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We present a theoretical study for the intermediate stages of the growth of membranes and vesicles in
supersaturated solutions of amphiphilic molecules. The problem presents important differences with the growth
of droplets in the classical theory of Lifshitz, Slyozov, and Wagner, because the aggregates are extensive only
in two dimensions, but still grow in a three-dimensional bath. The balance between curvature and edge energy
favors the nucleation of small planar membranes, but as they grow beyond a critical size they close themselves
to form vesicles. We obtain a system of coupled equations describing the growth of planar membranes and
vesicles, which is solved numerically for different initial conditions. Finally, the range of parameters relevant
in experimental situations is discussed.@S1063-651X~96!06505-1#

PACS number~s!: 61.25.2f

I. INTRODUCTION

Solutions of amphiphilic molecules in water may form a
large variety of molecular aggregates as a result of the asym-
metric interaction with water of the hydrophilic heads and
the hydrophobic tails of these molecules@1–5#. These aggre-
gates range from micelles, which may be considered as large
molecular clusters, to continuous structures of the am-
phiphile with regular or irregular structures such as sponge
phases. In between, one finds structures such as membranes
and vesicles that are macroscopic in two dimensions,
whereas they are only a few molecular sizes thick. From a
thermodynamic point of view one can regard membranes as
two-dimensional phases in coexistence with a diluted bulk
solution of water and amphiphile molecules, but contrary to
the case of adsorbed layers on solid substrate, the membrane
is not restricted to lying in fixed positions and orientations.
The membrane is free to explore the full three-dimensional
space and in the case of ‘‘fluid membranes’’ the lack of rigid
molecular order within the membrane surface allows the
bending of the membranes, with low energetic cost as ‘‘cur-
vature energy’’@6#. The extraordinary properties of mem-
branes as self-assembling, self-sealing, insulating, and flex-
ible structures are used in biological systems to form the
basis of cellular membranes, plasts, and mitocondrial struc-
tures, the insulating material for neurons, etc. In the past
decade, the study of membranes and other amphiphilic ag-
gregates has attracted the attention of experimental and theo-
retical physicists, chemists, physical chemists, and biologists
@7–10#.

In the present paper we discuss the dynamics of formation
of these aggregates from a supersaturated bulk solution, by
extending to the peculiarities of these systems the methods
developed for ‘‘regular’’ three-dimensional phases@11#. We
focus our interest on amphiphilic systems forming two types
of isolated bilayer aggregates: membranes and vesicles. Dur-
ing the formation of these macroscopic aggregates we may
distinguish two different stages:~i! anucleationprocess, dur-
ing which the microscopic aggregates form, and~ii ! agrowth

process, when these seeds reach mesoscopic sizes or dissolve
into the bulk solution by following a nearly deterministic
dynamics that transforms the initial population of the micro-
scopic clusters into a distribution of sizes for the aggregates
and depletes the amphiphile concentration in bulk solution to
the equilibrium value. In an infinite system at zero tempera-
ture, the growth process would never end. Alternatively, we
should consider a third regime when the supersaturation is so
small that the gradients in the chemical potential are affected
by fluctuations.

Experimentally, these aggregates can be obtained with the
help of techniques designed to accelerate the nucleation pro-
cess. Among these are the ultrasound technique and the use
of solid substrates~heterogeneous nucleation!, which prefer-
entially adsorb the amphiphilic molecules. On the other
hand, the spontaneous formation from an equilibrium super-
saturated solution is of interest. In fact, it has been suggested
@12# that, due to the possibility of spontaneous formation,
amphiphilic systems forming vesicles played a crucial role in
the beginning of life, providing for the compartmentalization
of the early metabolic and self-reproducing molecular ma-
chinery.

In this work we address the growth process, in which the
aggregates formed in the early stage compete with each other
to grow, incorporating the amphiphilic molecules from the
supersaturated solution. We try to answer the questions about
how the typical distribution of sizes evolves and how it de-
pends on the distribution in the early stage. Our model needs
as input the initial distribution of sizes as well as the initial
supersaturation of the system. This data could be obtained
from nucleation theory, but the study of the different mecha-
nisms of nucleation requires molecular models of these com-
plex systems, which are still in an early stage of develop-
ment.

II. MODEL

Let us consider the possible equilibrium shapes for bilayer
aggregates. For a fixed areaA, a symmetric bilayer adopts
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the shape that minimizes the effective Helfrich Hamiltonian
@6#

H5E dAH 12 k~C11C2!
21kGC1C2J 1l R dl, ~1!

where the first integral extends over the whole surface area
and the other one extends along the boundary, wherek and
kG are, respectively, the bending rigidity and the Gaussian
curvature moduli,l is the line tension, andC1 ,C2 are the
two principal local curvatures of the surface. In the case of a
flat circular membrane of radiusR, H}R, whereas for a
spherical vesicle of radiusS, H54p(2k1kg). Thus small
aggregates tend to assume a planar shape but larger aggre-
gates will always prefer a closed shape. To locate the spon-
taneous shape transformation we employ a simplespherical
cap modelwhere the bilayer is restricted to adopt the shape
of the curved surface of a sphere cut by a plane. For a fixed
area the shape can be fully described by the radiusR of the
circle of intersection between the sphere and the plane,

H~A,R!54pksS 12
pR2

A D12plR, ~2!

where ks52k1kG . A spherical vesicle corresponds to
R50, while a planar membrane is described by
R5(A/p)1/2. In Fig. 1 we display the energyH versusR
for different values ofA. The absolute minimum is always at
an extremum: forA,4p(ks /l)

2 it corresponds to planar
membranes, while forA.4p(ks /l)

2 it corresponds to
spherical vesicles. When the two configurations have the
same energy@A54p(ks /l)

2#, they are separated by an en-
ergy barrierDH53pks , which decreases with increasing
A and finally disappears atAc5p(4ks /l)

2, where all planar
membranes become unstable and close into vesicles.

Such a simple model gives a first glimpse of the growth
process: unless the nucleation mechanism is strongly biased
to produce vesicles, the early population of aggregates con-
sists of planar membranes; as some of these grow they be-

come metastable with respect to the closed vesicles, but still
separated from them by a barrier, until their area reaches the
critical valueAc . At this stage the membranes become un-
stable and turn into closed vesicles of the same area, which
can grow until the solution has been depleted down to the
equilibrium concentration of amphiphiles.

We start constructing our model of growth for a system of
both vesicles and membranes by making the following as-
sumptions.

~i! The excess concentration~with respect to a dilute so-
lution without aggregates! is so small that the interaction
between aggregates can be neglected.

~ii ! All aggregates are much larger than their typical
thickness (j'40 Å!. This assumption is expected to hold at
least in the long time regime.

~iii ! The main mechanism for transport of amphiphiles is
diffusion as expected when the water solution is at rest, so
that all hydrodynamic effects can be neglected. In this sense
it is implied that the growth process does not agitate the
water solution.

~iv! We consider an infinite volume.
~v! Finally, we assume that fluctuations can be neglected.

We shall later comment on some of these assumptions.
Within these approximations the problem clearly resembles
the classical Lifshitz-Slyozov-Wagner~LSW! theory for the
growth of spherical domains@13,14#.

Within a quasiequilibrium thermodynamic description the
chemical potentialm(r ) changes smoothly with position. We
consider an isolated growing aggregate of areaA andN(A)
molecules; its rate of growth will depend on the number of
amphiphilic molecules that approach its surface:

dN~A!

dt
52 R j•dS, ~3!

where the integral extends over a surface enclosing the ag-
gregate andj (r ) is the current of amphiphilic molecules in-
duced by the gradients of chemical potential, which is differ-
ent in the bulk and at the surface of the aggregate:

j52a“m~r !, ~4!

a being a kinetic coefficient. Assuming that the transport of
amphiphiles does not change its local concentration

“• j50 ~5!

everywhere outside the border of the aggregate. This leads to
a Poisson equation form(r ), equivalent to an electrostatic
potential with boundary conditions at infinitym` and at the
surface of the aggregatem(A), which mimics an equipoten-
tial metallic boundary. Such a valuem(A) depends on the
particular properties of each aggregate.

A. Membranes

Let us consider a system composed only of membranes
and assume that none of them transforms into vesicles. The
excess of grand potential energy of a planar circular mem-
brane of radiusR is

DVm~R!5psR212plR, ~6!

FIG. 1. Curvature energy of a membrane as a function of its
shape for aspherical cap model~see the text!. H(A,R) is the
curvature energy~in units of ks) for a membrane of areaA and
edge circle of radiusR ~in dimensionless units!. u5R(p/A)1/2,
whereu50 corresponds to spherical vesicles andu51 corresponds
to planar membranes. The area for the spontaneous shape transition
is Ac5p(4ks /l)

2.
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wheres is the surface tension of the membrane andl is the
line tension associated with the boundaries. The equilibrium
of a large membrane of arbitrary shape is controlled by the
requirements50, which at a given temperature is satisfied
when the chemical potentialm assumes its equilibrium value
m0 . In general, for a fixed chemical potentialm, the surface
tension does not vanish but is given by

s~m!52G~m2m0!, ~7!

whereG is the adsorption per unit area in the membrane.
Since we are considering systems with small supersatura-
tions, within a linear approximation we take the values of
l andG evaluated atm5m0 . Form.m0 Eq. ~6! has a maxi-
mum at

Rc~m!5
l

G~m2m0!
. ~8!

In other words, membranes withR.Rc(m) tend to adsorb
particles and grow. This growth is much faster than the dif-
fusion process described above~provided there are particles
to be absorbed in the neighborhood of the membrane! and it
will stop only when the adsorption of particles has effec-
tively changed the chemical potential in the proximity of the
membrane. We thus obtain the boundary condition of the
diffusion problem

m~R!5m01
l

GR
. ~9!

An equivalent argument applies for shrinking membranes
whenm,m0 . Now it is possible to get the chemical poten-
tial field for an isolated membrane at an arbitrary distance
r from its center. Neglecting the thickness of the membrane
is equivalent to knowing the electrostatic potential created by
a planar metallic disk@16#:

m~r !5m`1
2~m~R!2m`!R

pr (
l50

`
~21! l

2l11 SRr D
2l

P2l~cosu!

~10!

for R,r , wherer5(r ,u,f) in spherical coordinates. From
Eqs.~4! and~3!, the rate of growth of an isolated membrane
of radiusR is

dR

dt
5
4al

pG2 S GD

l
2
1

RD , ~11!

whereD5m`2m0 is a measure of the supersaturation of the
system.

We turn now to the study of an ensemble ofisolated
membranes by introducing a size distribution function
f m(R,t), which gives the number of membranes of radius
R per unit volume at timet. f m(R,t) verifies the continuity
equation

] f m
]t

1
]

]R
~ f mvR!50, ~12!

wherevR5dR/dt is given by Eq.~11!. Finally, a closed set
of equations is obtained by imposing the conservation of the
total amount of amphiphiles

xD~ t !1E
0

`

dRpR2G f m~R,t !5Q, ~13!

where the first term represents the excess number of particles
per unit volume that remain in solution (x is the bulk com-
pressibility! and the integral gives the number of particles
per unit volume that belong to the membranes. With initial
conditions for f m(R,t) and D(t) the system of equations
~11!–~13! is fully determined. Following the ideas of the
LSW theory, it is straightforward to get the asymptotic be-
havior of the system~see, for example@15#!. We summarize
the main results:

D~ t !5S pl

2at D
1/2

, ~14!

N~ t !5
QG

alIt
, ~15!

R̄~ t !5Rc~ t !5S 2alt

pG2 D 1/2, ~16!

f m~R,t !5
N~ t !

Rc~ t !
PS R

Rc~ t !
D , ~17!

whereN(t) is the total number of membranes per unit vol-
ume,R̄(t) is the mean radius, andP(x) and I are

P~x!5H 8x

~22x!4
expS 2

2x

22xD , 0<x<2

0, 2,x,

~18!

I5E
0

`

dxx2P~x!51.1094. ~19!

It is important to note that within the present model the
growth rateR}t1/2 with a growth exponentn51/2 instead of
1/3 as predicted by LSW theory. Such a difference is due to
the two-dimensional nature of the aggregate, which allows
for a faster growth.

Our asymptotic formulas are expected to be valid for

log2S 4aD0
2

pl
t D @1, ~20!

whereD0 is the initial supersaturation of the system. Unfor-
tunately, this equation does not always hold because before
reaching a long enough time some membranes can transform
into vesicles. Thus this restriction must hold before
Rc(t)<2RT'8ks /l. From Eq.~16!, eliminatingt in ~20!,

log2S 8GD0
2ks

l4 D @1. ~21!
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Taking rough estimates of the parameters shown in Table I
we get 18 for the left-hand side of Eq.~21!. Thus real sys-
tems hardly reach this universal distribution function.

B. Vesicles

We now consider the case of a system formed only by
spherical vesicles and no planar membranes. In the case of
an isolated vesicle of radiusS, the excess grand potential is

DVv524pGS2~m2m0!14pks . ~22!

It is clear from this equation that all vesicles, independently
of their size, will grow until the chemical potential in the
surroundings ism0 . Thus it is easy to get the three equations
that define the problem:

dS

dt
5

aD

2G
, ~23!

] f v
]t

1
]

]S
~ f vvS!50, ~24!

and

xD~ t !1E
0

`

dS4pS2G f v~S,t !5Q. ~25!

This set of equations lends itself to an analytical solution in
terms of the initial conditions. The main result is that the size
distribution function does not change its shape,

f v~S,t !5 f 0SS2
a

2GE0
t

dt8D~ t8! D , ~26!

where f 0(S) represents the initial distribution of vesicles. In
this caseD(t) decays exponentially. The reason for this be-
havior is clear from Eq.~23!, which indicates that all vesicles
grow at the same rate, independently of their size.

It is interesting to note that Eqs.~23!–~25! were obtained
under the assumption that the slowest growth process is the
diffusion of particles~diffusion limited growth!. But, for a
vesicle to grow, it is necessary to fill the interior with water,
thus a certain amount of water needs to overcome an energy
barrier when crossing the bilayer structure. Under some cir-
cumstances this can be the slowest process, and then Eq.~23!
should be modified. In this case the number of water mol-
ecules that cross the bilayer per unit time will be propor-

tional to the area of the vesicle. For small enough supersatu-
rations~or large enough curvature constant! the shape of the
vesicle will remain spherical, and the change in volume is

dV

dt
54pS2

dS

dt
54pS2F~D!'CS2D, ~27!

where F(D) is a function related to the properties of the
barrier that verifiesF(0)50, and thus it is expected to show
a linear behavior for small supersaturations, andC is a con-
stant. This equation is equivalent to Eq.~23!, except for a
constant; thus the basic result Eq.~26! still holds, except for
the time scale.

C. Membranes and vesicles

When there are no more membranes closing themselves to
form vesicles, the distribution functionf v does not change in
shape; it merely moves to larger sizes until all the excess
particles in the solution are exhausted. But in order to relate
the distribution function when the nucleation process finishes
it is necessary to allow for the existence of both membranes
and vesicles and permit the spontaneous transformation from
one to the other. We study this case assuming that this trans-
formation occurs at one particular radiusRT54ks /l and
ST5RT/2 ~estimated from the spherical cap model! and the
time scale of the process is totally negligible compared with
diffusion times. Now we have to consider size distribution
functions for both membranes and vesicles:

] f m
]t

1
]

]R
~vRfm!52d~R2RT!I m , ~28!

] f v
]t

1
]

]S
~vSf v!5d~S2ST!I m , ~29!

xD~ t !1E
0

`

dRpR2G f m~R,t !1E
0

`

dS4pS2G f v~S,t !5Q,

~30!

whereI m is the number of membranes per unit volume that
transform into vesicles at time t,
I m5max@0,vRTfm(RT ,t)#.

We can change to dimensionless units

R5xL, S5xL/2, L5
lx

GQ

t5tT, T5
plx2

4aQ2

~31!

D5dD, D5
Q

x

f m5 f v5wF, F5
G2Q4

pl3x3 ,

where we have made use of the fact that there are no mem-
branes forR.RT and there are no vesicles forS,ST to join
both size distribution functions into one single function

TABLE I. Orders of magnitude of some parameters used in the
text. RT has been estimated from the spherical cap model; see the
text, Sec. II C, for the estimation ofD0 .

kBT 4310221 J
rv 1018 molecule/m3

x 2.431038 molecule2/J
ks 10218 J
l 10211 J/m
G 1019 molecule/m2

RT 231027 m
D0 3310223 T/molecule
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w(x,t): for x,xT[RT /L it represents membranes of radius
R5xL and forx.xT vesicles of radiusS5xL/2 . With these
changes of variable the new equations read

]w

]t
1

]

]x F S d2
1

xDwG50 for x,xT ,

]w

]t
1

]

]x S p

4
dw D50 for x.xT , ~32!

with a special boundary condition atx5xT , and

d~t!1E
0

`

dx x2w~x,t!51. ~33!

These equations have been solved numerically. We have
applied a standardupwindalgorithm@17# discretizing both in
time and in space withDt50.02 andDx50.1. The initial
conditions were chosen having in mind the particular values
of the parameters shown in Table I. We consider that initially
we only have membranes and assume that the size distribu-
tion function is Gaussian with a meanR̄i510c'431028 m
and a widths i5R̄i /451028 m. Our study applies when the
nucleation process is already completed. The energy barrier
for the formation of new membranes must be much lower
than kBT; this means thatD0!pl2/(GkBT)'8310221

J/molecule. We have selectedD053310223 J/molecule,
which corresponds to a critical radiusRc(0)53R̄i /4. The
only parameter that remains to be fixed is the height of the
initial distribution or equivalently, the value ofQ. We arbi-
trarily consider that at the initial time 90% of the total excess
of particles is already in a membrane, whereas only the re-
maining 10% is solved in water, leading toQ5831016

molecule/m3. The results of the calculation are shown in
Fig. 2. Instead of the size distribution function~whose total
integral tends to zero in time! we plot x2w(x,t), which is
proportional to the probability of finding a molecule in an
aggregate of sizex at time t, and its total integral tends to
one. In the early stage the distribution function moves to
larger sizes and spreads, decreasing the height of the peak.
At t'1300 some membranes start to transform into vesicles
and the rate increases untilt'3000 when it starts to de-
crease. Att'5200 the critical radius becomes larger than
the transformation radius and thus all membranes shrink. At
that time the final distribution function for vesicles is known;
it will just translate to larger sizes absorbing all remaining
particles in the solution and in the membranes. In Fig. 3 the
critical radiusxc versust is shown. For these initial condi-
tions the behavior is quite monotonic. It is almost linear from
t5500 to 6000. For larger times, when most of the mem-
branes have disappeared, we would reach the expected expo-
nential behavior.

A totally different behavior can be obtained from different
initial conditions. The results are shown in Figs. 4 and 5. The
only difference with respect to the previous case is that we
have assumed that at the initial time only 5%~instead of
90%! of the total excess of particles is forming the initial
membranes. In the early time the critical radius is lower than
the mean radius and there is a large amount of material to be
absorbed; this permits a very fast growth of the membranes
without broadening the distribution function and as soon as

t'100 there are already some vesicles formed~this early
time growth process is not shown in the figure because it is
covered by later data!. This fast growth also makes the criti-
cal radius increase and, as soon as some membranes are
formed, it crosses the peak of the distribution of membranes.
As the distribution function is highly peaked this crossing
suddenly makes most of the membranes shrink. For a period
of time there is an equilibrium where the critical radius re-
mains constant as the vesicles grow at the expense of the
membranes. When the number of membranes is small the
critical radius crosses the transformation value. The final dis-
tribution function of membranes is highly peaked as a result
of the very fast early growth.

FIG. 2. Time evolution of the size distribution function in di-
mensionless units@see Eq.~31!# for initial conditions where 90% of
the excess particles are forming membranes~see the text for de-
tails!. x5xT566.7 is the radius for the spontaneous shape transition
from membrane to vesicle. The regionx,xT refers to planar mem-
branes andx.xT to spherical vesicles.

FIG. 3. Critical radius versus time in dimensionless units@see
Eq. ~31!# for initial conditions where 90% of the excess particles are
forming membranes~see the text for details!. The dotted line cor-
responds tox5xT .
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III. CONCLUSION

We have presented a study of the growth processes for
amphiphilic membranes. These are two-dimensional aggre-
gates in a three-dimensional bath, with peculiar features: the
surface versus volumebalance, which controls the growth for
droplets, is changed to aline versus surfacebalance for pla-
nar membranes, or it may be avoided by closed vesicles,
without open edge, at the price of a size-independent curva-
ture energy. Our work here extends the classical Lifshitz-
Slyozov-Wagner theory to consider this problem. We have
shown that, contrary to the nucleation of droplets, there is no
asymptotic limit in which the size distribution of aggregates
becomes independent of the initial conditions. As shown by
our numerical solutions of the coupled equations for planar
membranes and spherical vesicles, the asymptotic form of

the distribution function for vesicles changes dramatically
with the initial configuration. Allowing for the large uncer-
tainty in the experimental values of several parameters in
Table I, and for the overall complexity of the problem, our
equations may provide a guide to the systematic understand-
ing of these processes.

It is important to make a comment regarding the absence
of fluctuations in our treatment. The LSW theory neglects
fluctuations because it is expected that on average the con-
centration will follow the gradients in chemical potential cre-
ated by the existence of aggregates. But this assumption con-
flicts with some other limits taken in the theory in particular
large times, i.e., large domains, and small supersaturations.
In this case the gradients created by the growth process can
be of the same order as or lower than the gradients created by
fluctuations in the concentration. That means that some ag-
gregates could shrink even though their radius is larger than
the critical radius and this effect can change the size distri-
bution function at late enough times. In particular for
vesicles, this theory predicts a complete degeneracy in the
equilibrium size distribution while fluctuations are expected
to break this degeneracy by imposing the distribution func-
tion that maximizes entropy@18#.
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