
carded these simulations, interpreting them as examples ofeous density of particles is rapidly evolving. To get an idea
inelastic collaps¢12]. The critical value of, for the appear- of different density profiles in the two regimgaomoge-
ance of collapse, increases with in the limit 7——o the  neous and clusterizgdook at Fig. 4.
thermal bath disappears and the system becomes a granular
cooling model with critical value, for inelastic collapse, es- 10 ' - ' - - ' - - '
timated byN(1—r)~1 as noted before. _ 2 I @ ’—L H H

In Fig. 2 we reporfT; andW vs. the restitution coefficient & 4 [p-I'3[] g ] h

2
0

(16)

vilovi(| — ([vi(H]?)
dt B T '

r for different 7. SL U LU H ! U - U !
A simple relation betweefTy and W may be obtained. 0 2'0 4'0 6'0 8'0 100 120 40 160 180200
The variation of the kinetic energy due to Langevin dynam-

ics is X
30 T T — T T T T T T
LN LN 24 | ®)
~—~ 18 L
(PE(M)Lang= 5y 2, [0:(0)+ 80, (02— 50 3 w?() g Bl ﬂ
2N & 2N&, <L IL ha ]
N LN P = = L= = BN o
1 0 20 40 60 80 100 120 140 160 180 200
R 24 . )
o 2 Lo+ 55 2 vi(t) v (1), X
14 FIG. 4. Instantaneous density profileéx) in two regimes:(a
density profile) i imes:(a)

quasiequilibrium regimér=0.01,r =0.99) and(b) nonequilibrium

regime with cluster§7=100,r=0.6). In both histogramsl=200
where év; is the velocity variation during a time intervel  and the dashed horizontal lines represent the average density, equal
in Eqg. (6), from which we obtain the relations to four particles per bin.
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FIG. 7. Hy /H}, vs r for different 7 from top to bottomr is

FIG. 5. C(R) vs R for 7=100, r=0.6 (top), and 7=100, r .
(R) 4 (top) T 0.01, 2, 100, and 1000, witN=200 andM =80(H},~63).

=0.99 (bottom with N=200. The correlation dimension takes, re-

spectively, the valued,=0.59 andd,=1. o .
tributions becomes more and more clusterized. For a non-

The density distribution becomes fractal in the clusterizecF!usterized(but fluctuating density, we have a Poisson dis-
regime, as can be verified measuring the correlation dimerftibution form;, that is(with A=N/M),

siond, [31] that we computed from the correlation function n

|

1 T f(mj)=m—j!exp(—)\), (20)

c:(R):mft dtZ O(R—|xi(t) —x;(t)|) ~ R

o/ fo 1 from which it can be(numerically calculated the effective
(18 _ .
entropy for homogeneous regirh§, . In Fig. 7 are presented

with t, the time after which one can assume the system is ifmany measurements dfly /Hy,, where Hy =exp(hy)),
a typical situation and is the duration of the simulation. Hj},=exp(hy,)), and () is the time average. The quantity
C(R) is shown for homogeneous and clusterized situationsd,, /H}, basically gives an indication of the fraction of non-
in Fig. 5. In Fig. 6 is presented a summaryf measure- empty boxes in a typical snapshot.

ments as function of parametersandr.

In Fig. 8 is shown the distribution of velocities, obtained

The clusterization may quantitatively characterized bysampling the velocities of all particles for very long times, in

means of arentropydefined as

M

the two different regimega quasiequilibrium case with
=0.01, r=0.99 and an out of equilibrium case with

NN

=100,r=0.7). In the quasiequilibrium regime the distribu-
tion is very well fitted by a Gaussian. As a general result,
when 7> 7, the velocity distribution ceases to be Gaussian
and the high velocity tails decay more slowly to zero. The
deviation becomes more pronounced as the restitution coef-

hM:_E

=1

(19

where the ring of length is divided inM equalboxes(i.e.,
segmentsand m; is the number of particles in thg, box.
The entropyh,, attains its maximum valué,,=InM when

m;=N/M for every boxj. hy decreases as the density dis- 10° T " . . . : :
1.05 ———————————— 107!
1 I | | I I
I | I | I 102k
0.95 | _
b 3
09 1 Z 10
(=W
0.85 | 4
'é\l 10 -
08 |
075 | 107
07 f
10
0.65 -8 8
0.6 : ; v/o

0 o1 02 03 04 05 06 07 08 09 1

. FIG. 8. The rescaled velocity distributioR(v/o) vs v/o.

Pluses () are data from simulation with=100,r=0.7. Crosses
are data withr=0.01,r=0.99. The dot-dashed line represents the
Gaussian distribution, while the dashed line represents the fit dis-
cussed in Sec. IV.

FIG. 6. The correlation dimensiaf, vsr for different values of
7. from top to bottom~ is 0.01, 2, 100, and 100N =200 in all
simulations.
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1r - - - - - - ring of lengthL. The figure shows this functiofaveraged
o1l *,,& 1 over very long timesfor both the regimes: in the Gaussian
' ﬁ case(with 7=0.01 andr =0.99) we observe thaty(m) is a
0.01 ’n . constant, while in the non-Gaussian case-(00,r=0.7) it
R is a power law, i.e.Ty(m)~m~# with 3=0.5. The expo-
g 0001 4 S, 1 nent 8 depends on the values ofandr.
~— :.. gy "
< 0.0001 | Ha ]
X10° % M*"m* I1l. BOLTZMANN EQUATION APPROXIMATION
X0~ F i ﬂ“’*»mﬂ ]
% T A natural question now arises: can we expect that the
IX10° ¢ LA above results are general and independent from the dimen-
1x10” ’ sionality of the system? Or are these an artifact of the one-

0 10 20 30 40 50 60 70 dimensional dynamics? An answer may come from the
m Boltzmann equation for the one particle distribution

L . : P(xv,t) [32]:
FIG. 9. Density distribution vsn for two different choices of

parametersr=0.01,r=0.99 andr=100,r=0.7, N=300, andM

2
=100. The former is fitted by a Poisson distribution wik 3, E—i— d(P) 1 d(wP) Te 0P _ £| 22)
while the latter is fitted by (f)e 014%™, ot X T v T g2 ot 'col
ficientr decreases. In the figure a theoretical fit is also plot- JP

ted for the non-Gaussian distribution. This fit will be dis-
cussed below, in Sec. IV.

In Fig. 9 the density distributions in the homogeneous and
clusterized regimes are showespectively 7=0.01, r
=0.99 andr=100,r =0.7, withN=300), i.e.,f\,(m) where
mis the number of particles in a box when the ring is divided
in M boxes(this distribution, as all the others, is obtained
samp!mg data 1;Iofr vedryb Ion%t[mhsng hgm_ogeneous rg—' whereA ~1/7; is the mean collision rate per particle. In the
0, The husieizod rogime. pesants an exponentagMi of @ast colisions (1) the colision ntegral 23
Iocrl{g tail. and a power law fgr the IOIow density boEeS' the isappears and the statio_nar y solution of HG2) is.
function (1m)e™ °™ with c=0.14 fits very well the data énd P(X’v’t)(?c (.BXP(_UZ/ZTF.)' This is related to the fagt that n
is consistent with the theore;[ical interpretation given in Secthe elastic limit a collision between two pqrtlcles is nothing
v but a cha_mge of the labels of the two particles and therefore

.Figure 10 represents thdox granular temperature the CO”'S'OOS are not rele_van_t at all, :

Tm(m) as a function of the number of particlesin a box: The main approximation in _Eq(.22) s the I_30Itzmann
M P * Stosszahlansataccording to which the correlation between
m two close particles is neglected and one writes

Tu(m)= iE (v —(v)m)?, (21)
mji=1

_4A o ,
E|coll_(1+—r)2f dv'|v'—v|P(x,v’,t)
XPX,[20—(1—r)v']/(1+71),t)

—Afdv’P(x,v’,t)P(x,v,t)|v'—v|, (23

Ps(x,x",v,v",t)=P(X,v,t)P(x",v",t). (24

where(v), is the average velocitytypically close to zero
whenm>1) in the box andM is the number of boxes on the

As Eq.(22), as far as we know, cannot be solved analyti-
cally, we consider a stochastic process based on the Bird
algorithm[33], the statistical features of which are identical
1 - to those of the Boltzmann equatioN. particles move on a
torus(in d dimensiong of linear sizel (i.e., the area of thd
torus isLY). The time is discretized in intervals of duration

01

Tyi(m)

0.01 |

0.001
1

FIG. 10. Box granular temperatuig,(m) againstm, when =
=0.01,r=0.99 andr=100, r=0.7 (in this case the fim %% is

plotted.

10
m

100

At. A collision time 7, is fixed a priori: this means that two
particles collide, during At, with a probability p
=At/7.(At< 7, as usual

At each discrete time, =kAt, positions and velocities
are upgraded according to Eq$) and (7). Then for each
particlei a random numbey is extracted out of a uniform
distribution in the interval0,1]: if y>p no collision occurs,
otherwise the particle collides with a particlg such that
|xi(te) —x;(t)|<I(I<L), chosen with probability propor-
tional to [vi(ty) —vj(ty)|. The collision rule, in one dimen-
sion, is the same as before and it is extended to the two- and
three-dimensional cases in a natural way: after a collision
vi’—vj’=r2(vi—vj) where € is a unit vector with random
orientation.
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FIG. 11. Snapshot of particle distribution in 2 dimensions in the  FIG. 13. C(R) vs R in two dimensionsN=5000, 7.=0.5, |
clusterized regimeN=5000, 7,=0.5, 1=0.63, 7=100, andr =0.71. Top curve is for=100,r =0.5, while the bottom one is for
=0.01. 7=0.01,r=0.99. The correlation dimension &,=1.45 andd,

. . =2, respectively.
It can be demonstratel®4] that for this process, in the

limit N—,p—0,]—0,At—0, the evolution of the probabil-
ity distribution P(x,v,t) of the Bird process is governed by
the Boltzmann equatio(22).

space of parametersandr as in the previous section. All
the results previously obtained were recovered in this ap-
. ' roximation with l=d=3, showing that they are general
In this model there are two parametefg,andl. The first Broperties of a granular system gubject toysuch ga heating
one was already an observable of the previous madetre mechanism as that of Eq6) and (7). A rapid overview of
it was almost constahtThe second one, instead, reloreserltssignificant measurements, in one énd two dimensions, fol-
the collision range and replaces the radius of the particles, SBws ' '
it is related, in some way, to the total volume fraction
=kN/LY with k the volume of one particle, which is not
explicitly considered in this model and in the previous one
Furthermore, we cannot expect to find a fractal scaling at
range lower than, and, moreover, no inelastic collapse can(
be observed, as short-range correlations are neglected. it
should be noted, finally, that the imposed collision times
larger than(but of the same order of magnitude) dise one
really measured in the simulations; , because a particle
collides with probabilityp=At/7. only if there is another o two-dimensional modelue to Boltzmann approxima-
particle at distance lower thah One can expect that,  ijon.

— 7. as the clusterization becomes more and more pro- The existence of a good thermodynamic limit is shown in
nounced. _ _ the Figs. 14 and 15 where tiNedependence of some observ-
Ir:j all the simulations of this model we kepe=1 and  gples is plotted: we show the granular temperaflye the

N/L®=1, we rarely changed. and| and we explored the fractal dimensiord,, and the collision ratg:=1/7* , all in

We stress the fact that also in this model the system
reaches a statistically stationary state after a transient, and
‘also in this model there are two different regimes: the qua-
%iequilibrium regime ¢<r.) and the out-of-equilibrium one
>70).

The clusterization phenomenon is shown in Figs. 11, 12,
and 13 where the density snapshots and the correlation func-
tionsC(R) [defined in Eq(18)] are presented. It is observed
the predicted reduction of the fractal scéheore evident in
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FIG. 12. C(R) vs R in the one-dimensional systeri.=2000,
7.=0.5, and =0.4. The top curve is for=100,r = 0.5, the bottom FIG. 14. The granular temperatuig, fractal dimensiond,,
one is forr=0.01,r=0.99. The correlation dimension is, respec- and collision ratey vs number of particledl, for the model in one
tively, d,=0.55 andd,=1. dimension, with7,=0.5,1=0.4, =100, andr =0.5.
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FIG. 15. The granular temperatuflg,, fractal dimensiord,,
and collision ratey against number of particlds, for the model in
two dimensions, withr,=0.5,1=0.63, =100, andr =0.5.

FIG. 17. The granular temperatufig, fractal dimensiond,,
collision ratey and diffusion coefficienD against restitution coef-
ficient r, for the model in two dimensions, witthN=3000, 7,

the out-of-equilibrium regime. =0.5,1=0.63,7=100, andr =0.5.
The same quantities are plotted in Figs. 16 and 17 against
the restitution coefficient in the same regiméthese plots  ized and a function of the form expm)/m’ in the presence
are analogous to those of Figs. 2 and Mote thatr® ap-  Of clustering. Thebox granular temperatureJ(m) still pre-
proachesr, whenr decreases, as it is expected. The diffu-Sents a constant behavi@s expectedat equilibrium and a
sion coefficients, also plotted in those figures, will be dis-Power lawm~” in the non-Gaussian regime. It does not
cussed in the conclusion. seem possible to easily find a relation betwee, y, and
The distributions of velocities are presented in Figs. 18the other observablggsd,; or Ty).
and 19. The non-Gaussian behavior in the second regime In summary, the exact model is perfectly reproduced in
(7> 7.) is still clearly observed. In Fig20) a distribution of  this Boltzmann approximation, at largé not only confirm-
velocities restricted in the following way is presented: weing the existence of a thermodynamic limit, but also showing
sampled the velocities of one particle only when there werdhat this system may be studied analytically in order to better
otherm (m=1 andm=5) particles in a box of radiuR(| understand this kind of driven granular kinetics. In the fol-
<R<L) centered on that particle. This is a sort of velocity lowing sections some theoretical interpretations will be dis-
distribution at fixed density. The plot shows a less pro-cussed.
nounced deviation from the Gaussian, in agreement with the
statementdiscussed in Sec. IMhat there is a local equilib-
rium with a temperature that depends upon the local density,
in order to have a stationary distribution of clusters. In this section we address the problem of the microscopic
The analogues of Figs. 9 and 10 are Figs. 21 and 22 anarigin of the clusterization. In order to do that, we study a
24 and 25, respectively. Again the density distributionclass of models in which the system is composed/yoxes
fm(m) is a Poisson function when the system is not clusterand N particles in a mean-field model, assuming that the
boxes have infinite connectivity. One starts with a certain

IV. A MODEL TO EXPLAIN CLUSTERIZATION
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FIG. 16. The granular temperatuil , fractal dimensiond,,
collision ratey, and diffusion coefficienD against restitution coef-
ficient r, for the model in one dimension, witd=4000, 7.=0.5,
I=0.4, =100, andr=0.5.

FIG. 18. Distribution of velocities in a Gaussian=0.01, r
=0.99) and a non-Gaussian regime=(100, r =0.5) for the one-
dimensional system. In both casks=2000, .=0.5, andl=0.4.
The dashed curve represents the Gaussian.
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FIG. 19. Distribution of velocities in a Gaussian=0.01, r FIG. 21. Distribution densityfy(m) vs m for two one-
=0.99) and a non-Gaussian regime<100,r=0.5) for the two  dimensional casest=100, r=0.5 andr=0.01,r=0.99. In both
dimensions case. It is alwaj$=10 000,7,=0.05,1=0.22, and the  ¢ases:N=500, 7,=0.5, |=0.4, andM=12000. There are two
dashed line represents the Gaussian. curves superimposed: a Poisson functiaith A =N/M ~0.04) and

i . . m~+%%exp(—0.26*m) fit for the clusterized regime.
configuration and let the system evolve with an exchange

dynamics in which, at each time step, one particle moves The general question is: What is the asymptotic stationary
from one box to another, both boxes being chosen randomlyistribution for the average number of boxes withpar-

The probability for each single exchange is model dependenycles, P(m)?

and it will be our tuning parameter to scan the different phe- The simplest case we can consider is the one in which
nomenologies. Our goal is to understand in a quantitativeach single movement is independent of the state of the de-
way how the microscopic dynamics affects the clusteringparting and of the landing box. In this case there is no bias in

properties of the system. In particular we shall try to recoveithe movements andlV,,(m) and W,,(m) do not depend
the results, obtained in the framework of the models previupon m

ously introduced, for the density distributions in the cluster-
ized and homogeneous cagese Figs. 9, 21, and 22
The models are defined in terms of master equations for Win(m) =Wou(m)= (27)
the probabilityP,, of having a box withm particles, assign-
ing transition rates for landing in a box witim particles and the general master equation reads
W;,(m) and for leaving a box withm particlesW, (m). It

must be 2 dPp, _ 1
M W_mel mel_m +2Pm+lpmfl
Win(N):Wout(o)zo (25) 1
and the normalization conditions must be satisfied: + Pm+1( Pnii— Vi
- - N . +Pmi1(1=Pp—Pri1— P

Pm: 1, 2 um:_:)\, 2 Wm(m)M Pm:l m+1( m m+1 m l)

m=0 m=0 M m=0 ol
(26) T
Xxx \‘#
10° 5 0.01 | -
L Ry
. R 0.001 i o
10!k ol + NXX?S’XXXX
/é\ e P
< 0.0001 ¢ | S
@ 1 0_2 i (n X% xx'xxxx-?fx_f‘xx
S IXIO-S F * ...... ")'(';(x-x-
B y
A 10° E -6 |
1x10° ;
4 ] . ¥
10 1X1070 e - . - =
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10-5 L L o m
-10 -5 0 5 10
v /o FIG. 22. Distribution density,,(m) vs mfor two bidimensional

cases:7=100, r=0.5 and 7=0.01, r=0.99. In both casesN
FIG. 20. Distribution of velocities restricted to number density =10 000, 7.=0.05,1=0.22, andM =3200. There are two curves
m=1 (pluse$ andm=5 (crosse} in a two-dimensional case, with superimposed: a Poisson functigwith A=N/M=3.125) and
N=10000,7,=0.05,1=0.22,7=100, andr =0.5. m~%%exp(—0.097*m) fit for the clusterized regime.
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FIG. 23. Rescaled distributions of velocitiéparticulay for
three different choices of parameters, in two dimensidas:N
=10000,7=0.01,r=0.99, with Gaussian fitth) N=3000, 7=5,
andr=0.5 with the fit~exp(—v*%1.25); (c) N=10 000, =100,
and r=0.2 with the fit ~exp(-v/0.7). In caseg@a) and (c) 7
=0.05,1=0.22. In casdb) 7.=0.5 andl =0.63.
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FIG. 24. Box granular temperatui@,(m) vs m for two one-
dimensional casest=100, r=0.5 and7=0.01,r=0.99. In both

casesN=500, 7,=0.5,1=0.4, andM = 12 000. The Gaussian case

is constant, while the non-Gaussian case is fitted-tmg~ .
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FIG. 25. Box granular temperatuig,(m) vs m for two bidi-
mensional casesr=100, r=0.5 and 7=0.01, r=0.99. In both
casesN=10000,7.=0.05,1=0.22, andM =3200. The Gaussian
case is constant, while the non-Gaussian one is fitted- by %,

In the limit of M>1 one can neglect the NI/ terms in the
right-hand side of Eq(28) and easily get the stationary so-
lution [ (d P,,/dt)=0]

Ph,=Ae M (30)
with A=1—e"° corresponding to the normalization condi-
tion 25P,,=1 and where is a constant depending dhand
M:c=In[1+(1/A)] with A=N/M.

This result has to be compared with the probability
fm(m) in the nonclusterized case of the previous sections. In
order to do this it is necessary to recall that this result has
been obtained with a small value of the number of bdes
This means that one is very far from the lilMt=>1 and this
situation corresponds to a sort of coarse graining in the sys-
tem in which each boxbig box is actually composed by a
certain number of small boxdthe number of which is such
thatM>1). The problem can thus be formulated in the fol-
lowing way: given a system oN particles distributed in
Mgman boxes with the distributiorP,,, given by Eq.(30),
what is the distributiorP}, for the particles in a system of
Myig boxes each one composed BY(R=Mgya;/Myig)
small boxes? The resulting distribution is easily written as

* R
Pr=> I[[1 P =ARe “™F(m,R), (31)

whereX* indicates the sum on thfgn,, ... ,mg} such that
EiRzlmi =m,F(m,R) is the number of ways of distributing
particles inR boxes and it is given b{35]

F(m,R)= (32

m+R—-1
m .

With the help of Eq.(32) and using the Stirling formula,
expressiorn(31) becomedfor R>N>1)
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p = ARg-em P RTL! Pu=A—e M Py=1-e (36)
m=AC T I(R-1)! m=Am® T Femi7€
%'A\Re_cm(f‘ﬂJr R-1)"(m+R-1)R"* with A=\(e*—1) and\=N/M.A and « are related by an
m!(R—1)R~1 implicit equation obtained imposing the conditict{jP,,
- =1, that in the limitN— o becomes
R
~ARe Cmﬁ 1-e *—A*In(l—-e *)=1. (37
AR In the clusterized case we expect the solution to be self-

= 7 &XPE—mn[1+ (Msman/N) 1= IN(Mgman/N) similar, in the sense tha®,, has the same behavior &,

and the coarse graining previously performed should not

—In(N/Mpig)}) change the solutiof36), apart a rescaling of and «.
im It must be noted that, a& must be finite, wheN—
~e M (A%) _ (33) (andM is fixed « has to go to zero, whiler diverges when
m! N/M goes to zero. It is natural to think t® as to the inverse

of the characteristic “mass” of a cluster, that is the typical
It has been used the definition & the fact thatc=  number of particles in it. In this sense the term expn)
IN(1+Msmar/N) and thatMgp,a /N>1. In the last passage acts as a finite-size cut-off for the self-similar distribution
A* =N/My;q has been introduced arR has become ™", Pm~1/m.
as can be verified when "1=Mg.,/N>1. It has been The solution(36) is in excellent agreement with the nu-
shown, therefore, that the coarse grained version of the sawnerical results obtained in the previous sections. In particu-
lution of Eq.(28) is exactly the Poisson distribution found in lar, in the caseN=300M =100 of the one-dimensional
the simulations, in the nonclusterized regifeee Figs. 9, 21, model of Sec. Il one recovers the density distribution with
and 22. the correct value ov=0.14 (see Fig. 9.

Let us consider now one case where the transition rates To get the other observed behaviors of density distribu-
for the particle jumps depend on the contents of the departion P,,~e “"/m# (see Figs. 21 and 22it is enough to
ing and landing boxes. This corresponds to impose some sochange the transition rates appearing in Egs. 34 into the fol-
of bias to the system that could well reproduce the situatioiowing:
one has in the clusterized cases due to the inelasticity. We

consider in particular the following case, defined by the tran- _ i
sition rates: Win(0)= 17 (38
W (o)zi Win(m)=pu(1-Pg)m?, for 0<m<N, (39

n M 1
W, (m)=umf, for 0O<m=N, (40)
W,,(m)=(1— Po)%, for 0<m<N, where u is a normalizing constant:
N -1
m w= ME Pmmﬁ) ) (42)
Woul(m) =, for 0<m=N. (39 |

Now, we can go a step further relating the clustering

These transition rates, which satisfy the relatig@6),  properties of the system to the velocity distribution. In order
have the following interpretation. The probability of landing to do that we consider the following guantities: the distribu-
on a box containing already particles is proportional to the tion of boxes,f,,(m), containing a given numben of par-
number of particles because this mimics the inelastic colliticles and the velocity variancg,(m), in a box occupied by
sion with a cluster ofm particles. On the other hand, the m particles. We consider first the nonclusterized case (
departure from a box containing already particles has a <7, andr=1). Within this regime we find from the simu-
probability proportional tan because the probability to se- lations that
lect one particle in that particular box is proportionalno

Neglecting as usual the terms of the order d¥11/and Tem'as(m)zconst, (42
after simplifications, the stationary master equations write
AMe™m
elas —
Pmi1(M+1)+ (1= Pg)(m—1)Pp,_;— PomP,=0, fu (Mm=—g (43)

N P, N—1

P1= 37 Po= 0y Pn-1(1=Po)——

A EI
M N PM T M T
(35

The solution in this case is given by

By assuming in each box a Gaussian velocity distribution
with a constant varianc&s,2S(m) it turns out that the global
velocity distributionP®'3Yv) is Gaussian. Let us recall that
the Poisson distribution is the one associated with a process

of putting independentli N particles intoN boxes.
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Let us turn to the nonelastic case.7¥ 100 andr=0.7, dv, v 1Y 2T
considering the occupied boxem$0), we obtain from the i —+ Nz gvi—vy)+ \—fFi(t), (47
simulations the following relations: TN T

where the second term in the right-hand sidé.s) deter-
mines the velocity change of the partidglelue to the colli-
sions with the remaining particles and is chosen to mimic the
inelastic behavior. This requirement poses some constraints
about the form of the functiog(v —v'): (i) The momentum
conservation dictates the antisymmetric propegtiy —v’)

with 8=0.5 anda=0.14. Let us compute from these scal- =—g(v'—v); (i) The inelasticity of the collision process
ings the global velocity distribution. Taking into account thatrequiresg(v —v’)(v—v')<0.

the spatial probability distribution of the particlesfig(m) The Fokker-Planck equation corresponding to &q) is

and assuming that their local velocity distribution is Gauss- N

ian, but with a variancd,,(m)=m~# which depends on the ap - 1 3 K P )
occupancy, we obtain, for the global velocity distribution Pr(vs, o D=2 “ ol NIy N
Pinel(v), and in the continuum limit:

N 2
T P
I , _;;PPN(Ul""J)N!t)
Pinei(v)= >, el~(@'m2lg-am (46) Bl

Twe'(m)~m~#, (44)

e* am

fine!(m) = (45)

m l

N o1 N
We stress how the the distributions measured in the simula- +i:21 v Njgl 9(vi=v))Pn(vr, - o)
tions are in very good agreemesee the dashed line in Fig.
8) with the numerical computation of E@46), which, in =0. (48)
summary, has been obtained under only the following hy-
pothesis:(i) non-Poissonian distribution for the box occu- N
pancyfy(m)<e™“™/m; (ii) Gaussian distribution of veloci-
ties ir; each box with a density-dependent variamggm)
cm™ P,

The hy_pothes_,is about the scaling relation between the ve- P(w,) 1awPw,b) Te d?P(u,t)
locity variancel[i.e., Ty(m)] and the local density, apart - — - —
from being justified numerically, can be understood in the
following way. The stationarity and the scale invariance of J
the cluster distribution implies a certain distribution of life- + —f dv'P(v,t)P(v’,t)g(v—v")=0, (49
times for the clusters. In particular each cluster has a lifetime dv
that is inversely proportional to its size. The scale-invariant . .

. A . . ; ... l.e., a sort of self-consistent Boltzmann equation. From Eq.

cluster-size distribution thus implies a scale-invariant d|str|—(49) one observes that the quantity
bution for the lifetimes. The cluster lifetime is strictly related
to the variance of the velocity distribution inside the cluster
itself. In order to ensure the stability of a cluster in a station- f dv'P(v' t)g(v—v')=G(v)=—
ary state we have to require that the velocities of the particles

belonging to it are not too different, or equivalently that the\ynich is a function ofy and a functional oP(v), can be

variance of the distribution is smaller the higher the density .qnsidered as an effective force acting on the particle gener-

So, given a scale-invariant distribution of clusters one would, ;o by an effective potentidl. Integrating once with re-

expect a scale-invariant distribution of variances, that isspect to the velocity the stationary version of E4Q) one

From the above equation, using the fact that in the limit
— oo the mean-field approximation holds, one can obtain an
evolution equation for the one-body velocity probability dis-
tribution that reads

ot T dv T gp?

U(v)
v '

(50

Tw(m)~m~~. _ S can obtain the following equation:
In the next section the non-Gaussian distribution of veloc-
ity will be related to clusterization with the help of a mean- v Tg @
field model of driven granular gas. — 7t 5, TG |P@)=0. (51)
V. A MODEL FOR THE CLUSTERING The solution of Eq(51) is

AND THE NON-GAUSSIAN BEHAVIOR
. (52

T U2

In order to shed some light on the relationship between P(v)ocexr{— Te 2_T+U(U))
the spatial clusterization and the anomalous velocity distri-

bution observed above, we present a simple theoretical In order to make some progress we consider the qualita-
model. For the sake of simplicity of notation, we discusstive shape ofg(v;—v;). In Eq. (47) the effect of collisions
only the one-dimensiondllD) case. Let us treat the colli- between the particlesandj in the unit of time is given by
sions in a mean-field-like fashion and modify the Langevin
dynamics plus collision rules by the following set of coupled

2
equations for the velocities at Vi vDleon=ga@i=v)). (53
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The variation of momentum in an intervdt can be rewrit- case(c), when7> 7. we observe a simple exponential tail, as
ten as we may expect from the argument presented above.

8(vi—vj)|con= 89 (vi—vj), (54)
VI. CONCLUSIONS AND OPEN PROBLEMS
where 6q;; is the analogue ofj=1—r in the model dis- ) ,
cussed in Secs. Il and Ill. The important difference is that N this paper a class of models gfanular gasesn one
heresq;; represents the effect of all the collisions duriig and two dimensions has been studied by means of computer

and thus can be associated to an effective restitution coeffeimulations and analytical investigations. We consider this
cient. Equatior(54) may be rewritten as class of models as the natural, and more physical, extension

of previous models in the domain of granular kinetit6—
20]. In the models here proposed, by effect of balance be-
tween Brownian driving and inelastic collisions, one has a
&(vi—vj)|co“=Xijq(vi—vj), (55 good thermodynamic limit; furthermore, these models
present a rich phenomenology as several regimes are ob-
served by tuning the physical parameters, that is the time of
viscous interactionr and the coefficient of restitution for
inelastic collisionsr. The two extreme behaviors of those
models are the Gaussian/homogeneous regime and the non-
Gaussian/clusterized one. In the homogeneous phase, the
2xii9 system may be described almost as a perfect gas in equilib-
g(vi—vj)= N (vi—vj). (56) rium at a temperature close to that of the external driyorg
a bit lowen, showing the absence of densities instabilities
and a Maxwellian distribution of velocities. The out-of-
Now it is easy to understand thgy; is a decreasing function fqut:l'tr)]”u"; ghgsi%( oln ih? Otrr:ir h:Tlnd,$prﬁf]ent.Tf SE:giTgr fluc-
of |v;—vj|: indeed, a great number of collisions occurs Whendua qt qut .s ,f cu; € Stef[. co ?p EtWI d_se ~Simila hil
the pairi,j belongs to a clustetwhere [v;—v;| is small, henSIy Istribution arr]1 asta |onar¥ r:_a(;a lmenS|qlr1, w Ihe
whereas the two particles rarely collide when they are out o% 1ere Is a strong enhancement of high energy tails in the
S distribution of velocities. This dramatic breaking of the eg-
a cluster(and |v;—v;| is high. We can, therefore, make a .~~ .. law has 10 be taken int i delina th
rough estimate (v —v+), that is uipartition law has to be taken into account in modeling the
! hydrodynamics of granular media. Furthermore, we ex-
plained the origin of the different degrees of clusterization by
means of a class djalls-in-the-boxesnodels, showing that
inside clusters, the effect of inelasticity may be viewed as a bias to the
Te transition rates of these random processes: in this context we
) showed that the non-Gaussian distribution of velocities is
lg(vi—vj)|~lvi—vj|?, outside clusters, (57)  recovered assuming a local equilibrium with a temperature
that depends on the local density. The non-Gaussian behav-
) ior has been also analytically investigated with the help of a
where g'<1. From Eq.(50) it appears thatG(v)~g(v  model in which the effect of collisions is treated as a mean-
—v')|, =0 as the integration has to be performed with re-field force on each particle and using the fact that this force
spect to the measure(v’,t)dv’ that is strongly peaked at has a different dependence on the impact velocity whether
v’ =0. Finally, one can conclude from the same Ef) that  the particle is in a cluster or outside of it. Diffusion of par-
)2 ticles has been also investigated in the simulation of models
v B of Sec. Ill: no anomalous diffusion has been observed. The
Ul T v=NTg U@~ v=4Tg (59) diffusion coefficients for the non-Gaussian regime have been
reported in Figs. 16 and 17 showing a wdakd apparently
whereg=g'+1<2. Itis clear now, looking at Eq52), that  nonmonotonit dependency on the restitution coefficiena
when7<7, (i.e., in the nonclusterized regimthe argument measure of velocity correlation functiofv (t)v(t+ 7)),
of the exponential is dominated hy?/r and therefore a which appeared not to be a trivial exponential but likely a
Gaussian is expected f&(v) with varianceTg. In the op-  superposition of different exponentiaftherefore still inte-
posite regime, whem> 7 the distribution is a Gaussian with grable in time, has convinced us that, even in the clusterized
variance ¢./7)Tg at low velocities, a simple exponentid regime, the particles forget their previous velocities rather
B=1) at high velocities, and a Gaussian with variafigeat  quickly due to collisions, that is, they enter and exit a cluster
extremely high velocities, but this very far tail practically frequently enough to not affect average diffusion; however,
cannot be observable. In Fig. 23 the tails of the distributionsn the clusterized regime the diffusion process is dominated
of velocities (from the simulation of the model of Sec.)lll by interparticle collisions, whereas in the homogeneous one
for three different choices of parameters are presented: ithe diffusion is dominated by the Brownian motion imposed
case(a), whenr<t., we observe a Gaussian distribution; in by the model. This is only a rough picture, to be further
case(b), when 7> 7., we can fit the tail with the function investigated.
exp(—v®?b), and this is in agreement with the analytical An important task to accomplish should be the research of
calculation performed by van Noije and Erf28]; finally, in ~ an equation of state for this class of gases, useful in an even-

wherey;; is the number of collisions between tié and the
jth particles in the unit of time. Upon comparing E¢S3)
and (55) one obtains an expression fg(v;—v;):

lvi—vj

|g(Ui_Uj)|“
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tual hydrodynamic description of them. The observed relabe proportional to~p!~# if the picture of local Gaussian
tion between local temperature and dengitge Figs. 10, 24 equilibrium is confirmed36].
and 25 and the discussion in Sec. )6 the starting point in

this project. Analytical expressions of the pressure have to ACKNOWLEDGMENTS
include the usual streaming terndu?) (wherep is the local Particular thanks are due to A. Petri who contributed to
density and( ) is an ensemble averagas well as a colli- the formulation of the arguments in Sec. V. We thank E.

sional term which is important in the regions where the denCaglioti and M. Marsili for useful discussions. V.L. ac-
sity is high: the streaming term, as a consequence of thknowledges financial support under Institution Project Nos.
scaling(v?)~p~#; see the first of Eq945), is expected to ERBFMBICT961220 and FMRXCT980183.

[1] H.M. Jaeger and S.R. Nagel, Scier%5 1523(1992); H.M. [22] S.E. Esipov and T. Rzhel, J. Stat. Phy$6, 1385(1997).
Jaeger, S.R. Nagel, and R.P. Behringer, Phys. Tat$ay32 [23] T.P.C. van Noije and M.H. Ernst, Granular Mattér 57
(1996; H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. (1998.

Mod. Phys.68, 1259(1996, and references therein. [24] J.S. Olafsen and J.S. Urbach, Phys. Rev. 1841t4369(1998.

[2] C.S. Campbell, Annu. Rev. Fluid MecB2, 57 (1990. [25] N.V. Brilliantov, F. Spahn, J. Hertzsch, and T.debel, Phys.

[3] S.R. de Groot and P. MazuNon-equilibrium Thermodynam- Rev. E 53, 5382 (1996; N.V. Brilliantov and T. Pschel,

ics (Dover, New York, 1984 e-print cond-mat/980338{unpublished

[4] R.A. Bagnold, Proc. R. Soc. London, Ser.285 49 (1954). [26] S. McNamara and S. Luding, Phys. Revo& 813(1998; 58,

[5] P.K. Haff, J. Fluid Mech134, 401 (1983. 2247(1998.

[6] S. Chapman and T.G. Cowlinghe Mathematical Theory of [27] K. Geisshirt, P. Padilla, E. Praestgaard, and S. Toxvaerd, Phys.

Non-uniform Gases3rd ed. (Cambridge University Press, Rev. E57, 1929(1998.
New York, 1970. [28] A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, and

[7] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurniy, J. A. Vulpiani, Phys. Rev. Lett81, 3848(19998; A. Puglisi, Tesi

Fluid Mech.140, 223(1984. di Laurea, University of Rome, La Sapienza, 1997.

[8] J.T. Jenkins and M.W. Richman, Phys. Flug$ 3485(1985. [29] S. Chandrasekhar, Rev. Mod. Phg$, 1 (1948.

[9] S.E. Esipov and T. Rzhel, J. Stat. Phy$6, 1385(1997. [30] G.M. Homsy, R. Jackson, and J.R. Grace, J. Fluid M2ai,
[10] I. Goldhirsch and G. Zanetti, Phys. Rev. L&, 1619(1993. 477 (1992; M. Ishida, T. Shirai, and A. Nishiwaki, Powder
[11] S. McNamara and W.R. Young, Phys. FluidstA496 (1992. Technol.27, 1 (1980.

[12] S. McNamara and W.R. Young, Phys. Fluids5A34 (1993. [31] P. Grassberger and I. Procaccia, Phys. Rev. L&ff. 346
[13] S. McNamara and W.R. Young, Phys. Revc®& R28(1994). (1983.

[14] S. McNamara and W.R. Young, Phys. Re\6& 5089(1996. [32] H.J. KreuzerNonequilibrium Thermodynamics and its Statis-
[15] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius, tical Foundations(Clarendon Press, Oxford, 198 hap 7.

Phys. Rev. E58, 3416(1998. [33] G.A. Bird, Phys. Fluidsl3, 2676(1970.

[16] Y. Du, H. Li, and L.P. Kadanoff, Phys. Rev. Left4, 1268  [34] W. Wagner, J. Stat. Phy86, 1011(1992; C. Cercignani, R.
(1995. lliner, and M. Pulvirenti,The Mathematical Theory of Dilute

[17] E.L. Grossman and E. Roman, Phys. Flugl$8218(1996. Gases(Springer-Verlag, Berlin, 1994

[18] D.R.M. Williams and F.C. MacKintosh, Phys. Rev.38, R9 [35] We are indebted to Davide Cassi who recalled the solution of
(1996. this combinatorial problem.

[19] M.R. Swift, M. Boamfa, S.J. Cornell, and A. Maritan, Phys. [36] D. Benedetto, E. Caglioti, J.A. Carrillo, and M. Pulvirenti, J.
Rev. Lett.80, 4410(1998. Stat. Phys91, 5/6 (1998; D. Benedetto, E. Caglioti, and M.

[20] G. Peng and T. Ohta, e-print cond-mat/97100d@publisheg Pulvirenti, Math. Modell. Numer. Anal31,5 615 (1997; D.

[21] D.R.M. Williams, Physica A233 718 (1996; Aust. J. Phys. Benedetto, E. Caglioti, F. Golse, and M. Pulvirefiuinpub-

50, 425(1997). lished.



