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We investigate the properties of a model of granular matter consisting ofN Brownian particles on a
line, subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the
mean values of the energy, and the energy dissipation. When the typical relaxation timet associated
with the Brownian process is small compared with the mean collision timetc the spatial density is
nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite limitt ¿ tc

one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability
distribution strongly deviates from the Gaussian one. [S0031-9007(98)07496-1]
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In the past few years granular materials have become
intriguing subject of research [1–7], since they pose nov
questions and challenges to the theorists and experim
talists. The constituting elements of such materials a
solid particles, whose size may range from a few micro
to a few centimeters, and which are subject to noncons
vative contact forces such as friction and cohesion.

Their collective behavior is peculiar and different from
other forms of matter, such as solids, liquids, or gase
and the ordinary statistical mechanical approach, whi
successfully deals with large assemblies of microscop
particles, is not adequate.

Generally speaking, granular materials cannot be d
scribed as equilibrium systems either from the config
rational point of view or from the dynamical point of
view. It is known in fact that these systems rema
easily trapped in some metastable configurations wh
can last for long time intervals unless they are shak
or perturbed [2]. On the other hand while in equilib
rium statistical mechanics the kinetic energy per partic
is proportional to the temperature and the velocities a
Gaussianly distributed, in the systems we consider t
tails of the distribution deviate from the Maxwell law [8]
This phenomenon is accompanied by a pronounced cl
tering of the particles [3,4] orinelastic collapse.

Several approaches have been proposed for the st
of the so-called “granular gases” [7,9]. One crucia
difference between ordinary gases and granular media
represented by the intrinsic inelasticity of the interaction
among the grains, which makes any theory based
energy conservation, e.g., for ideal gases, not suitable.

In the present work we study a one dimensional m
chanical model, in the spirit of the one recently intro
duced by Kadanoff and co-workers [9], but containin
some important differences regarding the energy-exchan
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process. We considerN identical particles on a circle of
lengthL [10] obeying to the following equations:

dyi

dt
­ 2

yi

t
1

s
2TF

t
fistd , (1)

dxi

dt
­ yistd , (2)

where, 1 # i # N , TF is the temperature of a mi-
croscopic medium that we discuss below,t is the
relaxation time, in the absence of collisions, andfistd
is a standard white noise with zero average and va
ance kfistdfjst0dl ­ dijdst 2 t0d. In addition the par-
ticles are subject to inelastic collisions according to th
rule y

0
i 2 y

0
j ­ 2rsyi 2 yjd, wherer is the restitution

coefficient (r ­ 1 for the completely elastic case) [11].
The introduction of the viscous term takes into ac

count important factors, generally disregarded in simplifie
models, namely the friction among particles and energ
transfers among different degrees of freedom, which a
relevants in real granular systems. The damping and no
terms are very natural when interactions between partic
and the environment (particle-fluid interactions) start t
be important. Another important class of phenomena
which a viscous damping and a noisy term are natura
present is represented by the fluidized beds, where t
vibration of the bottom of the box produces a random forc
on the particles [1,2] and [12].

The model above differs from the one proposed b
Kadanoff and co-workers because in the latter the pa
ticles, subject to inelastic collisions, are confined to a
interval of lengthL by two asymmetric walls: the first
reflecting them elastically and the second supplying e
ergy to the particles according to a Gaussian distributio
© 1998 The American Physical Society
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at fixed temperature. As evident from the simulation
Ref. [9] one observes a somehow trivial clustering of th
particles next to the elastic wall. We found numerical
a more serious shortcoming of such a model consisti
in the fact that the average energy and the average
ergy dissipated per particle, defined respectively as
time average ofEstd ­ 1y2

PN
i­1 yistd2yN and Wstd ­

fEst2d 2 Est1dgyst2 2 t1d where t2 and t1 represent the
times at which two successive collisions take place, a
not independent from the total number of particles, but d
cay exponentially as, exps2cNd, showing that the sys-
tem does not possess a proper thermodynamic limit. T
existence of thermodynamic limit in real granular system
is not clear, but it seems a rather natural requirement in
statistical mechanical approach.

Because of the inelastic collisions, in order to reach a s
tistically stationary situation some energy must be inject
into the system. This is achieved in our model by the ra
dom noise term acting on each particle. This term mimi
the action of a vibrating box. Notice that the bounda
conditions and the energy-pumping mechanism are diff
ent from that of Ref. [9] and present the advantage of pr
viding a “good” thermodynamic limit as far as the energ
E and energy dissipationW are concerned, i.e.,kEl and
kW l become independent ofN for large values ofN .

Moreover, our system does not have walls and the clu
tering is nontrivial. On the other hand, the energy feedin
mechanism adopted in [7] forces one to introduce a som
how artificial cooling of the particles, by renormalizing
the velocity of the center of mass at each time step.
our formulation this procedure is overcome by the pre
ence of the thermal bath.

For each given choice ofr andt the system, after a long
transient, reaches a stationary state with certain propert
The presence of two time scales, namelyt and the mean
collision timetc, leads to different dynamical regimes.

(a) Whent ø tc it is easy to argue that the grains
reach a rather simple statistical equilibrium and th
their velocity distribution is that of an ideal gas with
an effective temperatureTp

F , slightly lower than the
temperature of the “heat bath,”TF .

(b) In the opposite limitt ¿ tc the driving mechanism
towards the macroscopic stationary state is dominated
the collision process itself.

Two phenomena are observed:
(1) the velocity distribution ceases to be Gaussian a

the deviation becomes more and more pronounced w
decreasing values of the restitution coefficientr.

(2) The spatial distribution becomes strongly inhomo
geneous.

It is worth stressing that, at variance with the cluste
ization in Ref. [9], in our case the clusters are created a
destroyed continuously in the system as long as the sys
evolves. The inhomogeneity in the spatial distribution
the grains, see Fig. 1, can be quantitatively characteriz
by the so-called Grassberger-Procaccia dimensiond2 that
we compute from the correlation functionCsRd defined as
of
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CsRd ­
1

N2

1
T

Z T

0
dt

X
i,j

ufR 2 jxstdi 2 xjstdjg , Rd2 ,

(3)

where T represents the duration of the simulation. In
Fig. 2 we showCsRd vs R for a clustering situation. It
turns out thatd2 is lower than1 when r , 1, e.g., for
t ­ 100 andr ­ 0.6, d2 ­ 0.59, while for t ­ 100 and
r ­ 0.9 d2 . 1.

Notice that in this case the stationary regime is broug
about by the collisions and that these occur more frequen
in the regions of higher density. For instance, fort ­ 100
and r ­ 0.7 one gets for the number of collisions as a
function of the spatial densityr, Ncollsrd , r2.

Assuming that in the stationary state the power di
sipated through the collisions must balance the pow
adsorbed from the heat bath, one derives the followin
relation between the temperatureTF , the average energy
E, the power dissipated by the collisionsW , andt [13]:

W ­
1
t

sTF 2 2Ed . (4)

Notice that in the absence of collisions (ort ø tc)
TF ­ 2E and W ­ 0 as in the ideal gas. Equation (4)
is well satisfied for different values oft andr.

As we quoted already in the inelastic regime one ob
serves a strong deviation from the Gaussian behavior
the velocity distribution. In Fig. 3 we display the ve-
locity distribution in a nearly elastic case (t ­ 0.01 and
r ­ 0.99) and in a strong inelastic regime (t ­ 100 and
r ­ 0.7). As it is possible to see it exists an evident depa
ture from the Gaussian behavior in the inelastic case, whe
the velocity distribution shows almost exponential tails
The above result is close to that observed in Refs. [8,12

Let us now try to relate the clustering properties o
the system to the velocity distribution. In order to do
that we consider the following quantities: the distributio
of boxes, Nboxsmd, containing a given number,m, of
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FIG. 1. Snapshot of the particle density at a given tim
for TF ­ 1, r ­ 0.6, t ­ 100, N ­ 200, L ­ 200. All
quantities are in arbitrary units. The dashed line represen
the homogeneous density.
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FIG. 2. CsRd againstR for two different choices of parame-
ters:t ­ 100, r ­ 0.6 (top) andt ­ 100, r ­ 0.99 (bottom).
In both casesTF ­ 1, N ­ 200, andL ­ 200. The dimension
takes, respectively, the valuesd2 ­ 0.59 andd2 ­ 1.

particles and the average kinetic energy,Ekinsmd, in a
box occupied bym particles [14]. Making the hypothesis
that in each box the average velocity of the particle
is zero, i.e. kysmdl ­ 0 (very well confirmed by the
numerical data), one finds thatEkinsmd provides a measure
of the variance of the velocity distribution in each box
Ekinsmd . 1

2 ky2smdl ­
1
2 s2smd. We consider first the

nonclusterized case (t ø 1 and r . 1). Within this
regime we find from the simulations that:

s2
elassmd . const, Nelas

box smd ­
lme2m

m!
, (5)

where l ­ NyNdiscr is the average number of particles
in each box andNelas

box smd is a Poisson distribution. By
assuming in each box a Gaussian velocity distributio
with a constant variances2

elassmd it turns out that the
global velocity distributionPelassyd is Gaussian. Let us
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FIG. 3. Rescaled velocity distributionPsyysd againstyys:
crosses are simulation data witht ­ 100, r ­ 0.7, the dashed
line represents toy-model data,3’s are simulation data with
t ­ 0.01 andr ­ 0.99, and the dot-dashed line represents th
Gaussian distribution. In both casesTF ­ 1, N ­ 200, and
L ­ 200.
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recall that the Poisson distribution is the one associat
with a process of putting independentlylN particles into
N boxes.

Let us turn to the nonelastic case. Ift ­ 100 and
r ­ 0.7, considering the occupied boxes (m . 0), we
obtain from the simulations:

s2
inelsmd , m2b , N inel

box smd ­
e2am

m
, (6)

with b . 0.5 anda . 0.14. Let us compute from these
scalings the global velocity distribution. Taking into
account that the spatial probability distribution of the
particles isN inel

box smd and assuming that their local velocity
distribution is Gaussian, but with a variances

2
inelsmd .

m2b which depends on the occupancy, we obtain, fo
the global velocity distributionPinelsyd, which in the
continuum limit should correspond to

Pinelsyd .
X̀

m­1

es2y2mby2de2am. (7)

We stress how it exists an astonishing agreement betwe
the numerical results and the ones obtained with
toy model which just makes the following hypothesis
(i) Non-Poissonian distribution for the box occupancy
(ii) Gaussian distribution of velocities in each box with
a density-dependent variance.

The hypothesis about the scaling relation between t
velocity variance and the local density, apart from be
ing justified numerically, can be understood in the fol
lowing way. The stationarity and the scale invarianc
of the cluster distribution, implies a certain distribution
of lifetimes for the clusters. In particular each cluste
has a lifetime which is inversely proportional to its size
The scale-invariant cluster-size distribution thus implies
scale-invariant distribution for the lifetimes. The cluste
lifetime (its stability) is strictly related to the variance of
the velocity distribution inside the cluster itself. In orde
to ensure the stability of a cluster in a stationary state w
have to require that the velocities of the particles belongin
to it are not too different, or equivalently that the varianc
of the distribution is smaller the higher the density. So
given a scale-invariant distribution of clusters one woul
expect a scale-invariant distribution of variances (6). A
independent check is provided by the behavior of the ave
age relative velocities in boxes with different numbers o
particles. Fort ­ 100 andr ­ 0.7 one obtains

yinel
rel smd , m2g , (8)

with g . 0.3, which indicates that the stability of a clus-
ter is connected with the smallness of the velocity fluctu
ations inside it. In other words, the spatial clusterizatio
corresponds to a clusterization in velocity space.

This analysis shows that in the present model it do
exist a relation between the clustering phenomenon (
physical space or in velocity space) and the non-Gauss
distribution of the velocities.
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A natural question to ask is whether our findings ca
be an artifact of the one dimensional dynamics. Can o
expect to observe the non-Maxwell distribution and th
clusterization even in higher dimensions? In order
clarify such an issue, we consider a different stochas
process. All the particles perform the Brownian motio
described by Eq. (1) iftefKDt, sK 1 1dDtg (whereK is
an integer number), while at the instantstK ­ KDt each
particle may collide with probabilityp with one of those
particles which are spatially close to it according to th
Boltzmann collision-number ansatz (BS).
n
ne
e
to
tic
n

e

In practice we perform the following algorithmà la
Bird [15]: at each discrete timetK for each particle,i,
we extract out of a uniform distribution in the interva
f0, 1g a random numbery. If y . p there is no colli-
sion, otherwise the particlei scatters with another particle
j if jxistK d 2 xjstK dj , l, and their collision probability
is proportional tojyistK d 2 yjstK dj. This process renders
the BS approximation exact; in fact in the limitN ! `,
p ! 0, l ! 0, Dt ! 0 one can write for the stochastic
process described above the following Boltzmann equ
tion for the one particle distributionPsx, y, td [16]:
≠

≠t
P 1

≠

≠x
syPd 2

1
t

≠

≠y
syPd 2

TF

t

≠2

≠y2 P ­
≠

≠t
Pjcoll (9)

≠

≠t
Pjcoll ­

4L

s1 1 rd2

Z
dy0Psx, y0, tdP

√
x,

s2y 2 s1 2 rdy0d
s1 1 rd

, t

!
jy0 2 yj 2 L

Z
dy0Psx, y0, tdPsx, y, tdjy0 2 yj ,

(10)
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where L , pyDt , 1ytc and depends on the mean
particle density.

It is easy to show that in the limit of elastic collisions
sr ­ 1d the velocity distribution becomes Gaussian fo
any value oft, Dt, and p. On the contrary, forr fi 1
an analytical solution is not known.

In order to further clarify the relevance of the dimen
sionality, we have performed some simulations in 2D.
this case we find non-Gaussian tails for the velocity di
tribution, together with clusterization, at large values oft

and strong inelasticity. In 2D the velocities in the colli
sion change according to the following rule:

yistK 1 01d 2 yjstK 1 01d ­ rêfyistK d 2 yjstK dg ,

(11)

where ê is a two-dimensional unit vector of random
orientation. In this case the results are qualitative
similar to the ones obtained in one dimension, i.e.,
large values oft and strong inelasticity the Grassberge
Procaccia dimension is smaller than2 and the velocity
distribution is not Gaussian.

In summary, we introduced a model of granular ga
with inelastic collisions between the particles. The syste
exhibits a variety of regimes ranging from a complete
elastic case without clusterization and Gaussian distrib
tion for the velocities to an inelastic regime with stron
clusterization and non-Gaussian velocity distribution.
this framework we have shown a possible scenario to
late the clustering properties of the system to the veloc
distributions. These results seem promising and give
the hope to be able to perform analytic work based on t
Boltzmann approach in order to clarify further the mode
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