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We present a theoretical study for the intermediate stages of the growth of membranes and vesicles in
supersaturated solutions of amphiphilic molecules. The problem presents important differences with the growth
of droplets in the classical theory of Lifshitz, Slyozov, and Wagner, because the aggregates are extensive only
in two dimensions, but still grow in a three-dimensional bath. The balance between curvature and edge energy
favors the nucleation of small planar membranes, but as they grow beyond a critical size they close themselves
to form vesicles. We obtain a system of coupled equations describing the growth of planar membranes and
vesicles, which is solved numerically for different initial conditions. Finally, the range of parameters relevant
in experimental situations is discuss¢81063-651X96)06505-1

PACS numbegws): 61.25-—f

[. INTRODUCTION process, when these seeds reach mesoscopic sizes or dissolve
into the bulk solution by following a nearly deterministic

Solutions of amphiphilic molecules in water may form a dynamics that transforms the initial population of the micro-
large variety of molecular aggregates as a result of the asyn$copic clusters into a distribution of sizes for the aggregates
metric interaction with water of the hydrophilic heads andand depletes the amphiphile concentration in bulk solution to
the hydrophobic tails of these molecu[ds-5]. These aggre- the equilibrium value. In an infinite system at zero tempera-
gates range from micelles, which may be considered as lardére, the growth process would never end. Alternatively, we
molecular clusters, to continuous structures of the amshould consider a third regime when the supersaturation is so
phiphile with regular or irregular structures such as spongémall that the gradients in the chemical potential are affected
phases. In between, one finds structures such as membrar@sfluctuations.
and vesicles that are macroscopic in two dimensions, Experimentally, these aggregates can be obtained with the
whereas they are only a few molecular sizes thick. From &elp of techniques designed to accelerate the nucleation pro-
thermodynamic point of view one can regard membranes a&€ss. Among these are the ultrasound technique and the use
two-dimensional phases in coexistence with a diluted bullof solid substrategheterogeneous nucleationvhich prefer-
solution of water and amphiphile molecules, but contrary teentially adsorb the amphiphilic molecules. On the other
the case of adsorbed layers on solid substrate, the membraf@nd, the spontaneous formation from an equilibrium super-
is not restricted to lying in fixed positions and orientations.Saturated solution is of interest. In fact, it has been suggested
The membrane is free to explore the full three-dimensional12] that, due to the possibility of spontaneous formation,
space and in the case of “fluid membranes” the lack of rigid@mphiphilic systems forming vesicles played a crucial role in
molecular order within the membrane surface allows thethe beginning of life, providing for the compartmentalization
bending of the membranes, with low energetic cost as “curof the early metabolic and self-reproducing molecular ma-
vature energy”[6]. The extraordinary properties of mem- chinery.
branes as self-assembling, self-sealing, insulating, and flex- In this work we address the growth process, in which the
ible structures are used in biological systems to form thetggregates formed in the early stage compete with each other
basis of cellular membranes, plasts, and mitocondrial strud® grow, incorporating the amphiphilic molecules from the
tures, the insulating material for neurons, etc. In the pas$upersaturated solution. We try to answer the questions about
decade, the study of membranes and other amphiphilic aleW the typical distribution of sizes evolves and how it de-
gregates has attracted the attention of experimental and thepends on the distribution in the early stage. Our model needs
retical physicistsy chemists, physica| chemists, and bio|ogist§$ input the initial distribution of sizes as well as the initial
[7-10]. supersaturation of the system. This data could be obtained

In the present paper we discuss the dynamics of formatioffom nucleation theory, but the study of the different mecha-
of these aggregates from a supersaturated bulk solution, Byisms of nucleation requires molecular models of these com-
extending to the peculiarities of these systems the methoddex systems, which are still in an early stage of develop-
developed for “regular” three-dimensional phagdd]. we  ment.
focus our interest on amphiphilic systems forming two types

of isolated bilayer aggregates: membranes and vesicles. Dur- Il. MODEL
ing the formation of these macroscopic aggregates we may
distinguish two different stagef) anucleationprocess, dur- Let us consider the possible equilibrium shapes for bilayer

ing which the microscopic aggregates form, d@ingdagrowth  aggregates. For a fixed aréa a symmetric bilayer adopts
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B R e e come metastable with respect to the closed vesicles, but still
separated from them by a barrier, until their area reaches the
critical valueA;. At this stage the membranes become un-
stable and turn into closed vesicles of the same area, which
can grow until the solution has been depleted down to the
equilibrium concentration of amphiphiles.

We start constructing our model of growth for a system of
both vesicles and membranes by making the following as-
sumptions.

25

H/ ks

(i) The excess concentratigqwith respect to a dilute so-
lution without aggregatesis so small that the interaction
between aggregates can be neglected.

(i) All aggregates are much larger than their typical
i _ thickness €~40 A). This assumption is expected to hold at

FIG. 1. Curvature energy of a membrane as a function of itSeast in the long time regime.

Shapet for aspherical ?tap TOdef[see the t?t ‘MAf’R) : thz (i ) The main mechanism for transport of amphiphiles is
Zgr\’s g:rilsngfrgrfgiug' ?ino d’i‘r;)en?sri;lg]simu;?lgifR"’(‘re/ A)"’}g diffusion as expected when the water solution is at rest, so

9 : . ST ' that all hydrodynamic effects can be neglected. In this sense
whereu= 0 corresponds to spherical vesicles andl corresponds it is implied that the arowth process does not agitate the
to planar membranes. The area for the spontaneous shape transiti(t)n plec 9 P 9
is A= mr(4Kg/N)2. water solution. - o

(iv) We consider an infinite volume.
(v) Finally, we assume that fluctuations can be neglected.

10|||||||||||'||||||
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vesicles u membranes

the shape that minimizes the effective Helfrich Hamiltonian
[6] We shall later comment on some of these assumptions.
Within these approximations the problem clearly resembles
N jg d, (1) the classical Lifshitz-Slyozov-WagnékLSW) theory for the
' growth of spherical domain3,14.

Within a quasiequilibrium thermodynamic description the
where the first integral extends over the whole surface areehemical potentiak(r) changes smoothly with position. We
and the other one extends along the boundary, wkesed consider an isolated growing aggregate of akeand N(A)
kg are, respectively, the bending rigidity and the Gaussiamolecules; its rate of growth will depend on the number of
curvature modulih is the line tension, an€,,C, are the amphiphilic molecules that approach its surface:
two principal local curvatures of the surface. In the case of a

1
]K/:j dA( EK(C1+C2)2+ KGClCZ

flat circular membrane of radiuR, .7Z=R, whereas for a dNA) % . ds 3
spherical vesicle of radiuS, .7Z=4m(2x+ kg). Thus small dt I-@s

aggregates tend to assume a planar shape but larger aggre-
gates will always prefer a closed shape. To locate the sporvhere the integral extends over a surface enclosing the ag-
taneous shape transformation we employ a sirspleerical ~ gregate andi(r) is the current of amphiphilic molecules in-
cap modewnhere the bilayer is restricted to adopt the shapeduced by the gradients of chemical potential, which is differ-
of the curved surface of a sphere cut by a plane. For a fixe@nt in the bulk and at the surface of the aggregate:

area the shape can be fully described by the raRiug the

circle of intersection between the sphere and the plane, j==aVu(), (4)
2 a being a kinetic coefficient. Assuming that the transport of
(AR =4mky 1— ﬂ +2m\R ) amphiphiles does not change its local concentration
TA, A ,
V.j=0 (5)

where k;=2k+ kg. A spherical vesicle corresponds to , i
R=0, while a planar membrane is described byeverywhere outside the border of the aggregate. This leads to

R=(A/7)Y2 In Fig. 1 we display the energy” versusR & Poisson equation for(r), equivalent to an electrostatic

for different values oA. The absolute minimum is always at Poténtial with boundary conditions at infinify.. and at the
an extremum: forA<4m(ks/\)2 it corresponds to planar Surface of the aggregaje(A), which mimics an equipoten-
membranes, while forA>4m(k /\)? it corresponds to tial metalhc boun.dary. Such a valye(A) depends on the
spherical vesicles. When the two configurations have th@articular properties of each aggregate.

same energyA=4m(ks/\)?], they are separated by an en-

ergy barrierA 77=3mk, which decreases with increasing A. Membranes
A and finally disappears &= m(4xs/\)? where all planar | et us consider a system composed only of membranes
membranes become unstable and close into vesicles. and assume that none of them transforms into vesicles. The

Such a simple model gives a first glimpse of the growthexcess of grand potential energy of a planar circular mem-
process: unless the nucleation mechanism is strongly biaseflane of radiuR is

to produce vesicles, the early population of aggregates con-
sists of planar membranes; as some of these grow they be- AQ(R)=moR2+2m\R, (6)
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whereq is the surface tension of the membrane and the  wherevg=dR/dt is given by Eq.(11). Finally, a closed set
line tension associated with the boundaries. The equilibriunof equations is obtained by imposing the conservation of the
of a large membrane of arbitrary shape is controlled by theotal amount of amphiphiles

requiremento-=0, which at a given temperature is satisfied
when the chemical potential assumes its equilibrium value
Mo- In general, for a fixed chemical potentja| the surface
tension does not vanish but is given by

XA(t)+ f;deRZFfm(R,t)=Q, (13

where the first term represents the excess number of particles
o(pu)=—T(n—po), (") per unit volume that remain in solutiory (is the bulk com-

pressibilityy and the integral gives the number of particles
whereI is the adsorption per unit area in the membraneper unit volume that belong to the membranes. With initial
Since we are considering systems with small supersaturgonditions for f,,(R,t) and A(t) the system of equations
tions, within a linear approximation we take the values of(11)—(13) is fully determined. Following the ideas of the
A andl’ evaluated aft= uq. For u>puo Eq.(6) has amaxi-  LSW theory, it is straightforward to get the asymptotic be-
mum at havior of the systenfsee, for examplgl5]). We summarize

the main results:

A
R =T =0 8 £\ 272
(1= po) |7
A(t)—(m) , (14
In other words, membranes wifR>R.(u) tend to adsorb
particles and grow. This growth is much faster than the dif- Qr
fusion process described abofgovided there are particles N =7 (19

to be absorbed in the neighborhood of the membrand it

will stop only when the adsorption of particles has effec- ant) M2

tively changed the chemical potential in the proximity of the R(t)=R(t)= (_2) , (16)
membrane. We thus obtain the boundary condition of the wl

diffusion problem

f (Rt)——N(t) P(—R ) a7
A MY R |R(1))!

w(R)= o+ . © o0 1Rl

whereN(t) is the total number of membranes per unit vol-

An equivalent argument applies for shrinking membranegime,R(t) is the mean radius, arfé(x) and| are
when u<ug. Now it is possible to get the chemical poten-

tial field for an isolated membrane at an arbitrary distance 8X exd — 2x D<x<2
r from its center. Neglecting the thickness of the membrane P(x) = (2—x)* X 2—x])’ 18
is equivalent to knowing the electrostatic potential created by (x)= (18)
a planar metallic disk16]: 0, 2<X,
2(w(R)— )R (—1)' (R} -
m(r)=p,+ p— 21T P, (cosd) I—J’O dxxP(x)=1.1094. (19

(10)
It is important to note that within the present model the
for R<r, wherer=(r,6,¢) in spherical coordinates. From growth rateR«=t*? with a growth exponem= 1/2 instead of
Egs.(4) and(3), the rate of growth of an isolated membrane 1/3 as predicted by LSW theory. Such a difference is due to

of radiusR is the two-dimensional nature of the aggregate, which allows
for a faster growth.
dR_ 4an ([TA 1 11 Our asymptotic formulas are expected to be valid for
dt a2\ x R/’ (D )
| 2<4aA0t> >1 20
whereA = u,,— ug is a measure of the supersaturation of the °9 N ' (20

system.

We turn now to the study of an ensemble isblated whereAy is the initial supersaturation of the system. Unfor-
membranes by introducing a size distribution functiontunately, this equation does not always hold because before
f(R,t), which gives the number of membranes of radiusreaching a long enough time some membranes can transform
R per unit volume at time. f(R,t) verifies the continuity into vesicles. Thus this restriction must hold before

equation R:(t)<2R;=~8k./\. From Eq.(16), eliminatingt in (20),
fm 0 o BT AGKs
74‘ (9_R(fmUR)_O' (12) IOg ( N > (21)
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TABLE I. Orders of magnitude of some parameters used in thetional to the area of the vesicle. For small enough supersatu-
text. Ry has been estimated from the spherical cap model; see theations(or large enough curvature constatite shape of the

text, Sec. Il C, for the estimation a¥,. vesicle will remain spherical, and the change in volume is
KgT 4x10™% J dv ,dS )
oy 108 molecule/m? H:zws m=4ws F(A)~CSA, (27
% 2.4x10% moleculé’/J
Ke 10718 J where F(A) is a function related to the properties of the
A 101 J/m barrier that verified=(0)=0, and thus it is expected to show
r 10'° molecule/nt a linear behavior for small supersaturations, & a con-
Ry 2x10°7 m stant. This equation is equivalent to E@3), except for a
Ag 3x 10" T/molecule constant; thus the basic result E86) still holds, except for

the time scale.

Taking rough estimates of the parameters shown in Table | C. Membranes and vesicles
we get 18 for the left-hand side of ER1). Thus real sys-

tems hardly reach this universal distribution function. When there are no more membranes closing themselves to

form vesicles, the distribution function, does not change in
shape; it merely moves to larger sizes until all the excess
particles in the solution are exhausted. But in order to relate
We now consider the case of a system formed only bythe distribution function when the nucleation process finishes
spherical vesicles and no planar membranes. In the case ifis necessary to allow for the existence of both membranes
an isolated vesicle of radiu8, the excess grand potential is and vesicles and permit the spontaneous transformation from
one to the other. We study this case assuming that this trans-
AQ,=—4nT S~ po) +4mks. (22)  formation occurs at one particular radif=4«,/\ and
. ) . i . =R+/2 (estimated from the spherical cap madahd the
It is clear from this equation that all vesicles, mdependentlytsi;,le sI:aIe of the process is totaplly negligibﬁ)e compared with

of their size, will grow until the chemical potential in the it ision times. Now we have to consider size distribution
surroundings igty. Thus it is easy to get the three equationsg nctions for both membranes and vesicles:
that define the problem:

B. Vesicles

dS aA afm+‘9 fm)=—S8(R—Ry)l 28
ds_oaa 23 —t T ar(vrfm)=— 4 . (28)
dt 21"
af, o &f”+ ﬁ( f,)=08(S—Spl (29
v “elusly)= - m»
< — at S
—+ + 75(fovs)=0, (24)
and XA(t)+J dRTrRzFfm(R,t)+J dS4nSrf, (St)=Q,
0 0
- (30)
XA(t)+f dSA7STf,(S,1)=Q. (25)
0

wherel , is the number of membranes per unit volume that

. . . . .. transform into vesicles at time t
This set of equations lends itself to an analytical solution in '
q y | n=ma{Owg fm(Rr.1)].

terms of the initial conditions. The main result is that the size ™

distribution function does not change its shape, We can change to dimensionless units

a (t — - — )\_X
fv(S,t)=f0<S— ELdt’A(t’)), (26) R=xL, S=xLi2, L=345
2
wherefy(S) represents the initial distribution of vesicles. In t=7T = lxz
this caseA(t) decays exponentially. The reason for this be- ’ 4aQ
havior is clear from Eq(23), which indicates that all vesicles (31
grow at the same rate, independently of their size.
It is interesting to note that Eq&23)—(25) were obtained A=6D, D= 9
under the assumption that the slowest growth process is the X

diffusion of particles(diffusion limited growth. But, for a
. . . R . . F2Q4
vesicle to grow, it is necessary to fill the interior with water, Fo
thus a certain amount of water needs to overcome an energy NSy
barrier when crossing the bilayer structure. Under some cir-
cumstances this can be the slowest process, and thg@3q. where we have made use of the fact that there are no mem-
should be modified. In this case the number of water molbranes folR> R+ and there are no vesicles 8« Sy to join
ecules that cross the bilayer per unit time will be propor-both size distribution functions into one single function
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o(x,7): for x<xt=Ry/L it represents membranes of radius
R=xL and forx>xy vesicles of radiu$=xL/2 . With these

[g=t=t=)

PN
. . [\
changes of variable the new equations read ) 6%\\g § g
dp 0 1 N y 0o
e 5——|e|=0 for x<xr, R 0
ar X X ™ o
N
do d 775 0% - iy \\ ”041
E—’_& Z Q= or X>Xr, (32 N R
o N Looft
. . e ~O \ g j
with a special boundary condition &&= xy, and 30.0@ Nd |00
* s ) \ o* k
5(7)+f dx Xe(x,7)=1. (33 o ' ©
0 007 \\\\ 'O'Qz
These equations have been solved numerically. We have o Lo?

applied a standandpwindalgorithm[17] discretizing both in Sl \\«
time and in space witth 7=0.02 andAx=0.1. The initial <
conditions were chosen having in mind the particular values
of the parameters shown in Table I. We consider that initially
we only have membranes and assume that the size distribu- o

tion function is Gaussian with a me#&)=10y~4x10"8m

and a widtho; =R;/4=10"° m. Our study applies when the FIG. 2. Time evolution of the size distribution function in di-

nucleation process is already completed. The energy barrigfensionless unitsee Eq(31)] for initial conditions where 90% of
for the formation of new membranes must be much lowekhe excess particles are forming membrateee the text for de-
than kgT; this means thatA,<mA?%(I'kgT)~8X10 %"  tails). x=x,=66.7 is the radius for the spontaneous shape transition
Jimolecule. We have selectetl,=3%10"?* J/molecule, from membrane to vesicle. The regiarx; refers to planar mem-
which corresponds to a critical radii®.(0)=3R;/4. The branes and>xy to spherical vesicles.

only parameter that remains to be fixed is the height of the

initigl distrit_)ution or equivglt_e_ntly., the V?ue ®. We arbi- 7~100 there are already some vesicles fornfids early
trarily consider that at the initial time 90% of the total excessy .o growth process is not shown in the figure because it is

of particles is already in a membrane, whereas only the re- . o
maining 10% is solved in water, leading @=8x 10% covered by later dajaThis fast growth also makes the criti

molecule/n?. The results of the calculation are shown in cal radlgs increase and, as soon as some membranes are
Fig. 2. Instead of the size distribution functiowhose total formed, it crosses the peak of the distribution of membranes.

integral tends to zero in timewe plot x2¢(x,7), which is As the distribution function is highly peaked this crossing
proportional to the probability of finding a molecule in an suddenly makes most of the membranes shrink. For a period

aggregate of size at time 7, and its total integral tends to of time there is an equilibrium where the critical radius re-
one. In the early stage the distribution function moves tgn@ins constant as the vesicles grow at the expense of the
larger sizes and spreads, decreasing the height of the pedRembranes. When the number of membranes is small the
At 7~ 1300 some membranes start to transform into vesicle§'itical radius crosses the transformation value. The final dis-
and the rate increases untik3000 when it starts to de- tribution function of membranes is highly peaked as a result
crease. Atr~5200 the critical radius becomes larger than©f the very fast early growth.

the transformation radius and thus all membranes shrink. At

that time the final distribution function for vesicles is known;

it will just translate to larger sizes absorbing all remaining 100
particles in the solution and in the membranes. In Fig. 3 the 80 -
critical radiusx; versusr is shown. For these initial condi- C ]
tions the behavior is quite monotonic. It is almost linear from 60 [ 3
=500 to 6000. For larger times, when most of the mem- w L ]
branes have disappeared, we would reach the expected expo- 40 [ .
nential behavior. - 1
A totally different behavior can be obtained from different 20 B
initial conditions. The results are shown in Figs. 4 and 5. The N
only difference with respect to the previous case is that we 00 5000 4000 6000

have assumed that at the initial time only S%stead of
90%) of the total excess of particles is forming the initial
membranes. In the early time the critical radius is lower than  F|G. 3. Critical radius versus time in dimensionless ufse
the mean radius and there is a large amount of material to beq. (31)] for initial conditions where 90% of the excess particles are
absorbed; this permits a very fast growth of the membranefrming membranessee the text for details The dotted line cor-
without broadening the distribution function and as soon asesponds tox=xr.

T
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FIG. 5. Critical radius versus time in dimensionless uhgise
Eq. (31)] for initial conditions where 5% of the excess particles are
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SR || BESSSEesss ‘\ SRS forming membranesgsee the text for detailsThe dotted line cor-
n: 23 responds toK=Xxr.

the distribution function for vesicles changes dramatically
with the initial configuration. Allowing for the large uncer-
tainty in the experimental values of several parameters in
Table I, and for the overall complexity of the problem, our
equations may provide a guide to the systematic understand-
_ _ _ o .. . ing of these processes.

FIG. 4. Tlme_ evolution of the size dlstrlb_u_tlon function in di- It is important to make a comment regarding the absence
mensionless unitssee Eq(31)] for initial conditions where 5% of of fluctuations in our treatment. The LSW theory neglects

igﬁs)e);cfisfgg';@: tﬁgesfogg'fng Lnrﬁ?nbggtms sh;hee tt(:;;;a'rogef_ro rr}‘Iuctuations because it is expected that on average the con-
 X=Xr= 001 ] 1z€ of sp u P m centration will follow the gradients in chemical potential cre-
membrane to vesicle. The regiar<x; refers to planar membranes

X . ated by the existence of aggregates. But this assumption con-
andx>xt to spherical vesicles. . . - . : -
flicts with some other limits taken in the theory in particular
large times, i.e., large domains, and small supersaturations.
1. CONCLUSION In this case the gradients created by the growth process can

We have presented a study of the growth processes fjre of the same order as or lower than the gradients created by

amphiphilic membranes. These are two-dimensional aggr luctuations in the concentration. That means that some ag-
gates in a three-dimensional bath, with peculiar features: th rega;gs COU|d. shrink even though their radius is "”?rger.th"’?“
surface versus voluntealance, which controls the growth for the critical radius and this effect can change the size distri-

droplets, is changed tolae versus surfacealance for pla- butl_on func_tlon at late _enough times. In partlcular_for
. é/esmles, this theory predicts a complete degeneracy in the

nar membranes, or it may be avoided by closed vesicles, >~ = : AT . .

without open edge, at the price of a size-independent curvae-qu'I'b”um_Slze distribution Wh"e flgctuatlon_s are gxpected
ture energy. Our work here extends the classical Lifshitz-t.0 break this lde.generacy by imposing the distribution func-
Slyozov-Wagner theory to consider this problem. We havd'on that maximizes entropy8].
shown that, contrary to the nucleation of droplets, there is no
asymptotic limit in which the size distribution of aggregates

becomes independent of the initial conditions. As shown by This work was supported by the DirecnicGeneral de
our numerical solutions of the coupled equations for planainvestigacio Cientfica y Tecnica(Spain under Grants Nos.

membranes and spherical vesicles, the asymptotic form d?B91-0090 and PB95-0005.
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