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We report extensive numerical studies on the long-time behavior of a high-dimensional system of cou-
pled symplectic maps as a function of their number N and of the nearest-neighbor coupling strength e.
The system, at a fixed value of ¢, displays regular motion only in a small fraction of the phase space,
whose volume vanishes exponentially with N. Regarding the chaotic motion, we find a scaling behavior
of the mean-square fluctuation o of the maximal Lyapunov exponent about its average value over initial
conditions: o =~(1/N)* where a=0(V’e) . Nevertheless, also for large systems, one observes a very
weak Arnold diffusion, and different trajectories, with a high value of the Lyapunov exponents, maintain
some of their own features for a very long time. Finally, we study the localization properties of the
tangent vector. For chaotic trajectories, at small values of ¢, an initially small perturbation increases
only in a few directions; due to the translational invariance of the system, this behavior may be seen as a
failure of ergodicity and also as a confirmation of the relevance of the Nekhoroshev scenario in high-

dimensional systems.

I. INTRODUCTION

A great deal is known about Hamiltonian systems and
symplectic maps at low dimensionality [1]. In the case of
Hamiltonians with two degrees of freedom, the
Kolmogorov-Arnold-Moser (KAM) tori have dimension
2 and separate different regions of the three-dimensional
surface of constant energy. This fact allows the coex-
istence of disjoint regions characterized by different be-
haviors: in other words, there exist regular and chaotic
regions with various degrees of chaoticity. This situation
is illustrated in oval billiards [2] where, for specific values
of the parameters, up to eight disjoined chaotic regions
coexist, each with its own maximal Lyapunov exponent
(MLE).

When the number of degrees of freedom exceeds three
(or two in the case of maps), the KAM tori cease to
separate the phase space and one can observe, instead,
the phenomenon known as Arnold diffusion [3]. The ex-
istence of such a diffusion has been proved in a variety of
cases. It is common wisdom that the Arnold diffusion is
a generic property of Hamiltonian systems. However, it
is not completely clear how effectively it works as the
number of degrees of freedom, N, varies; e.g., it is not
clear if this diffusion can be responsible, at large N values,
for the quick filling of phase space that would assure the
approach to a canonical ensemble within nonastronomi-
cal time. Some examples of Hamiltonian systems with
N=3 are known in which Arnold diffusion exists, but is
very slow [4]. In fact, there exist classes of initial condi-
tions that originate chaotic trajectories whose long-time
behaviors, as far as they have been determined numerical-
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ly, show different statistical properties, i.e., different
MLE and correlation functions [4].

It is known that a generic Hamiltonian system is nei-
ther completely regular nor completely chaotic [5]; how-
ever, it is not a simple task to determine such features, in
particular in high-dimensional systems. In the present
paper we study the above problem in a system of sym-
plectic maps with many degrees of freedom. The study of
symplectic maps rather than of Hamiltonian systems is
motivated by the major simplicity from the computation-
al point of view, because it avoids the problems of the in-
tegration algorithm. Moreover, since N symplectic maps
can be thought as a Poincaré map of a Hamiltonian sys-
tem with N+1 degrees of freedom, one expects that
many features of symplectic maps also hold in Hamiltoni-
an systems. We consider a system of symplectic coupled
maps of the form

O(n +1)=80(n)+I(n) (mod2mw),
I(n+1)=I(n)+eVF[O(n +1)] (mod2w),

where 6 (the angles)) I (the actions), and
V=(38/06,,...,3/30y) are N-dimensional vectors; n is
the discrete time evolution index.

One can easily convince oneself that the time a trajec-
tory needs to visit a D-dimensional space must grow at
least exponentially with D. Let us divide the space into
cells of linear size € and call 7 the typical time needed to
reach a neighboring cell. Since the number of cells scales
as € D, the time to visit all of them following a random
walk is

(1)

2D

T~71e ““~exp(constXD) .
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In the case of a chaotic motion with some correlation, the
above estimate can be taken as giving, at least, the right
order of magnitude. So, to study the asymptotic behavior
of the system, we follow its evolution for a time, T, that is
finite but large with respect to some suitably defined
characteristic time, and then extrapolate the results at
T — . Since the time necessary to visit a D-dimensional
space is so large, this seems to us the only viable ap-
proach.

In Sec. II we shall introduce the model and discuss the
statistics of the MLE, A, on varying the initial conditions
as a function of € and N. One observes that the probabili-
ty of finding a regular zone (i.e., A=~0) decreases exponen-
tially with N. However, although at large N almost all
the trajectories show a chaotic behavior, they maintain
different values for the MLE. Practically at fixed €e and N
we observe that the histogram of A, obtained following
many trajectories starting from different initial condi-
tions, has a finite variance 0. As N — o« we have 0 —0,
i.e., the system reaches a unique chaotic phase; neverthe-
less, one observes that for small € this trend is very slow.
The most probable value of the MLE, that is, the A where
the histogram attains its maximum, is close to the A ob-
tained with a random-matrices approximation. In Sec.
III we discuss the localization properties of the tangent
vectors, showing how these features can give nontrivial
indication on the ergodicity of the system. In Sec. IV the
reader may find some final remarks and a discussion of
the numerical results.

II. THE DISTRIBUTION OF THE MAXIMAL
LYAPUNOV EXPONENTS

Let us consider the following system of coupled maps:
6,(n +1)=06;(n)+I;(n) (mod2mw),
L(n +1)=I,(n)+€V,F(8(n +1)) (mod2w),

(2)

86,(n +1)=80,(n)+8I,(n)
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where i=1,2,...,N; we consider periodic boundary
conditions: Oy ,=6,, Iy;=1,, and nearest-neighbour
coupling:

N
F(Q): 2 COS(O,-_H—B,-) . (3)

i=1

The system represented by Eq. (2) is symplectic because
its evolution law is given by the canonical transformation
whose generator & is

N N
SO, 1= 6I,—1 3 I?+€F(@),
i—1

i=1
through the relations

o= 35 5._3S

ar,” ' ae;

if 9=0(n), I=1I(n), 8=0(n +1), and I'=I(n+1). One
can interpret the variables ; and I; as canonical coordi-
nates that describe the evolution at discrete time intervals
of a Hamiltonian system. Moreover one can see the map
(2) as the Poincaré section of a Hamiltonian system with
N+1 degrees of freedom. When the coupling constant €
vanishes, the system is integrable, and €F(8) plays the
role of the nonintegrable perturbation of the Hamiltoni-
an.

Some insight on the chaotic properties of a trajectory
can be obtained by considering the MLE [6], A, for which
we have to introduce the evolution law for the tangent
vectors:

8I;(n +1)=06I,(n)+efcos[0;(n +1)—6; . {(n +1)][86; y (n +1)—86,(n +1)]

+cos[0;(n +1)— 6, _(n +1)][86,_,(n +1)—86,(n +1)]} . @)

We perform the statistics of the MLE, at fixed € and N,
following W >>1 trajectories with randomly chosen initial
values of the 6; in the interval (0,27) and initial values of
I; in the interval (—,7). For each trajectory we com-
pute the quantity
1. N [86UT)+8IXT)]
A( T)=2—Tlnz ~ (5)
=13 [867(0)+817(0)]

i=1

and produce a A histogram. The maximum integration
time T, i.e., the number of iterations applied to the evolu-
tion equations, varies with € and was chosen to be = 10*
times the characteristic time of the system, defined as the
inverse of A,: the maximal Lyapunov exponent extracted
from the position of the peak of the histogram.

f

For €=0 the system is completely regular and conse-
quently A=0 for any initial condition. The numerical
computations show that for €70 the probability of
finding regular zones, i.e., the fraction of A=~0, decreases
exponentially as NV grows. In Fig. 1 we show the behavior
of Py, the fraction of the MLE such that A < =0.002, as
N varies, for the two cases €=0.025 and €=0.050. We
find

Py=~exp(—yN) (6)

and y increases with €; in the cases of Fig. 1, one has
7(€=0.025)=~0.05 and y(e=0.05)=~0.15. The above
values of ¥ turn out to be rather robust with respect to
variations of the cutoff value of A.

This kind of exponential decay has been observed also
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FIG. 1. The fraction of maximal Lyapunov exponents small-
er than 0.002 as a function of N for (a) €=0.025 and (b)
€=0.050. T =10° and N="500.

in systems with two coupling constants [7], i.e., an array
of two-dimensional maps that have nonzero probability
to display chaotic motion, even in the absence of interac-
tion among them. In the present case, it is not possible to
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repeat the simple argument introduced for the explana-
tion of the above systems, nevertheless it is not difficult to
give a heuristic explanation of the result (6). The primary
resonances of system (2), with the coupling (3), occur
when

I, . ,(0)—I;(0)=0 or I;,{(0)—I;(0)==%tm; (7
in order to have a regular motion one has to avoid the
resonance condition (7), for i =1,2,...,N. If we take all
the I,(0) uniformally distributed in the interval (—r,7),
the probability to have no resonance is (1—y )N=~e ~7V if
v is the probability to have a single resonance.

The above result [i.e., Eq. (6)] seems to be in agreement
with the common wisdom that Hamiltonian (or symplec-
tic) systems with a large number of degrees of freedom
are generically chaotic. However, the analysis of the his-
togram of the MLE as a function of N and € reveals a
nontrivial scenario. The typical behavior of the histo-
gram of A, at a fixed value of €, is shown in the sequence
of Fig. 2, where one can see how p, the density of proba-
bility of the A, changes with N. As N increases, the regu-
lar zones (with A=0) disappear and the position of the
peak of the histogram reaches an asymptotic value. The
value of the most probable MLE (obtained from the posi-
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FIG. 2. Probability density of the maximal Lyapunov exponents for e=0.025 and (a) N=10, (b) N=40, (c) N=280, and (d) N=200.

T =10° and V' ="500.
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tion of the peak of the histogram) for N >>1 is well fitted
by

Ap(e,N)=kas(e)+% (a<0) . 8)

The probability of finding A7A,, at fixed € goes to zero
as the number of oscillators increases. However the sys-
tems with € and N fixed do not appear to approach a
unique ergodic phase, at least on the present scales of ob-
servation times. In Fig. 3 we show the typical relative
fluctuation, as a function of 1/7, of the A about {A) =kp,
ie, o=({A2—(A1)?))/V2(1). We fitted the above be-
havior with the law

a(e,N,T)=aas(e,N)+% (b>0) . ©)

The results of the extrapolations, o, as a function of N,
are reported in Fig. 4 for different values of €. All the
data are well fitted by

0,6, N)=(1/N)*¢ . (10)

From Fig. 5, which shows a vs €, one gets some evidence
for the following scaling relation:

ax<Ve. (11)

The above results show that, for a fixed €, if N is large
enough practically all the trajectories are chaotic, but
there is no evidence for a unique chaotic region: at least
for those times satisfying our criterion of largeness, the
trajectories preserve some memory of the initial condi-
tions.

We want to stress that this behavior cannot be ex-
plained in terms of perturbative methods in the limit of
quasi-integrability, i.e., when the chaotic regions have
very small probability. On the contrary, in our case al-
most all the trajectories have a positive MLE, even if the
values of the MLE depend on the initial conditions.
Moreover, let us observe that in spite of this apparent
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FIG. 3. Relative mean fluctuation of the maximal Lyapunov
exponents around their mean value, as function of 1/T, for
€=0.050 and N=80. N=500.
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“nonergodicity” the most probable value of the MLE is
close to the MLE obtained by making use of the so-called
random matrices approximations [8]. In this approxima-
tion the variables (68(n),81(n)) evolve according to Eq.
(4) by assigning to each 6;(n) random values, uniformly
distributed in the interval [0,27] and independently
chosen at each step. In Fig. 6 we display the asymptotic
value A, of kp( €,N) for N— o, versus € together with
the MLE that is obtained, for each €, with the random
matrices approximation that gives A « €2/3 [8].

This shows clearly that while the trajectories have to
be considered very chaotic, nevertheless they maintain
some of their own peculiarities (e.g., different values of
the MLE). From Fig. 4 and Eq. (8) one sees that at a
fixed value of € a single chaotic phase is reached as N in-
creases. However, for small values of the coupling con-
stant € the tendency to a unique chaotic phase is very
slow.
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III. LOCALIZATION PROPERTIES
IN THE TANGENT SPACE

In this section we discuss the localization properties of
the tangent vector (88(n),8I1(n)). The spatial structure
of the tangent vector may be relevant for understanding
some features of dynamical systems. See, for instance,
Ref. [9] for an application to a cascade model of three-
dimensional turbulence. Let us introduce the following
auxiliary quantities:

zX(n)=[86,(n)*+8I,(n)*]/c(n) ,
(12)

N
= 3 [86,(n)*+8I,(n)*],

i=1

and
z“,-f(n)=711— 2 22k . (13)

We have chosen the normalization
N N
3 zAn)=3 zXn)=1
i=1 i=1
since we are now interested in the “‘spatial” structure of
z? and z7 £ (i.e., their dependence on i). A possible way to
characterlze the instantaneous and the average localiza-
tion properties is by defining the following entropylike
functions:
Hi(n)=— 2 z2(n)nzX(n) ,
=1
‘ (14)

H,/ (n)=— 2 (m)nzX(n) ,
i=1

Similar quantities have been previously introduced in the
study of the equipartition problem in chains of nonlinear
oscillators, with the aim of getting information on the
spreading of the energy among the modes [10], and in
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other problems (quantum chaos [11]). Let us introduce

N&(n)=exp[H,(n)], 1)
5

N g(n)=exp[H 4(n)],

whose meaning is well evident: N g(n) is the number of
maps “really chaotic,” i.e., those that give substantial
contribution to the tangent vector (66,61 ).

Mainly we observe three different kinds of behavior:
(a) at small values of €, for the trajectories with A~0 one
has H;~H ,~InN, i.e., there is a delocalization in the
tangent space; (b) at small values of ¢, for the chaotic tra-
jectories one has H;~H , <<InN, i.e., one has both in-
stantaneous and average localization; (c) at large values
of €, one has H; <<InN but H 4 =InN, i.e., there is an in-
stantaneous localization with an average delocalization.
Examples of these behaviors are shown in Fig. 7 and 8.

The features of z*(n) [and of H;(n)] can be understood
following the argument put forward in Ref. [12]. Practi-
cally one can show that (86;(n),8I;(n)) obeys an equa-
tion very similar to a stationary Schrodinger equation on
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a two-dimensional lattice [13], in a potential given by the
dynamics of the system (2). The instantaneous localiza-
tion (delocalization) is the sign of the localization (delo-
calization) of the wave function in the random (periodic)
potential that one obtains when the dynamics is chaotic
(regular). For the chaotic motions the instantaneous lo-
calization does not seem to correspond to some relevant
feature.

On the contrary the average localization can be viewed
as the signal in the tangent space that ergodicity is bro-
ken. We use here “broken ergodicity” in the sense of
Ref. [14]. Indeed, let us note that in the absence of bro-
ken ergodicity, because of the translational invariance of
the model, one expects that

Fm=~
i.e., Ng(n)=N for very large value of n. For small value
of € we observe N 4(n) <<N, i.e., the chaotic motion, in
some sense, is localized on a small fraction of the maps.
Some similar features of localization in the tangent space
have been observed in other systems too [15]. However,
in such systems there is no translational invariance,
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therefore the localization cannot be interpreted, as in our
case, as a signature of a broken ergodicity. We want to
stress that also in a system of coupled rotators [16], with
continuous time, some phenomena of chaos localized on
few rotators have been observed.

Let us observe that when case (b) takes place we have
also that

cos(6; 4 ,—6;)¥0 (16)

for some of the i for which the time equation (7) holds.
Nevertheless, the position of such resonances [i.e., the i
such that Eq. (7) and (16) hold] does not seem in
correspondence with the position of the peaks of the z_,z

Unfortunately at fixed value of €, N 4 depends on the
initial conditions, so that it is difficult to give an estima-
tion of its behavior as a function of e.

IV. DISCUSSION AND REMARKS
ON THE NUMERICAL RESULTS

In this section we shall discuss in some detail the nu-
merical results that were reported in the preceding sec-
tions.
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FIG. 8. z%;(n) vs i for N=100 and €=0.05: (a) n =0.5X 105, (b) n=1.0X 105, (c) n =1.5X 10%, and (d) n =2.0X 10°.
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First of all we stress that the nontrivial dependence of
the MLE on the initial conditions is a property complete-
ly different from the fluctuations in time of the effective
Lyapunov exponent, computed along a trajectory. The
latter aspect of the question, for high-dimensional sym-
plectic maps, has been studied in Ref. [17]. In Fig. 9 we
show the time behavior of the MLE, computed for
different initial conditions, for times very much larger
than those used to get the histograms. One can see that
after a time O (10°) up to the time 2 X 10%, the differences
due to the different initial conditions are much larger
than the fluctuations along each trajectory. This is a
clear indication that, in very large systems too, the Ar-
nold diffusion could be very slow, and that the histo-
grams of Sec. II are realistic representation of the situa-
tion for much larger times. Let us note that, while the
most probable value of the MLE of a large system
(N =100-500) with a small € is in reasonable agreement
with the random matrices approximation, the same sys-
tem seems almost nonchaotic with respect to other prop-
erties. For instance, there are some indications that each
trajectory needs a very long time to “forget” its initial
condition and to invade a reasonable part of the phase
space. In Fig. 10, which shows N4 vs n up to n =2X 105,
for different initial conditions, one may observe a tenden-
cy to saturation or a very slow growth.

Another way to put in evidence this very slow relaxa-
tion may be obtained by the examination of a quantity re-
lated to the overlap with the initial conditions. This ap-
proach follows the spin-glass theory [18]. A possible
function measuring the overlap between the state at time
n and the state at time O is the following:

1 < 1 X
Cln)=— — > fU(k)—I1;(0) |, an
A k=(§—A) N igl

where f(x) is a periodic function decreasing in the inter-
val [0,7/2], flO)=1, and f(&w/2+x)=—f(7/2—x).
When I;(n)=1,(0) (e.g., for e=0), that is to say I,(n) and
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FIG. 9. A vs T for N=100 and €=0.05, with different initial
conditions. Figure 8 corresponds to curve a.
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I;(0) are exactly overlapping, one has C(n)=1. On the
contrary, if I;(n) and I,(0) are completely uncorrelated,
one has C(n)=0. The time average on an interval A
around n has been introduced in order to smooth the
short-time fluctuations. In the computations shown here
we have used f(x)=cos(x) and A=103% however, the re-
sults do not depend very much on the details of f(x) and
the value of A. One expects that (apart from small fluc-
tuations) C(n) is a decreasing function of #n; an estimate
of the time that is necessary for a good exploration of the
phase space may be given by the characteristic time n*
such that C(n*)=0.

In Fig. 11 we show C(n) vs n for different initial condi-
tions, in the case €=0.05. The very slow decreasing of
C(n) is well evident and it is very difficult to give an esti-
mate of n*; a tentative rough extrapolation would give
n*>0(10"). Note that the typical time given by the
MLE, i.e., t; =1/, is O(10), which is <<n*.
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FIG. 11. Cvs n for N=100 and €=0.05, with different initial
conditions.
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The existence, at low values of the coupling constant,
of characteristic times much larger than ¢, has been
stressed also in the study of diffusion properties of system
(2), (3), without the periodicity condition on the actions
[19], confirming the relevance of the Nekhoroshev
scenario [20] also in high-dimensional systems with a
non-negligible coupling constant [21].
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