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We present a phase-field description of dendritic growth in a channel. We observe that both the anisotropic
solid-liquid interfacial tension and the geometrical constraint imposed by the channel concur in determining the
growth of dendrites: even without interfacial anisotropy there exists a certain critical value of the supercooling
D above which the governing equations admit steady state solutions and the dendrites advance with constant
velocity. In the range considered, for fixed supercooling the growth velocity is a decreasing function of the
channel width. When the anisotropy parameterg is not too low, the computed dendrite tip radiusr and growth
velocity v are consistent with the dependencer2v}g27/4, valid for a free dendrite. On the other hand, for
vanishing anisotropy the channel constraint is sufficient to determine a steady growth regime. The present
results, taking into account the kinetic undercooling effect and the fully unsteady dynamics of the process,
represent an improvement over existing studies based on approximate free boundary models.

PACS number~s!: 81.10.Aj, 05.70.Fh, 68.70.1w, 81.30.Fb

I. INTRODUCTION

The growth of a needle-shaped crystal from an under-
cooled melt has been addressed in several studies; extensive
reviews are given in@1,2#. Experiments conducted on free
growth processes@3# show that the dendrite tip is character-
ized by a radius of curvaturer and a velocityv that are
reproducible functions of the dimensionless supercooling
D5c(Tm2T0)/L, whereT0 andTm represent the initial tem-
perature of the melt and the coexistence temperature of the
two phases respectively;c andL are the specific and latent
heat per unit volume. Ivantsov’s theory@4#, neglecting cap-
illarity effects, can only determine the productrv as a func-
tion of D. The degeneracy of this solution corresponds to a
scale invariance, and is due to the lack of the necessary
length scale for the pattern description. Additional physical
information is needed to set the scale and to allow for the
solution of both the velocity and radius of curvature. This
deficiency can be removed taking into account the effects of
a finite surface tensions, that introduces in the model the
capillarity lengthd05csTm/L

2. In this perspective, the mi-
croscopic solvability theory~see@2# for a review! indicates
that for a stable and steady tip propagation surface energy is
not sufficient, and anisotropy of the surface energy is re-
quired. When the dendrite grows in a channel, a preferred
direction along the channel’s axis is introduced, and station-
ary patterns are expected even with isotropic surface tension.
In the limit of a narrow channel, when the Pe´clet number
Pe5lv/2D is vanishingly small~l is the channel width and
D the thermal diffusivity!, Kessler, Koplik, and Levine@5#
found, for the isotropic case, that a stationary growth is only
possible whenD>0.5, and the resulting velocity scales as
v}l22~D21/2!23/2. With anisotropic surface energy the
crystal growth is allowed even forD,0.5. According to
these results the tip velocity is a decreasing function of the
supercoolingD; it is an unintuitive behavior and, indeed,
these solutions were shown to be unstable@6#.

A second branch of solutions was found by Brener, Geil-
ikman, and Temkin with an approximate analytical method
@7#. For this new branch the growth rate is an increasing
function of D and reduces, forl→`, to the solution found
for a free dendrite. A successive numerical study@8#, based
on the quasistationary limit of the free-boundary equations,
provided results in qualitative agreement with this model.
However, until now no simulations have been performed,
based on a fully unsteady formulation of the problem, incor-
porating the kinetic undercooling effect and allowing for heat
diffusion even in the solid phase.

In this paper the phase-field model@9,10# is employed for
the numerical simulation of two-dimensional crystal growth
in a channel. This approach removes the necessity of track-
ing the interface position that is found as a part of the nu-
merical solution, an allows a simple treatment even of com-
plicated and interconnected structures. Moreover, it takes
into account in a very natural fashion the effects of the in-
terface kinetics that are expected to strongly influence the
solution when the supercoolingD is not too small. On the
other hand, the classical free-boundary formulation is recov-
ered asymptotically when the solid-liquid interface is suffi-
ciently sharp@11#.

The phase-field model gives a diffuse interface picture of
the solidification process, and introduces a length scale, the
interface thicknessd. Realistic values of this parameter fall
in the range of several atomic dimensions@12#. In two-
dimensional numerical calculations the cost of the solution
increases asd24 and, due to the limitations of computing
resources, at present even simple problems would result un-
tractable. In this study, along the lines suggested by Wheeler,
Boettinger, and McFadden@13#, a value is selected for the
interface thickness that is small compared to the lowest geo-
metric scale that characterizes the process, namely, the radius
of curvature of the dendrite tips, and, nevertheless, more than
ten times greater than realistic values.

The numerical results agree with the most significant pre-
dictions of the approximate model of Brener, Geilikman, and
Temkin @7#. Below a critical valueD* of the supercoolingD
no steady solutions are allowed. ForD.D* the tip velocity*Author to whom correspondence should be addressed.

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/5039~5!/$10.00 5039 © 1996 The American Physical Society



settles to a steady value that increases withD. For fixed
supercooling, the tip velocity is a decreasing function of the
channel width.

The anisotropy of the surface energy plays an important
role, extending the range of steady growth to lower values of
D. When the anisotropy parameterg is not too low, the den-
drite tip radiusr and the growth velocityv obey the depen-
dence r2V}g27/4 that was proved for a free dendrite
@14,15#.

II. THE GOVERNING EQUATIONS AND NUMERICAL
METHOD

The model describes the solidification of a pure substance
in terms of two fields: the scalar phase fieldf and a dimen-
sionless temperature fieldu5c(T2Tm)/L . The fieldf is an
ordering parameter assuming the valuesf50 in the solid and
f51 in the liquid; intermediate values correspond to the
interface between the two phases. The model is developed
along the lines suggested by Penrose and Fife@16,17# and
successively followed by Wanget al. @18# and Wheeler,
Murray, and Schaefer@19#. These authors obtained the dy-
namic equations by simultaneous variations of an entropy
functional with respect to the two fields. The model results in
the following dimensionless equations for the phase field and
temperature:
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Here and henceforth, lengths are measured in units of some
reference lengthl representative, for example, of the domain
sizes, whereas time is measured in units ofl 2/D. The func-
tion P(f)5f3(10215f16f2), introduced by Wanget al.
@18#, enforces the condition that bulk solid and liquid are
described byf50 andf51, respectively, for every value of
u. The solution of these equations guarantees that the total
dimensionless entropy of the system, given by
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increases monotonically in time. In Eq.~3! integration is
performed over the computational domain; the last term in
the integrand represents a gradient correction to the thermo-
dynamic entropy density, given by
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Anisotropy of the surface energy can be accounted for allow-
ing the parameter«, in Eq. ~3!, to depend on the angleu,
defined as the angle between the normal to the interface and
a fixed direction—the channel axis in our calculations. As-
suming a dependence«~u!5«̄h~u!, whereh~u! will be de-
fined later, Eq.~1! is modified as@20#
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The parameters«̄, a, andm are related to the physical prop-
erties of the substance through the following relations@19#:
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wherem is the interface kinetic coefficient. In the following
numerical simulations we puta5400, m50.05, and «̄
50.005; with l52.131024 cm these values mimic as close
as possible the termophysical properties of nickel near its
melting temperature. Moreover, we assume

«~u!5 «̄~11g cosku!, ~9!

where g specifies the intensity of the anisotropy effects;
choosingk54 we enforce fourfold anisotropy.

Equations ~2! and ~5! have been solved on a two-
dimensional domain 0<x<xm, 0<y<l, characterized by a
large value of the aspect ratioxm/l, that is varied in the
range 18<xm/l<33. The length of the channel is fixed at
xm56. Adiabatic conditions were imposed at the channel’s
boundaries. Initially, in the undercooled melt (u52D,f51!
a solid germ (u50,f50! is prepared in the regionx<x0 ; the
germ’s surface is perturbed by a random corrugation, putting
x0(y)50.12(11Ax!, whereA50.005 andx is a random
number uniformly distributed in the range@20.5,10.5#. The
high frequency components of the corrugation spectrum coa-
lesce at the early stage of the growth and the pattern selected
by the system is a single finger that propagates into the chan-
nel.

To discretize the governing equations, a uniform spatial
grid is utilized, withDx5Dy50.005; the Laplace operator is
approximated through a five-point formula and an explicit
Euler integration scheme is employed to advance forward in
time. The ratio of the diffusivities of the two fields
Du/Df51/m is very high; as a consequence the time step
required to achieve stability is very different for Eqs.~2! and
~5!. To circumvent this problem and to improve the effi-
ciency of the numerical scheme, thef equation~5! is firstly
advanced in time with a stepDt150.431024, then the heat
equation ~2! is iterated 10 times with a time step
Dt250.13Dt1 .

III. NUMERICAL RESULTS

The constraint imposed by the side walls is effective
when the channel’s widthl is not too large with respect to
the thermal diffusion length 2D/v: for Pe@1, the free den-
drite
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solution should be expected. Accordingly, the numerical
computations are mainly conducted to focus the growth be-
havior when the Pe´clet number is of order one. The numeri-
cal results will be presented in terms of nondimensional
physical quantities, scaling all the lengths tol , time to l 2/D
and velocities toD/ l .

The effect of the initial supercooling is investigated first.
No anisotropy of the surface energy is assumed, settingg50;
the channel width is fixed atl50.18. In these conditions the
process selects two different regimes asD is varied. For
D<0.63 stationary growth is not allowed. The widthw of the
dendrite increases with time and, due to energy conservation,
the tip velocity decreases; the expectedt21/2 behavior is ap-
proached asymptotically. ForD.0.63, after a short transient
the tip velocity reaches a steady value, and the width stabi-
lizes at the valuew5lD required by the energy constraint.
These considerations are clarified in Fig. 1, where in the
same graph the ratiow/l is shown along thex direction for
two different dendrites. Curvea describes, at timet50.3, a
dendrite growing with a supercoolingD50.9; the ratiow/l is
settled to a steady value that coincides withD. For curveb
~t52.4! the supercooling isD50.5; here the finger width is
considerably larger thanlD and increases with time.

In Fig. 2 a log-log plot represents the growth rateQ ver-
sus time and for different values ofD; Q is defined as

Q5
d

dtEV
@12f~x,y!#dx dy. ~10!

Notice that for steady growthQ and v are related by
Q5lDv.

For D<0.63 Q is monotonically decreasing with time,
while for D.0.63 the curves tend to a saturation level that
increases withD. As previously stated, the Pe´clet number is
always confined in the range 0.5,Pe,1.5, so that the nu-
merical solution is truly reflecting the effects of the wall’s
constraint.

The main features of the process are still retained when
the effects of anisotropy are accounted for, i.e., whengÞ0,
but the range of steady growth is extended towards lower
values ofD. Figure 3 shows the steady tip velocity versusD

for g50 and 0.02. Anisotropy results in higher values ofv;
with g50.02 the threshold value for steady growth is
D50.60.

Figure 4 shows the tip steady velocity versus the channel
width l. Here the supercooling is fixed atD50.8 and we
consider the isotropic caseg50. In the explored range,v is a
monotonically decreasing function ofl.

All the previous results are in qualitative agreement with
the predictions of the approximate analytical model of
Brener, Geilikman, and Temkin@7#. However, the tip veloci-
ties shown in Fig. 3 are considerably smaller than the ones
obtained in the successive numerical study@8#; on the con-
trary our results are comparable with the experimental data
of Willnecker, Herlach, and Feuerbacher@21#. This discrep-
ancy had to be expected: the data reported in@8# were ob-
tained neglecting the kinetic undercooling. As pointed out by
Pomeau and Ben Amar@2#, such an approximation yields a
strong overestimate of the tip velocity at large values ofD.

We now discuss the effects of the anisotropy parameterg
on the computed results. The notion that capillarity is at the
origin of the selection mechanism that resolves the ambigu-

FIG. 1. With of dendrite, scaled tol, along the growth direction
x. Curvea: at time t50.3, with 0.9; curveb: at time t52.4, with
D50.5. The channel width isl50.18, andg50 ~isotropic surface
energy!.

FIG. 2. Log-log plot of the growth rateQ̇ vs time, at different
values of the supercoolingD; the channel width isl50.18 andg50
~isotropic surface energy!.

FIG. 3. Steady velocity of the dendrite tip, vs the supercooling
D; the channel width isl50.18.
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ity of Ivantsov’s solution is now well established. Within this
approach, the microscopic solvability theory predicts, for the
free growth case, the results*52Dd0/(r

2v)}g7/4. This de-
pendence was confirmed in the numerical study conducted
by Wheeler, Murray, and Schaefer@19# with the phase-field
model. Brener, Geilikman, and Temkin@7# suggested the
same behavior for the growth in a channel, in the limit Pe@1.
It is not clear whether the same result should apply when the
Péclet number is of order one.

The radius of curvature of the dendrite tip was calculated
evaluating the expressionr5fx /fyy on the dendrite axis, at
the solid-liquid interface defined as the locusf~x,y,t!50.5.

Figure 5 shows log10~r
2v! versus log10~g! for l50.18 and

D50.8; the Pe´clet number here is confined in the range 0.8
,Pe,1.2. The numerical data fit well theg27/4 power law
~the superimposed straight line! when g is not too low; on
the other hand, asg→0 the data tend to a finite limit, indi-
cating that the presence of the channel’s walls provide the
necessary anisotropy to determine a steady growth even
without interfacial anistropy.

IV. CONCLUSIONS

A numerical study has been conducted on the growth of
dendrites in a channel, when the Pe´clet number is of order
one. The fully time dependent equations of the phase-field
model were utilized. The results bridge the gap between the
numerical study of Wheeler, Murray, and Schaefer@19# on
the free dendrite growth, and the one of Breneret al. @8#
where the growth in a channel is simulated through the free
boundary equations, in a one-sided and quasistationary ap-
proximation.

Steady solutions for the tip propagation are allowed even
with isotropic surface tension, when the supercoolingD is
larger than a threshold value. Anisotropy of the surface ten-
sion extends the range of steady solutions towards lowerD
values, and results in larger growth rates. For fixedD the tip
velocity is a decreasing function of the channel widthl. As
the anisotropy parameterg is varied, the productr2 v shows
a saturating behavior at lowg values; asg increases the
numerical results are consistent with the power law depen-
dencer2v}g27/4, predicted by the microscopic solvability
theory for a free dendrite.
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