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Clustering and Non-Gaussian Behavior in Granular Matter

A. Puglisi! V. Loreto? U. Marini Bettolo Marconi> A. Petri}> and A. Vulpiani
'Dipartimento di Fisica, Universita La Sapienza, and Istituto Nazionale di Fisica della Materia, Unita di Roma,
Piazzale A. Moro 2, 00185 Roma, Italy
2P.M.M.H., Ecole Supérieure de Physique et Chimie Industrielles, 10, rue Vauquelin, 75231 Paris, France
3Dipartimento di Matematica e Fisica, Universita di Camerino, and Istituto Nazionale di Fisica della Materia, Unita di Camerino,
Via Madonna delle Carceri, I-62032, Camerino, Italy
4Istituto di Acustica O.M. Corbino, Fossa del Cavaliere, Consiglio Nazionale delle Ricerche, 00133 Roma, Italy
S|stituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy
(Received 11 December 1997

We investigate the properties of a model of granular matter consisting Bfownian particles on a
line, subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the
mean values of the energy, and the energy dissipation. When the typical relaxation éisseciated
with the Brownian process is small compared with the mean collision timthe spatial density is
nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite fit.
one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability
distribution strongly deviates from the Gaussian one. [S0031-9007(98)07496-1]

PACS numbers: 46.10.+z

In the past few years granular materials have become grocess. We considé¥ identical particles on a circle of
intriguing subject of research [1-7], since they pose novelength L [10] obeying to the following equations:

questions and challenges to the theorists and experimen-
talists. The constituting elements of such materials are dvi _ v n /&f(t) )
solid particles, whose size may range from a few microns dt T r 0
to a few centimeters, and which are subject to nonconser-
vative contact forces such as friction and cohesion. dx;
Their collective behavior is peculiar and different from i v;(1), (2)

other forms of matter, such as solids, liquids, or gases,
and the ordinary statistical mechanical approach, whiclhwhere, 1 =i = N, Tr is the temperature of a mi-
successfully deals with large assemblies of microscopicroscopic medium that we discuss below, is the
particles, is not adequate. relaxation time, in the absence of collisions, afidr)
Generally speaking, granular materials cannot be deis a standard white noise with zero average and vari-
scribed as equilibrium systems either from the configuance (f;(r)f;(t')) = 8;;6(r — ¢'). In addition the par-
rational point of view or from the dynamical point of ticles are subject to inelastic collisions according to the
view. It is known in fact that these systems remainrule v; — v]'- = —r(v; — v;), wherer is the restitution
easily trapped in some metastable configurations whickoefficient ¢ = 1 for the completely elastic case) [11].
can last for long time intervals unless they are shaken The introduction of the viscous term takes into ac-
or perturbed [2]. On the other hand while in equilib- countimportant factors, generally disregarded in simplified
rium statistical mechanics the kinetic energy per particlenodels, namely the friction among particles and energy
is proportional to the temperature and the velocities ar¢ransfers among different degrees of freedom, which are
Gaussianly distributed, in the systems we consider theelevants in real granular systems. The damping and noisy
tails of the distribution deviate from the Maxwell law [8]. terms are very natural when interactions between particles
This phenomenon is accompanied by a pronounced clugnd the environment (particle-fluid interactions) start to
tering of the particles [3,4] dnelastic collapse be important. Another important class of phenomena in
Several approaches have been proposed for the studyhich a viscous damping and a noisy term are naturally
of the so-called “granular gases” [7,9]. One crucialpresent is represented by the fluidized beds, where the
difference between ordinary gases and granular media igbration of the bottom of the box produces a random force
represented by the intrinsic inelasticity of the interactionson the particles [1,2] and [12].
among the grains, which makes any theory based on The model above differs from the one proposed by
energy conservation, e.g., for ideal gases, not suitable. Kadanoff and co-workers because in the latter the par-
In the present work we study a one dimensional meticles, subject to inelastic collisions, are confined to an
chanical model, in the spirit of the one recently intro-interval of lengthL by two asymmetric walls: the first
duced by Kadanoff and co-workers [9], but containingreflecting them elastically and the second supplying en-
some important differences regarding the energy-exchangergy to the particles according to a Gaussian distribution
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at fixed temperature. As evident from the simulation of 11 (T b

Ref. [9] one observes a somehow trivial clustering of theCR) = N2 ?fo dl;ﬂm ~ l@i = %0l ~ R,

particles next to the elastic wall. We found numerically ! 3)

a more serious shortcoming of such a model consisting

in the fact that the average energy and the average emhere T represents the duration of the simulation. In

ergy dissipated per particle, defined respectively as thEig. 2 we showC(R) vs R for a clustering situation. It

time average off(r) = 1/22_\;1 v;(t)*/N and W(r) = turns out thatd, is lower thanl whenr < 1, e.qg., for

[E(l‘z) - E(ll)]/(lz — 11) wheret, and 1 represent the 7 = 100 andr = 0.6, d, = 0.59, while for r = 100 and

times at which two successive collisions take place, aré = 0.9 d» = 1.

not independent from the total number of particles, but de- Notice that in this case the stationary regime is brought

cay exponentially as- exp(—cN), showing that the sys- aboutby the collisions and that these occur more frequently

tem does not possess a proper thermodynamic limit. Thé the regions of higher density. For instance,for 100

existence of thermodynamic limit in real granular systemg&nd r = 0.7 one gets for the number of collisions as a

is not clear, but it seems a rather natural requirement in finction of the spatial density, Neoi1(p) ~ p?.

statistical mechanical approach. Assuming that in the stationary state the power dis-
Because of the inelastic collisions, in order to reach a stasipated through the collisions must balance the power

tistically stationary situation some energy must be injecteddsorbed from the heat bath, one derives the following

into the system. This is achieved in our model by the rantelation between the temperatufe, the average energy

dom noise term acting on each particle. This term mimicdZ, the power dissipated by the collisiois, andr [13]:

the action of a vibrating box. Notice that the boundary 1

conditions and the energy-pumping mechanism are differ- W=— (Tr — 2E). (4)

ent from that of Ref. [9] and present the advantage of PrOyotice that in the absence of collisions (or<< 7.)

viding a “good” thermodynamic limit as far as the energy . . L c

E and energy dissipatiol¥’ are concerned, i.e(E) and  LF — 2E andW = 0 as in the ideal gas. Equation (4)

(W) become independent of for large values ofV. is well satisfied for different values afandr.

Moreover, our system does not have walls and the clus- As we quoted already in the inelastic regime one ob-

tering is nontrivial. On the other hand, the energy feedingerves a strong deviation from the Gaussian behavior for

mechanism adopted in [7] forces one to introduce a som he velocity distribution. In Fig. 3 we display the ve-

how artificial cooling of the particles, by renormalizing O(i%glgsmbnlg'?nn n 3 rr116airrl1y Ielat?t'i C"’i‘;e & 0]8(1) azg
the velocity of the center of mass at each time step. I — - )a a strong inelastic regime &= a

our formulation this procedure is overcome by the pres;[r - f0‘7)' tﬁsg's po_SS|ka)e ;[10 seelt et)r;'St.S aln et\_/ldentdepr?r—
ence of the thermal bath. ure from the Gaussian behavior in the inelastic case, where

For each given choice afandr the system, after a long the velocity distribution shows almost exponential tails.

transient, reaches a stationary state with certain propertie1s—.he above result is close to that observgd in Refs. .[8’12]'
Let us now try to relate the clustering properties of

The presence of two time scales, namelgnd the mean . T
P s the system to the velocity distribution. In order to do

collision time ., leads to different dynamical regimes. ) . .. S
Te y g that we consider the following quantities: the distribution

(@) Whent < 7. it is easy to argue that the grains b Noo () taini . b ;
reach a rather simple statistical equilibrium and that®! POX€S, Neox(m), CONtAININg a given numbenn, o

their velocity distribution is that of an ideal gas with
an effective temperaturdy, slightly lower than the 30
temperature of the “heat bathl’s. M
(b) In the opposite limit- > 7. the driving mechanism
towards the macroscopic stationary state is dominated by
the collision process itself.
Two phenomena are observed: 18y
(1) the velocity distribution ceases to be Gaussian andx
the deviation becomes more and more pronounced with 12}
decreasing values of the restitution coefficient

24t

(2) The spatial distribution becomes strongly inhomo- 6L |
geneous. TU HJHUH H

It is worth stressing that, at variance with the cluster- oL H , , , LT 0 ﬂ Al H H , H
ization in Ref. [9], in our case the clusters are created and 0 20 40 60 80 100 120 140 160 180 200
destroyed continuously in the system as long as the system X

evolves. The inhomogeneity in the spatial distribution of . . . .
. . L ._ FIG. 1. Snapshot of the particle density at a given time
the grains, see Fig. 1, can be quantitatively characterizeg, Tr=1, r=06 7=100, N =200 L =200. Al

by the so-called Grassberger-Procaccia dimengjothat  quantities are in arbitrary units. The dashed line represents
we compute from the correlation functi@i(R) defined as the homogeneous density.
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10 : . . . . recall that the Poisson distribution is the one associated
with a process of putting independentiyv particles into
1F N boxes.
Let us turn to the nonelastic case. #f= 100 and
0.1¢ r = 0.7, considering the occupied boxes: ¢ 0), we
z obtain from the simulations:
< 0.01}
o . e*am
0.001 } Tiner(m) ~m™P, Nyil(m) = —
0.0001k with_ﬁ =0.5anda = 0.14. Let us compute from the_zse
scalings the global velocity distribution. Taking into
16-05 . . . . . account that the spatial probability distribution of the
0.001  0.01 0.1 1 10 100 particles isVi™! (m) and assuming that their local velocity

R distribution is Gaussian, but with a varianeg,.;(m) =
FIG. 2. C(R) againstr for two different choices of parame- ;ﬁeﬁ \INEICIh depe_nds on thg oc?upancy, we qbtam, for
ters:7 = 100, r = 0.6 (top) and7 = 100, r = 0.99 (bottom). go N ,Ve,loc'ty distributionPinci(v), which in the
In both case§’» = 1, N = 200, andL = 200. The dimension continuum limit should correspond to
takes, respectively, the valuds = 0.59 andd, = 1. 0
Pinel(v) = Z e(fvsz/Z)efam‘ (7)
particles and the average kinetic ener@y;,(m), in a m=1
box occupied byn particles [14]. Making the hypothesis We stress how it exists an astonishing agreement between
that in each box the average velocity of the particleshe numerical results and the ones obtained with a
is zero, i.e. (v(m)) =0 (very well confirmed by the toy model which just makes the following hypothesis:
numerical data), one finds that;, (m) provides a measure (i) Non-Poissonian distribution for the box occupancy;
of the variance of the velocity distribution in each box: (i) Gaussian distribution of velocities in each box with
Ein(m) = %(vz(m» = %Uz(m). We consider first the a density-dependent variance.

nonclusterized caser(«k 1 and r = 1). Within this The hypothesis about the scaling relation between the
regime we find from the simulations that: velocity variance and the local density, apart from be-
- Ae—m ing justified numerically, can be understood in the fol-

0ls(m) = const  NgiiS(m) = T (5)  lowing way. The stationarity and the scale invariance

of the cluster distribution, implies a certain distribution
of lifetimes for the clusters. In particular each cluster
has a lifetime which is inversely proportional to its size.
"rhe scale-invariant cluster-size distribution thus implies a
scale-invariant distribution for the lifetimes. The cluster
lifetime (its stability) is strictly related to the variance of
the velocity distribution inside the cluster itself. In order
1 . . - - - - - to ensure the stability of a cluster in a stationary state we
have to require that the velocities of the particles belonging
to it are not too different, or equivalently that the variance
of the distribution is smaller the higher the density. So,
given a scale-invariant distribution of clusters one would
expect a scale-invariant distribution of variances (6). An
independent check is provided by the behavior of the aver-
age relative velocities in boxes with different numbers of

where A = N /Ny iS the average number of particles
in each box andVi®*(m) is a Poisson distribution. By
assuming in each box a Gaussian velocity distributio
with a constant variancer2,,(m) it turns out that the

global velocity distributionP,,s(v) is Gaussian. Let us

P(vio)
o
o
o
[y

0.0001 . .
particles. Forr = 100 andr = 0.7 one obtains

e vier! (m) ~ m ™7, ®)

1le-06

s 6 4 2 o0 2 4 & g Withy=03,which indicates that the stability of a clus-
ter is connected with the smallness of the velocity fluctu-
ations inside it. In other words, the spatial clusterization
FIG. 3. Rescaled velocity distributioR(v/0) againstv/o:  corresponds to a clusterization in velocity space.

crosses are simulation data with= 100, » = 0.7, the dashed s analysis shows that in the present model it does

line represents toy-model datx’s are simulation data with . . . .
7 = 0.01 andr = 0.99, and the dot-dashed line represents the€XiSt @ refation between the clustering phenomenon (in

Gaussian distribution. In both cas& = 1, N =200, and  Physical space or in velocity space) and the non-Gaussian
L = 200. distribution of the velocities.
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A natural question to ask is whether our findings can In practice we perform the following algorithra la
be an artifact of the one dimensional dynamics. Can on®ird [15]: at each discrete timex for each particle,,
expect to observe the non-Maxwell distribution and thewe extract out of a uniform distribution in the interval
clusterization even in higher dimensions? In order td0,1] a random numbeyp. If y > p there is no colli-
clarify such an issue, we consider a different stochastision, otherwise the particlescatters with another particle
process. All the particles perform the Brownian motion; if |x;(rx) — x;(zx)| < I, and their collision probability
described by Eq. (1) ife[KAr, (K + 1)At] (whereK is s proportional tdv;(rx) — v;(tx)|. This process renders
an integer number), while at the instamigs= KAt each the BS approximation exact; in fact in the linit — oo,
particle may collide with probabilityy with one of those p — 0, I — 0, Ar — 0 one can write for the stochastic
particles which are spatially close to it according to theprocess described above the following Boltzmann equa-

Boltzmann collision-number ansatz (BS). | tion for the one patrticle distributioR (x, v, t) [16]:
] 9 1 9 Tr 9? ]
—P+ —@WP)— ——@wWP)— ——P=—P 9
ar ax WP T g, R = ar Pleot ©
90 4A 2v — (1 — !
gplcoll = (1+r)2,[ dv'P(x,v/, t)P(x,( v (1(+ r)r)v ),t> v/ — v] - A/ dv'P(x, v, 1)P(x,v,0)|lv' — ],

(10)
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