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Phase-field model for dendritic growth in a channel
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We present a phase-field description of dendritic growth in a channel. We observe that both the anisotropic
solid-liquid interfacial tension and the geometrical constraint imposed by the channel concur in determining the
growth of dendrites: even without interfacial anisotropy there exists a certain critical value of the supercooling
A above which the governing equations admit steady state solutions and the dendrites advance with constant
velocity. In the range considered, for fixed supercooling the growth velocity is a decreasing function of the
channel width. When the anisotropy parametés not too low, the computed dendrite tip radjuand growth
velocity v are consistent with the dependeng®«y~ " valid for a free dendrite. On the other hand, for
vanishing anisotropy the channel constraint is sufficient to determine a steady growth regime. The present
results, taking into account the kinetic undercooling effect and the fully unsteady dynamics of the process,
represent an improvement over existing studies based on approximate free boundary models.

PACS numbds): 81.10.Aj, 05.70.Fh, 68.76.w, 81.30.Fb

I. INTRODUCTION A second branch of solutions was found by Brener, Geil-
ikman, and Temkin with an approximate analytical method
The growth of a needle-shaped crystal from an underf7]. For this new branch the growth rate is an increasing
cooled melt has been addressed in several studies; extensifimction of A and reduces, fok—», to the solution found
reviews are given iff1,2]. Experiments conducted on free for a free dendrite. A successive numerical st{igly based
growth processel3] show that the dendrite tip is character- on the quasistationary limit of the free-boundary equations,
ized by a radius of curvaturp and a velocityv that are provided results in qualitative agreement with this model.
reproducible functions of the dimensionless supercoolinddowever, until now no simulations have been performed,
A=c(T,,—To)/L, whereT, andT,, represent the initial tem- based on a fully unsteady formulation of the problem, incor-
perature of the melt and the coexistence temperature of thgorating the kinetic undercooling effect and allowing for heat
two phases respectivelg; andL are the specific and latent diffusion even in the solid phase.
heat per unit volume. Ivantsov’s theo#], neglecting cap- In this paper the phase-field mod#8l10] is employed for
illarity effects, can only determine the prodygt as a func- the numerical simulation of two-dimensional crystal growth
tion of A. The degeneracy of this solution corresponds to @n a channel. This approach removes the necessity of track-
scale invariance, and is due to the lack of the necessaryng the interface position that is found as a part of the nu-
length scale for the pattern description. Additional physicalmerical solution, an allows a simple treatment even of com-
information is needed to set the scale and to allow for theplicated and interconnected structures. Moreover, it takes
solution of both the velocity and radius of curvature. Thisinto account in a very natural fashion the effects of the in-
deficiency can be removed taking into account the effects oferface kinetics that are expected to strongly influence the
a finite surface tensiowr, that introduces in the model the solution when the supercooling is not too small. On the
capillarity lengthd,=coT,/L2. In this perspective, the mi- other hand, the classical free-boundary formulation is recov-
croscopic solvability theorysee[2] for a review indicates  ered asymptotically when the solid-liquid interface is suffi-
that for a stable and steady tip propagation surface energy tdently sharpg 11].
not sufficient, and anisotropy of the surface energy is re- The phase-field model gives a diffuse interface picture of
quired. When the dendrite grows in a channel, a preferrethe solidification process, and introduces a length scale, the
direction along the channel's axis is introduced, and stationinterface thicknes®. Realistic values of this parameter fall
ary patterns are expected even with isotropic surface tensiom the range of several atomic dimensiof2]. In two-
In the limit of a narrow channel, when the @&t number dimensional numerical calculations the cost of the solution
Pe=\v/2D is vanishingly small\ is the channel width and increases a$ * and, due to the limitations of computing
D the thermal diffusivity, Kessler, Koplik, and Leving5] resources, at present even simple problems would result un-
found, for the isotropic case, that a stationary growth is onlytractable. In this study, along the lines suggested by Wheeler,
possible whemA=0.5, and the resulting velocity scales as Boettinger, and McFadderi3], a value is selected for the
v A(A—1/2)7%2 With anisotropic surface energy the interface thickness that is small compared to the lowest geo-
crystal growth is allowed even foA<0.5. According to  metric scale that characterizes the process, namely, the radius
these results the tip velocity is a decreasing function of thef curvature of the dendrite tips, and, nevertheless, more than
supercooling; it is an unintuitive behavior and, indeed, ten times greater than realistic values.
these solutions were shown to be unstdble The numerical results agree with the most significant pre-
dictions of the approximate model of Brener, Geilikman, and
Temkin[7]. Below a critical valueA* of the supercoolings
“Author to whom correspondence should be addressed. no steady solutions are allowed. Fér-A* the tip velocity
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settles to a steady value that increases wiAthFor fixed e 2d¢p 1\ __ dP(¢)

supercooling, the tip velocity is a decreasing function of the el C o ¢)( h— —) tea 26 U

channel width.
The anisotropy of the surface energy plays an important — d . d¢

role, extending the range of steady growth to lower values of —& 5( n(6)n'(6) W)

A. When the anisotropy parametgiis not too low, the den-

drite tip radiusp and the growth velocity obey the depen- — , 0

dence p?Voy~7’* that was proved for a free dendrite te ay ()7 (0)(9_)(

14,15

a4 +8?V-[7*(0)V]. )
Il. THE GOVERNING EQUATIONS AND NUMERICAL The parameters, «, andm are related to the physical prop-

METHOD erties of the substance through the following relatipt:

The model describes the solidification of a pure substance J21L2 V21

in terms of two fields: the scalar phase figbdand a dimen- a= 12c0T,, = 12d,’ (6)

sionless temperature field=c(T—T,,)/L . The field¢ is an

ordering parameter assuming the valges0 in the solid and pnoTy

¢=1 in the liquid; intermediate values correspond to the m= DL ' @)

interface between the two phases. The model is developed

along the lines suggested by Penrose and Fifg17 and _ 6

successively followed by Wangt al. [18] and Wheeler, & = ®

Murray, and Schaefgrl9]. These authors obtained the dy- _ _ o N .
namic equations by simultaneous variations of an entropyvhere is the interface kinetic coefficient. In the following
functional with respect to the two fields. The model results innumerical simulations we puw=400, m=0.05, ande

the following dimensionless equations for the phase field and=0-005; with| =2.1x 10 * cm these values mimic as close
temperature: as possible the termophysical properties of nickel near its

melting temperature. Moreover, we assume
€2 9o

1
EEZSZV%‘*‘ ¢(1—¢)< ¢—5

IP(¢) e(0)=e(1+ vy cok), 9

+saWu, (1)

where y specifies the intensity of the anisotropy effects;
choosingk=4 we enforce fourfold anisotropy.

u ., IP(P) I ) Equations (2) and (5) have been solved on a two-
o vuT ap  at- @ gimensional domain Qx=<Xx,,, O<y=<\, characterized by a

large value of the aspect ratiqg, /A, that is varied in the

Here and henceforth, lengths are measured in units of sonf8"9¢ 1&(1?(mé)‘§33' Lh? length of the chgmnelhis fﬁ<ed alt
reference length representative, for example, of the domain Xm= 6. Adiabatic conditions were imposed at the channel's
sizes, whereas time is measured in unit$%D. The func- bour:_c(ijanes. I(nglg' |(r)1)t_he underc((j)qletcrj] melt< _A"ﬁ:t#)

tion P(#) = ¢3(10— 154+ 6¢?), introduced by Wangtal. & SO €M U=1,¢=1) IS prepared in the regio=x,, the
[18] orons e coltiom That Ttk soli an liquid are 98TM'S Surface is perturbed by a random corrugation, putting

: B . : Xo(y)=0.12(1+Ay), where A=0.005 andy is a random
described byp=0 and¢=1, respectively, for every value of number uniformly distributed in the ran§ie-0.5,+0.5]. The

u. The solution of these equations guarantees that the totﬂggh frequency components of the corrugation spectrum coa-

dimensionless entropy of the system, given by lesce at the early stage of the growth and the pattern selected
by the system is a single finger that propagates into the chan-
, 1 nel.
o _ .2 2 ) i ) _ ) )
= JQ s(¢.u) ¢ (Vo) }dQ* 3 To discretize the governing equations, a uniform spatial

grid is utilized, withAx=Ay=0.005; the Laplace operator is
. . L . L approximated through a five-point formula and an explicit
increases monotonically in time. In E(3) integration is g o integration scheme is employed to advance forward in
performed over the computational domain; the last term iNime. The ratio of the diffusivities of the two fields
the integrand represents a gradient correction to the therm‘DU/D(b:l/m is very high; as a consequence the time step
dynamic entropy density, given by required to achieve stability is very different for E¢8) and

(5). To circumvent this problem and to improve the effi-

¢ 1 dP(2) ciency of the numerical scheme, tigeequation(5) is firstly
S(¢,U)=f (1=l ¢35 Fea ar Y dZ. (4  advanced in time with a stept;=0.4x 104, then the heat
0 . . . . . .
equation (2) is iterated 10 times with a time step
Anisotropy of the surface energy can be accounted for allow-
ing the parametee, in Eq. (3), to depend on the anglé ll. NUMERICAL RESULTS

defined as the angle between the normal to the interface and

a fixed direction—the channel axis in our calculations. As- B . -

suming a dependencs 8)=z7(6), where 7(6) will be de- when the cha_nne[s widti is not too large with respect to
' , —emun 7 the thermal diffusion length R/v: for Pe>1, the free den-
fined later, Eq(1) is modified aq20] drite

The constraint imposed by the side walls is effective
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x. Curvea: at timet=0.3, with 0.9; curveb: at timet=2.4, with 25 20 15 10 05 00 05
A=0.5. The channel width i8=0.18, andy=0 (isotropic surface log,,(t)
energy. 1

] ) ) FIG. 2. Log-log plot of the growth ratQ vs time, at different
solution should be expected. Accordingly, the numericalalues of the supercooling; the channel width ia=0.18 andy=0
computations are mainly conducted to focus the growth begsotropic surface energy

havior when the Reet number is of order one. The numeri- ] o
cal results will be presented in terms of nondimensionafo’ ¥=0 and 0.02. Anisotropy results in higher valuesvof
physical quantities, scaling all the lengthsltdime tol%D ~ With y=0.02 the threshold value for steady growth is
and velocities td/I. A=0.60. . .

The effect of the initial supercooling is investigated first. Figure 4 shows the tip steady velocity versus the channel

. : .~ width \. Here the supercooling is fixed &=0.8 and we
No anisotropy of the surface energy is assumed, sejtin@; . ; , .
the channel width is fixed at=0.18. In these conditions the ﬁ]oonnstl)?grr“tchae”|sggcc)ggé:izri]2$fucacltri10t2e;fexplored range.1s a
process selects two different regimes M&sis varied. For Y

. . . All the previous results are in qualitative agreement with
A=<0.63 stationary growth is not allowed. The widthof the the predictions of the approximate analytical model of

dendrite increases with time and, due to energy conservatiorg;rener’ Geilikman, and TemkiY]. However, the tip veloci-
the tip velocity decreases; the expectéd’ behavior is ap-  ties shown in Fig. 3 are considerably smaller than the ones
proached asymptotically. Fdr>0.63, after a short transient optained in the successive numerical st{ily; on the con-

the tip velocity reaches a steady value, and the width stabirary our results are comparable with the experimental data
lizes at the valuav=N\A required by the energy constraint. of Willnecker, Herlach, and FeuerbacHer]. This discrep-
These considerations are clarified in Fig. 1, where in theancy had to be expected: the data reporte@8inwere ob-
same graph the ratie/\ is shown along thex direction for  tained neglecting the kinetic undercooling. As pointed out by
two different dendrites. Curva describes, at tim¢=0.3, a Pomeau and Ben Am4dg], such an approximation yields a
dendrite growing with a supercooling=0.9; the ratiov/\ is  strong overestimate of the tip velocity at large valuedof

settled to a steady value that coincides withFor curveb We now discuss the effects of the anisotropy parameter
(t=2.4) the supercooling ia=0.5; here the finger width is on the computed results. The notion that capillarity is at the
considerably larger thanA and increases with time. origin of the selection mechanism that resolves the ambigu-

In Fig. 2 a log-log plot represents the growth r@ever- 16
sus time and for different values af, Q is defined as 1 =002 !

1 y=0 '
d 1 i
Q= 5t 11— g0eyax dy (10 p ‘
Q 1
> ' !

Notice that for steady growtlQ and v are related by ! i '
Q=MAv. 1 ! N i

For A=<0.63 Q is monotonically decreasing with time, 8 ! R
while for A>0.63 the curves tend to a saturation level that . i
increases withA. As previously stated, the Blet number is [ i
always confined in the range 6&®e<1.5, so that the nu- A
merical solution is truly reflecting the effects of the wall's 4 , b , , ,
constraint. 0.50 0.60 0.70 0.80 0.90 1.00

The main features of the process are still retained when A

the effects of anisotropy are accounted for, i.e., whet0,
but the range of steady growth is extended towards lower FIG. 3. Steady velocity of the dendrite tip, vs the supercooling
values ofA. Figure 3 shows the steady tip velocity versus A; the channel width i$.=0.18.
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FIG. 4. Steady velocity of the dendrite tip, vs the channel width
\; y=0 (isotropic surface energyand A=0.8. IV. CONCLUSIONS

ity of Ivantsov’s solution is now well established. Within this A numerical study has been conducted on the growth of
approach, the microscopic solvability theory predicts, for thedendrites in a channel, when thecke number is of order
free growth case, the resut :2Dd0/(pzv)oc»y7/4_ This de- one. The fully time dependent equations of the phase-field
pendence was confirmed in the numerical study conducte@hodel were utilized. The results bridge the gap between the
by Wheeler, Murray, and Schaefgh9] with the phase-field numerical study of Wheeler, Murray, and Schadft®] on
model. Brener, Geilikman, and Temkii7] suggested the the free dendrite growth, and the one of Bremee¢ml. [8]
same behavior for the growth in a channel, in the limiRe  where the growth in a channel is simulated through the free
It is not clear whether the same result should apply when thboundary equations, in a one-sided and quasistationary ap-
Peclet number is of order one. proximation.

The radius of curvature of the dendrite tip was calculated Steady solutions for the tip propagation are allowed even
evaluating the expressign= ¢,/ ¢y, on the dendrite axis, at with isotropic surface tension, when the supercoolings
the solid-liquid interface defined as the loc#éc,y,t)=0.5.  larger than a threshold value. Anisotropy of the surface ten-

Figure 5 shows log(p%) versus logy(y) for A\=0.18 and  sion extends the range of steady solutions towards lawer
A=0.8; the Pelet number here is confined in the range 0.8values, and results in larger growth rates. For fidethe tip
<Pe<1.2. The numerical data fit well the "4 power law  velocity is a decreasing function of the channel widlthAs
(the superimposed straight linevhen y is not too low; on  the anisotropy parameteris varied, the produgs® v shows
the other hand, ag—0 the data tend to a finite limit, indi- a saturating behavior at low values; asy increases the
cating that the presence of the channel’'s walls provide th@umerical results are consistent with the power law depen-
necessary anisotropy to determine a steady growth evetience p?xy " predicted by the microscopic solvability
without interfacial anistropy. theory for a free dendrite.

[1] D. A. Kessler, J. Koplik, and H. Levine, Adv. Phy37, 255 [8] E. A. Brener, H. Miler-Krumbhaar, Y. Saito, and D. Temkin,

(1988. Phys. Rev. 47, 1151(1993.

[2] Y. Pomeau and M. Ben Amar, iBolids far from Equilibrium [9] J. S. Langer, iDirections in Condensed Matter Physiaxd-
edited by C. GodrechéCambridge Univ. Press, Cambridge, ited by G. Grinstein and G. Mazenk®Vorld Scientific, Sin-
1992. gapore, 1986

[3] M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Metall.[10] G. Caginalp, inApplications of Field Theory to Statistical Me-
Trans. A7, 1747(1976. chanics edited by L. Garrido, Lecture Notes in Physics Vol.

[4] P. Ivantsov, Dokl. Akad. Nauk. SSSE8, 567 (1947). 216 (Springer-Verlag, Berlin, 1984

[5] D. A. Kessler, J. Koplik, and H. Levine, Phys. Rev34, 4980 [11] G. Caginalp, Phys. Rev. 89, 5887(1989.

(1986. [12] D. W. Oxtoby and A. D. J. Haymet, J. Chem. Phy§, 6262

[6] P. Pdce, Europhys. Lett7, 453(1988. (1982.

[7] E. A. Brener, M. B. Geilikman, and D. E. Temkin, Zh. Eksp. [13] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys.
Teor. Fiz.94, 241(1988 [Sov. Phys. JETB7, 1002(1988]. Rev. A45, 7424(1992.



53 PHASE-FIELD MODEL FOR DENDRITIC GROWTH IN A CHANNEL 5043

[14] A. Barbieri, D. C. Hong, and J. S. Langer, Phys. Rev3& (1993.

1802(1987). [19] A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Physica D
[15] A. Barbieri and J. S. Langer, Phys. Rev.38, 5314(1989. 66, 243 (1993.
[16] O. Penrose and P. C. Fife, Physica4B 44 (1990. [20] G. B. McFadden, A. A. Wheeler, R. J. Braun, and S. R. Cori-
[17] O. Penrose and P. C. Fife, Physica6B 107 (1993. ell, Phys. Rev. &8, 2016(1993.

[18] S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. [21] R. Willnecker, D. M. Herlach, and B. Feuerbacher, Phys. Rev.
Coriell, R. J. Braun, and G. B. McFaden, Physice&68) 189 Lett. 62, 2707(1989.



