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A two dimensional two-level Hubbard model with on-site repulsions only, is studied. By solving
the two-particle problem, the effective interaction in the lower band is calculated exactly in the
empty band limit. This interaction is found to consist of two terms: an on-site repulsion and a

nearest-neighbor resonant superexchange.

Within the Hartree-Fock approximation it is found

that high-T. s-wave superconductivity develops in a variety of situations. The validity of this
model for the high-T, Cu-O superconductors is discussed.

I. INTRODUCTION

The high critical temperatures of the new copper oxide
superconductors' ~® have stimulated the search for a pair-
ing mechanism of purely electronic origin. The common
feature of the different families of superconducting cu-
prates is the presence of (CuQO,), layers in which the Cu
atoms occupy a square lattice and are linked by the oxy-
gen atoms. A simple analysis of the chemistry of this
problem, supported by band calculations,® !> shows that
the partially filled band is essentially made of the hybridi-
zation of x2—y? d orbitals of Cu and p orbitals of the O
in the layers. Small composition changes in these sub-
stances lead to metal-insulator transitions and to the ap-
pearance of antiferromagnetic phases. This fact shows
the importance of electron correlations and the necessity
of considering the electron-electron Coulomb repulsion.
In this work we will describe the (CuQ,), layers by means
of a Hubbard Hamiltonian with two kinds of sites. The
states under consideration are those that correspond to the
introduction of holes into a background lattice made of
Cu* ions (full 3d shell) and O2~ ions (full 2p shell). In
the systems La-(Ba,Sr)-Cu-O and Y-Ba-Cu-O there are
between 1 and 2 holes per Cu atom. We restrict the ac-
cessible states for the holes to the x?>—y? d-orbital of
each Cu atom and the p-orbital of each oxygen directed
towards the neighboring Cu atoms. We call A the energy
difference between p and d orbitals, Uy and U, the on-site
Coulomb repulsions and ¢ the hopping matrix element be-
tween Cu and O sites. The O-O and Cu-Cu direct hop-
ping and the Cu-O Coulomb repulsion are neglected. The
one-particle solutions of this model, when A > 0, consist of
a lower band of mainly Cu character and upper bands of
mainly O character. The lower band is partially filled
with holes.

Many theories that have been proposed are based on
this same physical background. Some of them neglect the
effect of the oxygen and reduce the problem to a single-
band Hubbard model.'®~2° Pairing interactions are then
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looked for in the limit of large U. However, recent analyt-
ical?! and numerical??>?3 calculations indicate that the 2D
one-band Hubbard model does not exhibit superconduc-
tivity. Other theories?*~?7 include the effect of oxygen
but still consider the system in the large U limit, so that at
least part of the system is a magnetic insulator. On the
contrary our aim is a simpler one: We look for supercon-
ductivity in the metallic phase. The problem reduces
therefore to finding the effective interaction between holes
in the lower band. In addition to a reduced on-site repul-
sion the effective interaction is expected to have a superex-
change via the oxygen term even in the metallic phase, in
contrast to the dynamical superexchange that appears
only in the limit U — oo. Pairing will be possible when the
attractive interactions overcome the repulsive ones.

Although we are not the first ones to indicate superex-
change via oxygen as a possible pairing mechanism,?®?’ in
this paper we find an expression for the effective interac-
tion valid within the Hartree-Fock (HF) approximation
and show that in some conditions such a mechanism
indeed leads to superconductivity.

The superexchange via oxygen can be obtained by per-
turbative methods® (e.g., canonical transformations), but
as it is a fourth-order term it becomes negligible in the
limit in which the perturbation expansion is valid
(t/A<1). Instead, we approach the problem by means of
a nonperturbative method, which consists of comparing
the states of an effective Hamiltonian with the corre-
sponding states of the true one. In this way we are able to
find the effective interaction in the strong hybridization
regime (A~¢). In Sec. II we study the one- and two-
dimensional systems. By solving the two-hole problem we
obtain the exact analytic expressions of the effective in-
teractions in an empty band. In Sec. III we use those ex-
pressions, which are valid within HF approximation, to
show that indeed pairing is possible in a variety of situa-
tions. Finally, in Sec. IV we show that this model agrees
qualitatively with many properties of copper oxide super-
conductors.
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II. THE EFFECTIVE INTERACTION

We obtain the effective interaction between holes in the
lower band by comparing the states of one and two holes
of a single-band effective Hamiltonian with those of the
true two-level Hamiltonian. As the lower band has main-
ly a Cu character we propose an effective Hamiltonian in
which only Cu sites appear

Heﬁ=EOZni—t'<Z di:rrdja'*'U;nitnil
1

i,jho

—%J(Z)(S,"Sj—i—ninj), (1)
L,

It is a Hubbard Hamiltonian plus an explicit nearest-
neighbor exchange interaction. The form of the exchange
term is determined by two requirements: (i) it is a two-
body interaction, and (ii) it vanishes for pairs of holes in
triplet states, which do not feel the on-site repulsions. As
we shall see, it is possible to reproduce the exact results if
the effective parameters are considered to be functions of
the energy. Only in the limit A>>¢ the effective Hamil-
tonian becomes energy independent. We will also see that
the energy dependence of J is essential for obtaining su-
perconductivity.

A generic one-particle state of the effective system may
be written as

=2 :di;|0). )

From the Schrédinger equation (H.g— E)y =0 one ob-
tains

(E()—E)lp,‘—t'%¢,’+1=0. 3)

We need also the states of two holes. As two holes in
the triplet states do not interact we consider only S =0
states. We will restrict ourselves to hole pairs without
center-of-mass (c.m.) motion. A generic pair with S, =0
and g¢.m. =0 is of the form

v=Xa,|n, ' 4)

where | n) is

|ny=N"12% dliqdi|0). 5)
i

The singlet states fulfill the additional condition a, =a - ,.
From the Schrodinger equation we get

[2E0 —E+U6,,0+J(2;6,,, ] o — 2:'%;, an+1=0. (6)
!

Equations (3) and (6) are all that is needed for compar-
ison with the complete systems.
A general Hubbard Hamiltonian with on-site repulsion

is of the form
H = Z Eallai +Z Uunaifnail - Z taﬂ(j —i )cjjoc[iio ’
ia i,a P

i,j,a,B,0
)]
J

with t45(m) =t4,(—m). For our model in one dimension
a may take the values d and p. Besides, &4 =0, g, =4,
tdd =tpp =0, and

tap(m) =t(8p1 — 8mo) . ®)
The one-particle sfates are

v =2 (9icko+2icis) |0) ©)
and the equation (H — E )y =0 reduces to

—E¢i+1(5—¢&i-1)=0, (10)

(A—E)¢+1(; —¢i+1)=0. 11)

From Eq. (11) one can express £ as a function of ¢.
Therefore, given an energy E the whole wave function is
determined by its projection on the subspace of 4 orbitals.
Replacing & into Eq. (10) one gets '
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A—F

2
—FE ¢i+AtTE(¢i+l+¢i—l)=0. (12)

The comparison between Eq. (12) and Eq. (3) yields

_ 2
Eo(E)= A—F (13)
and
P
t'(E) e (14)

So the d-orbital component of the wave function fulfills a
Schrodinger equation with an energy-dependent effective
Hamiltonian.

Consider now the hole pairs with g . =0. Defining

| aB;ny =N _I/ZE_CJ,‘+,,1C;;T,'1 [o), (15)
1

the wave function of a generic pair is
v=2 A%*|aB;n), (16)
a,p,n

with the condition 42f =452, required for singlet states.
The Schrodinger equation reduces to the following set of
equations:

(Udé,,o—E)an"'t(én'an —&n—1 _nn+l)=0’

QA+Up800—E)Bu+t(ntnn—En—1 —Np+1) =0,
a7)
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(A_E)T]n+l(an+ﬁn —Qap—1 _ﬁn—l) =0,

where for simplicity of notation we have set 4%=gq,
APP=pB, A9 =n, and AP?=¢. Also in this case it is easy
to express 8, &, and 71 in terms of a in order to obtain the
following equation:
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We can obtain the effective parameters by matching
this equation with Eq. (6). For |n| = 2, Eq. (18) reduces
to the form of Eq. (6) when the values Eo(E/2) and
t'(E/2) are used. That should be expected as E/2 is the
energy of each hole in the pair. For n =0 one obtains

REWE/NR)+UE)—Elag—2t'(E/2)(a;+a-,) =0,
(19)
where

2t'(E/2)
A—E

_ Up(Ud_'E)
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Finally, setting n=1, using Eq. (19) and the relation
a) =a - one obtains

_2'E/2) U, —UE)]
2E0(E/2)+U(E)—E "~

When the single-particle energy E/2 is within the
lower-energy band Egs. (20) and (21) represent, respec-
tively, an on-site effective repulsion and a nearest-
neighbor attraction between the holes of the band. The
Cu-O hybridization on one hand reduces the Uy on-site
repulsion, on the other hand it also allows U, to contribute
to the effective repulsion. J is a fourth-order effect that

J(E) Qn

vanishes when both U, and U, are zero. Note that U, -

gives a repulsive contribution to J.
The possibility of describing a pair in the lower band
with the effective Hamiltonian of Eq. (1), in which only
. |

tl
A—E

(E —2E¢—Uz8,0) A%+ 2:'(};;,,4:31, =
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— (Spn+ 8- pn) Ua A = U, YD}

One needs also the relationship
(Us—E)A =QA+U, —E)(AF+A4Y) . (26)

Like in the 1D case, comparison of Egs. (6) and (25)
yields the effective interaction. For |n| > |a| Eq. (25)
has the same form of Eq. (6). For n=0, using Eq. (26)
one obtains :

+2LE2) o U,(Us—E)

27
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UE)=U,;

But for n=a, b there is a difference with the 1D case. In
Eq. (6) the nearest-neighbor interaction term has the
form Ja; while in Eq. (18) it is proportional to ao. This is
not a problem in 1D because the wave function e, is com-
pletely determined by its value at any point, as only even
solutions are allowed. On the contrary, in 2D, A% and
Af? can be chosen independently. In Eq. (25) the interac-
tion term for n=a is not proportional to A% because
A < 499 but 439 < (4994 A4£9). All this amounts to a
symmetry-dependent interaction. For a wave function
with s-wave symmetry (429 =A£%) one has the same 1D
result

2t'(E/D)U, —U(E)]

2ESE/D+UE)—E (28)

szave(E) =
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Cu sites appear, is based on the fact that the oxygen
behaves as a link between the Cu atoms, since only the
Cu-O hopping has been included.

Very similar results are obtained with a much lengthier
calculation for the two-dimensional (2D) lattice. In that
case there are two different oxygen sites in the x and y
directions. In Eq. (7) now we have a=d,x,y; £;=0,
&x =&, =A, ldd =lxx =1y, =1y, =0, and

tax (m) =1(8ma — 8mo0) »
(22)
tay(m) =—1t(8mp = 8mo) ,

where a and b are the unit vectors of the lattice. For the
one-hole states the 2D calculation is essentially equal to
the 1D case. The result is

¢2
A—FE

t'(E)=— (23)

and
Eo(E)=41'(E).

The generic two-hole state is still given by Eq. (16) and
the coefficients are determined by solving (H —E )y =0.
The difficulty is that in 2D there is no obvious way in real
space of expressing the other eight 4% coefficients in
terms of 4%?. However, it can be done by Fourier trans-
forming the equations. One ends with the following equa-
tion:

(24)

{26,0[2U4 A48 — U, (A5 + AY ) = (Sn+ 6 - 1) (Ua A8 — U, AF*)

(25)

[

which is attractive at least at the bottom of the band if U,
is not too large. Instead, for d waves J vanishes when
U, =0 and is repulsive if U, > 0.

For some values of the parameters, U and J change
sign. For example, if the hybridization is large enough U
may become negative. On the other hand, the denomina-
tor (2E¢+U —E) of J may vanish for some particular E
if U is not too large. It is this resonant behavior that is the
key for superconductivity in this system.

The interaction J is due to the virtual transitions to dou-
bly occupied levels that contribute to the energy of a sing-
let pair when the holes are on neighboring copper sites.
The resonance of J appears when such transitions change
from virtual to real. When A is small enough such a reso-
nance may happen at energies inside the lower band, even
for large Uy, since in such a case E acquires a large nega-
tive value in the upper part of the band.

III. SUPERCONDUCTIVITY

Although the expressions for the effective interactions
found in the previous section are exact results only in the
empty band limit, it should be expected that similar in-
teractions persist when the bands are partially filled. In
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particular, J could have an essential role in determining
the magnetic behavior of the system. This superexchange,
in contrast with the dynamical one that appears in the
Hubbard model in the large U limit, is present for any
nonvanishing value of Uy, so also for delocalized conduc-
tion electrons. In this section, we explore the possibility
that attraction due to J may overcome the on-site repul-
sion U leading to pairing of holes in the metallic regime.
Within the Hartree-Fock approximation the only effect of

on-site repulsion is to shift the Cu and O levels. The
modified separation is then
A'=A+Uyn,) —Uyng), 29)

where (n,) is the occupation of each oxygen level. This
approximation is good as long as {n;1n;))={n;;){n;}), that
is, as long as the system remains a metal without local mo-
ments. Within the above approximation, the effective in-
teractions are still given by the same formulas, provided
one uses the parameters of the self-consistent energy
band. We have now all that is needed in order to deter-
mine the transition to superconductivity.

The finite temperature gap equation is

—=_ 1l y1=2f _
N}; 25, AVI(g—k), 30)

where Ex =[(ex —u)2+Af1'2, fis the fermionic occupa-
tion factor and for V(g — k) one must use

V(q—k)=U(2gk)+J(2sk)§e"‘Q‘k“, @31)
1)

In two dimensions and for s waves U is given by Eq. (27)

and J by Eq. (28). By replacing V into Eq. (30) one finds
that for s-wave pairing A; has the form
Ag =A0+A1§eiq". (32)

]

Then the gap equation reduces to a pair of coupled equa-
tions for Ag and A,

(14 fo0) Ao+ fo14, =0,

(33)
S1080+ (1 +f11)A; =0,
where

=1l y1-2f
Soo Nzk: 3E, UQeg), (34)
fo=p Z 1—2",;,—310(2@)5/( , (35)
Siro= Lz‘,—LJ(Zt’.k)éfk, (36)

4N %

=1 v 1-2f 2

fu 4N§, 2E, JQe)ER, 37

with & =Y pe’®! The order parameters Ag and A, are
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FIG. 1. A, JQ2u), UQu) vs {n). Us=3, Up,=1, t=1; (a)
A=7, (b) A=5, (c) A=2. The arrows indicate the limits of the
region in which a local moment develops.

determined self-consistently from Egs. (33).

The onset of superconductivity is dominated by the
value of the interactions at the Fermi energy u. In the
Figs. 1-3 we show A', U(2u), and J(2u) as functions of
the band occupation number () for different values of the
parameters. For large values of A and for any value of the
filling, U is positive and J is negative but very small [see
Fig. 1(a)]l. No superconductivity is to be expected in such
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FIG. 2. JQu), UQu) vs {n). Us=2, A=2,t=1. Solid line:
U, =0; dashed line: U, =1. The arrows indicate the limits of
the region in which a local moment develops.

a case. As the value of A decreases, the resonance of J
moves inside the band approaching the half-filling point
[see Fig. 1(b)]. Superconductivity is expected for {n)
slightly smaller than the resonance value, so that the at-
tractive J may overcome the repulsive U. For values of A
even smaller a region of negative U appears near the top
of the band [see Fig. 1(c)]. Note that in this region J is
positive and large, so there is competition with U; never-
theless, hole-pairing will be possible also in this region if
the negative values of U are large enough. The effect of
U, is to reduce the absolute value of J and to increase U
(see Fig. 2). A different situation appears when U; =0
and U, >0, as it is shown in Fig. 3. In this case, J is
repulsive at the bottom of the band and has a resonance
near the half-filling point, while U is positive and very
small for all values of {(n). Superconductivity will be
present on the right-hand side of the resonance.

Note that as the energy of half-filling is the value at
which Eo(E) =E, the resonance of J will always be in the
upper half of the band. No pairing is therefore possible
for {n) <0.5.
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FIG. 3. A", J(2u), UQu) vs (n). Us=0,U,=1,A=2,t=1.
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FIG. 4. T. vs {n). Us=3, Up=1, A=1, t=1. The squares
correspond to the points actually calculated. The solid line is an
interpolation.

The arrows in the figures indicate the limits of the re-
gion in which a local moment develops on the copper.
These points were obtained by using the theory of Wolff*!
(i.e., the condition U0 =1, where oo is the local suscep-
tibility of copper sites). In the cases shown in the figures
the resonance of J remains outside the region of local mo-
ments, but for higher values of Uy it may lie inside. In
such a case the HF approximation we have employed
would not be applicable.

In Fig. 4 a T, vs {n) curve is presented for a typical set
of parameters. The (n) values are close to the resonance
of J(2u). Critical temperatures of the order of 10 2t are
obtained. Finally, the A and A¢/A; vs T plots are given in
Fig. 5 for the same set of parameters at a particular occu-
pation. As it should be expected, Ag is a small fraction
(9%) of A; because of the repulsion U.
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FIG. 5. Order parameters vs T. Uz =3, U, =1, A=1, t=1,
{n)=0.709. The circles correspond to the points actually calcu-
lated. The solid lines are interpolations.
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IV. COPPER OXIDE SUPERCONDUCTORS

Many theories that have been proposed for the copper
oxide superconductors are based on the same Hamiltonian
we use, but most of them assume the large U limit (Mott
insulator), in contrast with our approach which is valid for
the nonmagnetic metal. Which one of those two positions
is favored by the experimental evidence? Although it is
still difficult to give a definitive answer to this question, we
can list some properties of the superconducting cuprates
that are in accord with our model.

Superconductivity is confined to a range of {n). For
(La; —,Sr,),CuOy4 T, grows from zero at x==0.03, goes
through a maximum, and vanishes at x==0.16.3*33 If one
assumes rigid band doping such a behavior is in qualita-
tive agreement with the predictions of our model (see Fig.
4). In the system YBa,Cu3O;-, oxygen deficiency
reduces the number of holes; superconductivity is sup-
pressed at y ~0.5.%*

Metallic conduction. It is observed above T, at the
superconducting compositions in all of the sub-
stances.! “%3273 For La-Cu-O it is also observed for
x > 0.16 at low temperatures,>3 contrary to what happens
at the lower concentration bound that seems to be related
or to be very close to a metal-insulator transition. For the
Y-Ba-Cu-O system there is evidence for a region of non-
superconducting metallic behavior between the insulating
and the superconducting phases. *®

Lack of superconductivity for {n) <0.5. No supercon-
ductivity has been found for {(n) <0.5. This is a conse-
quence of our model, as explained in the previous section.

Positive carriers. Hall effect measurements®>*" indi-
cate hole-type conduction in La-Cu-O Y-Ba-Cu-O. For
the lower Cu-O band the points at which the effective
mass changes sign are located near the top. Therefore, it
is possible to have simultaneously {#) > 0.5 and a positive
effective mass.

T. of the right order. The model yields critical temper-
atures of the right order of magnitude, for example, in the
case of Fig. 4 at the maximum 7,~0.007¢z, which for
t~2 eV corresponds to 7.~ 150 K.

Existence of an energy gap. Many experiments show
the existence of an energy gap®®~** which varies, depend-
ing on the experimental method and the sample, from
17T, to 87,. Our model, because of the predicted s-wave
pairing, also gives a gap. For example, in the case of
Fig. 5 the gap can be estimated to be E,=2[Ag
+A&(u)]=3.8T..

Lack of local moments at superconducting composi-
tions. In the limit U— oo local magnetic moments are ex-
pected even at the superconducting compositions above
T.. Although oxygen deficiency induces antiferromagne-
tism in both La-Cu-O and Y-Ba-Cu-O, the experimental
evidence is against the coexistence of superconductivity
and magnetism in the Cu sites. Let us consider the La-
Cu-O case in detail. The undoped material is antiferro-
magnetic.*>*¢ Above Ty it is an unusual paramagnet: no
moment is found by ESR and susceptibility measurements
give a very small moment value;* instead, strong instan-
taneous 2D antiferromagnetic correlations exist up to very
high temperatures.*’ At low temperatures the moment
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saturates to a fractional value*® (~0.4ug). Ty decreases
with increasing impurity content up to the complete
suppression of long-range order (x~0.008). The low-
temperature moment as measured by nuclear quadrupole
resonance (NQR)*® remains constant. This situation is
consistent with the hypothesis of the system being a Mott
insulator with fully developed moment, both below and
above Tx. The fractional moment found can probably be
understood in terms of quantum fluctuations of the 2D,

= 4 Heisenberg model. At higher concentrations a re-
gion of short-range spin correlations is found at low tem-
peratures by NQR.*® The moment value decreases con-
tinuously vanishing at x==0.025, more or less the same
concentration at which superconductivity appears. This
intermediate region could be described as a region of pro-
gressive hole delocalization and moment destruction. This
interpretation is consistent with the measurements*® of y,
the coefficient of the linear term of the specific heat. It
has a very low value in the antiferromagnetic (AF) region,
increases continuously in the intermediate region, and sat-
urates in the superconducting region. So in La-Cu-O, su-
perconductivity develops after the local moments have
essentially disappeared. While some overlap of magne-
tism and superconductivity cannot be ruled out at the
lower concentration bound, such a doubt does not exist for
the upper one: Measurements*>*° of normal and super-
conducting samples near x ~0.16 show enhanced Pauli
susceptibilities. All this is perfectly consistent with our
model (see, for example, Fig. 2). Magnetic ordering and
localization are expected within the local moment region.
Strong spin correlations induced by J in the metal are also
to be expected. In the YBa;Cu3O7 -, case a similar situa-
tion arises by varying the oxygen content. The data seem
to indicate that superconductivity appears only when AF
order has disappeared.®' ~3* For the undoped compound
(y =0) no moment is found either by ESR (Ref. 55) or by
susceptibility measurements,*® or by muon spin relaxa-
tion. >

Theoretical estimation of the parameters. Finally, we
want to mention some theoretical estimates of the param-
eters that agree with our model. For instance,
Mattheiss '® has estimated A'~0 and 7 ~1.85 eV from his
band calculation of La-Cu-O. Zaanen et al. >’ have also
calculated the parameters using the local density approxi-
mation to the density functional theory; they obtain
A~0-1 eV and U;~8 eV and concluded that the system
is probably delocalized in spite of such a large U, because
of the smallness of A.

V. CONCLUSIONS

As the hole-pairing mechanism induced into the metal-
lic phase by the resonant superexchange descends directly
from the Hamiltonian that is commonly assumed to de-
scribe the essential features of Cu-O layers, and as it is in
accord qualitatively with many relevant properties of the
superconducting copper oxides, we believe that such a
mechanism should be considered as a possible origin of the
high-T, superconductivity in those substances.

Additional work has to be pursued in order to deter-
mine the validity of the present model. We are now trying
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to fit the model to specific substances. In this respect it is
worth mentioning that a realistic and quantitative descrip-
tion will probably require the interlayer coupling and ad-
ditional Cu and O states. From the theoretical point of
view additional work should be done in order to go beyond
the HF approximation for determining how band filling
affects the effective interactions. Numerical studies, such
as Monte Carlo simulations for example, could provide
very useful information about this model. Work is in pro-
gress in this direction.
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