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Henderson [Phys. Rev. A 32, 2336 (1985)] has proposed that the critical exponent for adsorption
should be either y or ¥/2, where 7 is the (bulk) compressibility exponent. It is shown that both re-
sults are artifacts of the mean spherical approximation (MSA) employed by Henderson. The MSA,
and closely related closures of the wall-particle Ornstein-Zernike equation, are essentially linear-
response approximations which neglect nonlinearities that are crucial in critical adsorption, even at
the mean-field level. Our argument is made explicit by re-deriving the correct (Fisher—de Gennes)
exponent v—f3 and illustrating the failings of linearized treatments. Since the latter also fail to
describe complete wetting, their validity is restricted to states well removed from bulk two-phase

coexistence.

In a recent paper Henderson' has argued that the ad-
sorption I' of a near-critical fluid at a wall should diverge
as | T—T,| ™ with an exponent x that is either y or
v/2, where y(~1.24) is the (bulk) compressibility ex-
ponent. Both results differ from the well-known
Fisher—de Gennes? result x =v— 8, where »(~0.63) and
B(=~0.32) are the (bulk) correlation-length and order-
parameter exponents, respectively. Henderson’s argument
is based on a mean spherical approximation (MSA) clo-
sure of the exact wall-particle Ornstein-Zernike equation
in which the adsorbing wall is regarded as the limit of a
giant host particle dissolved in the fluid.>** While such
approximate closures are known to yield results in good
agreement with computer simulations for certain adsorp-
tion problems,*® they fail totally’ in problems which in-
volve complete wetting of the wall-fluid interface. Such
problems include the growth of a (macroscopic) thick film
of liquid at a wall-gas interface and of a thick film of gas
at a wall-liquid interface, as coexistence is approached.
The approximation schemes fail because they are essen-
tially linear-response theories;® they cannot account for
the development of the second (interfacial) phase that is
associated with a second minimum in the grand-potential
density’ w and therefore describe only fluid states that can
be reached by means of linear response about the bulk
fluid, i.e., the first minimum of w. Given this failing it
seems very unlikely that such an approximation scheme
could describe properly the decay of the density profile
and the resulting divergence of I' that occurs when the
two minima coalesce and the two phases merge into a sin-
gle fluid phase at the critical point. Here we show that
this is indeed the case and that Henderson’s approach
predicts erroneous critical exponents which result from
the neglect of crucial nonlinearities that are a fundamen-
tal feature of adsorption in the critical region, even at the
level of mean-field approximation.

Henderson’s results can be written as
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is proportional to the inverse compressibility of the bulk
fluid, and C, C;, and C, are quantities which remain fi-
nite at coexistence (T <T,) and at the critical tempera-
ture T=1T,. Equation (la) is supposed to be appropriate
for wall-fluid potentials with a long decay length whereas
(1b) is appropriate when this potential is shorter ranged.
Since a? vanishes as | T—T, | ¥, Eqs. (1a) and (1b) predict
x =y and ¥/2, respectively. Before discussing the
shortcomings of these results it is instructive to examine
the subcritical adsorption in the limit p —p,, the saturat-
ed vapor pressure (or Lt —»fi,,). For sufficiently high tem-
peratures, but still below T, the wall-gas interface will be
wet completely by a film of liquid and T will diverge as

— | T—T. | 7*PIn( | proar—12 )

provided the wall-fluid potential decays exponentially,'®

as assumed by Henderson. No such divergence is predict-
ed by (1a) or (1b). These can only give a divergent adsorp-
tion at a bulk spinodal,“ i.e., inside the coexistence curve.
Thus, as stated earlier, the approximations fail to account
for complete wetting; they do not incorporate information
about the second phase.’

Turning now to the critical region, it is easy to under-
stand the origin of the | T—T, |~ divergence given by
the second term in (1a). In the wall-particle description

F=Pb fow dz hy(z) ,
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where h.s is the total correlation function for the wall-
fluid correlations and the integration is over the region
outside the wall (z>0). p, is the bulk fluid density. At
the critical point the fluid-fluid correlation function hg is
long ranged so that

Po f drhg~a "~ |T—T, |7

The linear character of the closure approximations en-
sures that h,s exhibits equivalent long-ranged decay, so
that " diverges in the same fashion as the compressibility.
In reality the divergence of I' is much weaker because of
nonlinear effects. We made this argument explicit by
reference to a simple (square-gradient) density-functional
theory of the wall-fluid interface.!%!> Although such
theories cannot describe the oscillations in the density pro-
file near the wall, which arise from short-ranged correla-
tions, this deficiency is not important for wetting or for
critical adsorption both of which are dominated by a slow
decay of the profile at large distances from the wall. The
grand potential functional is

—[Bl f dz +co(p(z)) +®(py,), (2)
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dz
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where & is the total wall surface area and w(p) is the
grand-potential density.’

It is assumed that wall-fluid forces are sufficiently
short ranged that these can be incorporated into a func-
tion @ that depends only on p,, =p(0), the density at the
wall. The equilibrium profile, given by minimization of
(2), satisfies
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with the boundary condition at x =0,
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Equation (3a) has a first integral
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which satisfies the boundary condition in the bulk fluid;
—o(pp)=p, the bulk pressure for given u and T. Given
w(p), Eq. (4) is readily integrated!? to yield z(p). The ad-
sorption

r= [, dzlp(z)—py]

can be expressed as
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For T<T, and p~~pug ¥(p) has two distinct minima.
The first has ¥(p,)=0, correspondmg to the bulk fluid
phase, while the second, 1//(p ), corr&sponds to the other
phase. In the limit |p—pg | —0, ¢(p )—0 and com-
plete wetting occurs if the integration path in (5) passes
through this second minimum.'> As T—T, the minima
coalesce and it is instructive to make a standard, nonclas-
sical, expansion about the critical density p,,

w(p)=w(pc)+£-(p—pc )2

——(p—p 2 —h(p—p,), (6)
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where a'=(3u/0p)r at p=p, and h=p—p., with pg,
the chemical potential at coexistence. &(~4.8) is the usu-
al critical exponent. In mean-field approximation §=3
and b=+ (3%u/3p’); at p=p,. The adsorption then be-
comes
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with p=p—p.. The nature of the critical divergence can

be ascertained by taking # =0 and T—T. Then a’ van-
ishesas | T—T, |Y and
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But pb~|T T.|? and D~ |T—T.| ", where
7(=~0.03) is the exponent!? describing the decay of hg(r)
at T=T,sothat '~ |T—T,| % with

x =[vn+pB(8—3)]/2.

Using the scaling relations y =(8—1)8 and —vp=y—2v
it follows that x =v— 3, the result obtained by Fisher and
de Gennes? from a different scaling argument. In mean-
field approximation 7=0, 6=3, and x =0, implying a
logarithmic divergence of I'. This is confirmed by direct
integration of (5), employing (6) with =3, h =0, and
pp=pc- We find I'~—Ina’, with a'~|T—-T,| in
mean-field approximation. It is well known? that these
characteristic divergences of the adsorption are a conse-
quence of a particular slow decay of the profile to its bulk
value,

(0/2)B” for o0 <<z <<& or T =T,

p(z)—py ~
po e~ % for z >>&,
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where £ is the bulk correlation length and o is a molecular
size. Such decay stems from the term in (p—p,)®*! in (6).
Its origin is rather more transparent in the mean-field
analysis'* of (4) where the quartic term produces a decay
p(z)—pp~0/z.

It is evident that a satisfactory treatment of both wet-
ting and critical adsorption must incorporate a realistic
grand-potential density. However, the MSA and related
closure approximations of the wall-particle Ornstein-
Zernike equation -yield w(p) with only a single minimum
at p=p, for all temperatures.”® The Percus-Yevick
MSA result’ is the parabola

wpy(p)=w(py)+3(p—ps )’ [%;

b

T

which is completely unrealistic. If this were employed in
(5) it would imply I'~1/a, i.e., a result similar to Eq.
(1b). However, the wall-particle approach is not strictly
equivalent to the square-gradient approximation so one
must expect some modifications. In order to illustrate the
deficiencies of an approach which does not include the
quartic (or p®) terms in w(p) we substitute (6) in the equa-
tion of motion (3a)

2~
D—Z;f— —a'5+bpP—h ()

and linearize about the bulk, setting 5lz)=pg; +S(z), so
that

2
%z—§=(a’+8bﬁf;“)s . (©)

The surface free energy @ is often modeled'? by
<l>=Kp2w/2-—hlpw, where h,; represents an incremental
“magnetic” field acting on the surface layer and K is a
strength parameter. Equation (3b) then becomes

ds

Ddz

=K[pp+S(0)]—h, . (10)

z=0
The required solution of (9) and (10) is

(hy—Kpp) e
S(z)= "D +K e ,
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with
Al=(a’'+8bp3~")/D ,

and
I'= fom dz S (z)
is simply
I'=(h;—Kpp)/MAD +K) (11

which can be made to yield two different critical ex-
ponents. If K =0, then

'=h, /DA~ |T-T,|77,

whereas if K50, I diverges as h, /KA or

{ T— Tc | —(y+w)/2 .

Setting 7 =0 we obtain both types of divergence suggested
by Henderson.! Both arise as a result of the linearization
of (8); both are artifacts.

We conclude that the MSA and related closure approxi-
mations are incapable of describing critical-point adsorp-
tion and complete wetting.!> Their validity is restricted to
states that are removed from bulk coexistence and from
the critical point. For supercritical fluids such approxi-
mations might be qualitatively correct. Henderson' sug-
gests that his result x =y /2 is in reasonable agreement
with recent adsorption measurements by Bliimel and Fin-
denegg.'® These authors find x~0.5 which is somewhat
greater than v— 8~0.3, but suggest possible explanations
of the discrepancy. We have shown that there is no
reason to suppose that either x =y or x =y /2 is the
correct critical exponent for adsorption at a single wall.
A proper explanation of the results of Ref. 16 must await
further work.
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