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We discuss the static and kinetic properties of a Ginzburg-Landau spherically symmédt)c nxdel
recently introducedU. Marini Bettolo Marconi and A. Crisanti, Phys. Rev. Letb, 2168(1995] in order to
generalize the so-called phase field model of Lariggev. Mod. Phys52, 1 (1980; Science243 1150
(1989 ]. The Hamiltonian contains two ®) invariant fields¢ andU bilinearly coupled. The order parameter
field ¢ evolves according to a nonconserved dynamics, whereas the diffusivdJfiedtlows a conserved
dynamics. In the limitN— we obtain an exact solution, which displays an interesting kinetic behavior
characterized by three different growth regimes. In the early regime the system displays normal scaling and the
average domain size grows #€; in the intermediate regime one observes a finite wave-vector instability,
which is related to the Mullins-Sekerka instability; finally, in the late stage the structure function has a
multiscaling behavior, while the domain size growst#$ [S1063-651X%96)06606-4

PACS numbgs): 05.70.Ln, 64.60.Ht, 81.10.Fq, 82.20.Mj

[. INTRODUCTION separation process, because the material has to be transported
via diffusion through the system before being added to a
When a system described by an order parameter, initiallgrowing region. The value of the dynamical exponeris
placed into a high-temperature single phase region of itg=2 for NCOP dynamics, whereas for conserved dynamics
phase diagram, is brought to a point inside the coexistenciéis z=3 for a scalar order parameter and 4 for a vector
curve by a sudden change of temperature it becomes thermorder parameter, indicating that conservation laws play an
dynamically unstable and phase separates as a result of tiaportant role in the dynamic process.
existence of many competing ground states. After the quench While COP and NCOP dynamics have been widely stud-
the system can order kinetically through either nucleation ofed, the phase field modgB], which describes the coupling
spinodal decomposition. In the latter process a microscopiof a NCOP system with a diffusive COP field such as tem-
long-wavelength fluctuation initially present is amplified and perature or concentration, seems not to have been completely
determines the formation and evolution of various patterngxplored, in spite of the fact that it displays a variety of
characterized by the presence of a universal length scalateresting peculiar features. To mention only the most strik-
L(t), associated with the typical domain size and separatioing of these, we recall that the phase field model accounts for
among topological defects. As the system orde(s) grows  the regularity of the shapes observed during the growth of
in time in a power-law fashion*? and the time-dependent crystals into a supercooled melt. According to the phase field
structure factoiC(k,t) displays dynamical scaling. model, a planar solid front growing in the supercooled liquid
A successful approach to the study of these phenomena ighdergoes the so-called Mullins-Sekerka instability. This
represented by the time-dependent Ginzburg-Landau equ@ahenomenon can be understood as follows. The latent heat,
tion. Many years ago Hohenberg and Halpéfihprovided a  released when the liquid freezes, is diffused into the colder
useful classification of the various models, which comprisediquid and thus promotes the freezing of more material. The
a vast class of dynamic critical phenomena, in terms of fewarger the temperature gradient the faster is the advancement
parameters. Within their scheme two models have received ef the front. Now, imagine slightly perturbing the isothermal
great deal of attention: modal, where a single field evolves flat solid-liquid interface in a slowly varying fashion. As a
towards equilibrium with nonconserved order parameteresult of the deformation, the temperature gradient will be
(NCOP dynamics, and modd3, where the order parameter larger on the bulges of such a boundary and thus the heat
is conservedCOB) [2]. flux. This makes a solid tip grow faster than a flat portion of
The NCOP dynamics is aimed to describe an orderingnterface and provides a mechanism by which perturbation of
process similar to that of the Ising model with conventionala finite wavelength is amplified, as discovered by Mullins
Monte Carlo spin flip dynamics, while COP dynamics ac-and Sekerka4,5].
counts for the approach to equilibrium of an alloy. In this In a recent Letter [6] we have introduced an
case, one observes that the system orders by growing dropl-component version of the phase field model in order to
lets larger than a critical size at the expenses of smaller drogstudy the evolution of a nonconserved order parameier
lets, while keeping the total amount of material fixed. Thebilinearly coupled to a conserved field. In the limit
effect of the conservation law is to slow down the phaseN—o we were able to obtain some analytical results on the
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nonequilibrium relaxation behavior of the model. Here wethe first-order transition. Botk, andD are assumed to be

expand these results. equal in the two phases. The evolution of the order parameter
The model, inspired by mod& [1], displays several in- is determined by the nonlinear time-dependent equation of

teresting features: the evolution of the vector figlds non-  the Ginzburg-Landau typ8—10]:

conserved in the early regime and then after a crossover time

it develops an instability at finite wavelength due to the cou-

pling with the conserved fieltd. In the very late regime the IP(X,t) __ FLé.u]

COP behavior eventually becomes dominant @nshows a at Sd(x,1) '

genuine COP evolution, including multiscaling. A similar ) 3

mechanism was reported by Somoza and Sffjin a nu- =-—TI[-V¢+ré¢+geo+aul. @

merical study of modelC, where they observed that, not-

withstanding, the nonconserved field evolves faster than the, yescribe a two-phase system the formFols chosen to
conserved field. For late times the growth is driven by diffu-po 4 4ouble well for <0. The coupling to the thermal field
sion of the conserved variable and the order parameter be; .. create an unbalance in such a way that for negative

comes slaved by the diffusive field. - .
The paper isyorganized as follows. In Sec. Il we give avalues ofau the liquid phase ¢~ — y—r/g) is metastable

brief physical motivation of the model. The equations defin-With respect to the solid¢~+ y—r/g). In the absence of

ing the model are given in Sec. IIl and its equilibrium and coupling to the temperature field, i.ex=0, Eq.(2) repre-
dynamical properties are discussed in Secs. IV and V, resents the familiar Cahn-Allen equation, also called model
spectively. Finally, Sec. VI contains a brief summary of theA. The process contains two stages: during the first stage the

results and discussions. solid grows at the expenses of the liquid, while in the second
stage the total amount of solid is nearly constant and the
[l. MOTIVATION OF THE MODEL growth is limited by diffusion of the thermal field.

Interestingly, the two dynamical equatiofls and(2) can
derived from a Lyapounov function&l, which plays the
role of the time-dependent Ginzburg-Landau potential in the
present problem. If one performs the transformation
U=u— ¢ and eliminates in favor of the new fieldJ, one
can write Eqs(1) and(2) as

The model we discuss in the present paper belongs to tf}g:e
family of O(N) spherical models and it has been introduced
[6] with the aim of studying exactly the coupling of a NCOP
field with a diffusive COP field. The Q) generalization
proves to be fruitful because, while retaining the salient fea
tures of the phenomena occurring during the diffusion lim-
ited growth, it allows for some analytical results in the limit

N— oo, dd(x,t) OF
Historically, models containing couplings quadratic with o Sp(x.t) |’ @)
respect to the material NCOP fieltland linear with respect
to the COP diffusive thermal field were introduced as early
as the 1970’s in the framework of the dynamical critical JUxt) D_, 6F
phenomena and named mode€lsLater, Langer, in order to i SU(x,t) ¢’ )

study first-order phase transitions accompanied by latent heat
of fusion, put forth the so-called phase field mog&], in ) )
which the coupling was assumed to be bilinear with respec/ith the Lyapounov functional
to the two fields.
The material is characterized by an order parameier
which assumes a positive value in the solid phase and & ¢,U]= d9x
negative value in the liquid phase. The local temperature of
the system is treated as an additional dynamical field obeying 6)
a heat diffusion equation in the presence of sources repre-
sented by the amount of material changing phase. The solidiFhe functionalF has two equal minima when the tempera-
fication takes place adiabatically so that no heat can flow teure field vanishes, i.e., fdd=— ¢, and generates a com-
the outside. One defines the dimensionless temperature fiejflex dynamical behavior, which has been the object of some
asu(x,t)=cp[T(x,t) =Tyl/L, whereL is the latent heat of studies. However, its global properties are not so well
fusion per mole,c, is the specific molar heat at constant known. This leads us to formulate an IgY invariant vecto-
pressure, and, is the bulk melting temperature. The spatial rial generalization of the above model. This kind of model,
average ol at the initial time is the so-called undercooling in fact, lends itself to nearly analytical solutions, thus pro-
parameted and is a negative quantity. viding useful insights on the properties of the scalar order
The thermal field diffuses according to the modified Fou-parameter solutions.
rier equation

1 r g a
§(V¢)2+ §¢2+ Z¢4+ + E(U+¢)2}.

Ju(x,t)
at

dp(x,t) D lll. THE O (N) MODEL
ot

=DV?u(x,t)+

We shall consider a system described by two coupled
whereD is the thermal diffusivity and the last term on the N-component vector fieldgh=(¢,(X,t), . .. ,¢n(X,t)) and
right-hand side is the amount of material that crystallizes pet=(U(x,t), ... ,Un(X,t)), whose Hamiltonian can be rep-
unit time and is thus proportional to the heat released duringesented by11,9]
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E(Vd))z Myu(k,t)=—T Wk (16)
2

HEg00, Uk [ %
The quantityS(t) is the integratedp-structure function

+ L¢2+ i(¢2)2+ (Y Mu¢}

2 4N 2 '

(6)

wherer andg, with g>0 andw>0, are the standard qua-
dratic and quartic couplings of the Ginzburg-Landau model
and the last term represents a bilinear coupling between the
field ¢p andU. The first three terms in E@6) constitute the and the integral contains a phenomenological momentum
familiar Ginzburg-Landau-Wilson Hamiltonian describing cutoff A. The average is over the external noisgand &

an ON) ¢* model, whereas the last two terms represent thend initial conditions.

interaction between the order parameter field and an external To study the behavior at finite temperatdreit is useful

1 N
S0 = 2, (26D alXD)

[ d%
—fw<¢a(k,t)¢a(—k,t)> (17

fluctuating fieldU. to introduce the equations of motion for the three equal-time
We assume that the fieleh evolves according to NCOP real-space connected correlation  function§ ,,(r,t)
dynamics: =(do(R+1,1)P(R,1)), Cuu(r,t) =(d(R+1,1)U,(R1)),
andCyy(r,t)=(U(R+r,t)U,(R,t)), whose Fourier trans-
dPa(X,1) 6 7) forms are the structure functions. These correlations are in-

P —F¢WH[¢,U]+ N4(X,1),

dependent of the index due to the internal symmetry. In

] ) ) the N—oo limit the structure functions evolve according to
whereas the field) is conserved and relaxes according to  the set of equations

AU ,(x,t) ) 14
— =I'yVv —5Ua(x,t)H[¢'U]+§a(X't)' €) EECW(k,t):M¢¢(k,t)C¢¢(k,t)+M¢U(k,t)C¢U(k,t)
The noises appearing on the right-hand sides of Etjsand +T 4Ty, (18
(8) have zero average and two-point correlations:
! ! — ! ! 07
(72X 7(X" 1)) =2 Tl 404 gS(X=X") S(t=1"), (9) —:Cau(k=Myy(k)C (k) +[Muyy(k,t)
S ELXE))Y=—2T b, sV28(x—x")8(t—t"),
<§ ( )gﬁ( )> flu B ( ) ( 210) + M¢¢(k7t)]c¢u(k=t),
(Ta(XDERXC 1)) =0 1y FMaulOCuulle), (19
. . —_— 19
whereTy is the temperature of the final equilibrium state and = 7 ~ | -y = M (K C (K1) + Mo (K DCr (K.t
I'y andT', are the kinetic coefficients. 2 ot cuulke )=Muglk)Couk )+ Muy (k) Cuu kit
Introducing the Fourier components of the fields, one can 2
write the evolution equation as +LyTek" (20
IPa(Kit) In what follows we shall be more interested in the behavior
— Q- Fa(k)+ 7.k t), (12)  of the field ¢, since it is the relevant order parameter of the
system.
U kt)
T=Fu(k)+§a(k,t), (13 IV. EQUILIBRIUM PROPERTIES

i i In this section we investigate the equilibrium properties of
whereF, y are the Fourier transforms of the first term on the, o model(12) and (13). It can be shown that the random
right-hand sides of Eqd7) and(8). In the limit N—c the  ,q0ess characterized by the Langevin equatiths(13)
cubic term entering inté-, can be decoupled and we have gpeys detailed balance since the following “potential condi-

@ tions,” analogous to the Onsager relations, are fulfill&d]:
F30K) =M yy(K,D) da(k ) +M gy (k, DU (K ), (14) 9 9 L]

Fa(K) =My g(k D) da(k, ) + Myu(k DU (KD, (15 T‘(k)pg(—m: Wik/ﬁ(‘k)* 21)
where the matrix elements are given by
M 4g(k,t)= =T 4[K*+r+gS(t)], %Fﬁ(—k%r%—izm%(—k), (22)
M gu(k,t)=—T 4u, K 2

BBk T par__
MUq}(k,t):_Fuﬂkz. 5Ua(k)FU( k') = K2 6UB(kI)FU( K). (23
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If detailed balance holds, the stationary probability density The other equilibrium correlation functions can also be
reads obtained from the stationary equilibrium distribution and
read forT>T,

1
Ps{¢,U]=NeXD(—T—fH[¢,U]>, (24) .
Cuu(k)= 212 =1, (30
- +r+
where N is a normalization constant. W p (K0S
The equilibrium probability density is quadratic in the T
field U; therefore, as far as the static properties¢pfare Cyu(k)=— ® . f —. (31)
involved, the fieldU can be traced out. One is then left with ¢ W/ ke +r+9S.— plw

an effective Hamiltonian for the fielg:
Note that bothC (k) andCyy(k) are singular fok— 0.

1 5 Vet , O 22 We conclude by noting that to obtain the static structure

E(V‘/’) + 74’ + mw’ )?ls (29 functions from the dynamical equations one has to supple-
ment the requirement that the right-hand sides of Et)—

wherer4=r — u?/w is the “renormalized mass.” The im- (20) vanish with the stronger condition

portance of the fieldJ can be fully appreciated only in the

nonequilibrium dynamics of the system, as will be discussed lIM[ My 4(K,t)C4(K, 1) +Myy(K,t)Cyy(k,t)]=0, (32)

Heff[(b]:f dx

in Sec. V. t—eo
Before considering the dynamics, we briefly discuss the
static properties of this model. Unlike the case wherdihe im[M 4 4(K, 1) Cyu(k, )+ Myyu(k,H)Cyy((k,t)]=0  (33)

guenched[13], the system displays for space dimensions t—=

d>2 an order-disorder transition whén is lower than the

critical temperaturd . In order to locate the critical surface to ensure that the equilibrium properties of the model are
T;=T.(r,g,u,w) one considers the long-range behavior ofindependent on the kinetic coefficierﬂg, andI'y . The con-
the structure function§ ,,(k), which can be computed from ditions (32) and (33) can also be deduced from the equilib-
(25). The fourth-order term makes the calculation difficult rium properties of the modébee the Appendijx

for finite N. However, forN—o we can use the Hartree

approximation, exact in this limit, and we readily obtain for V. DYNAMICAL PROPERTIES
T>T
¢ Since the behavior &t;=0 is representative of the entire
T dynamics in the ordered phase wh&ép<T., we shall ne-
Cop(k)= k°+r+9S.— u’/w’ (26)  glect the noise terms in the following analy$. For gen-
eral initial conditions the two fields are not in equilibrium
ddk and we may expect that the relaxation ¢fis only slightly
= jk<AWC¢¢(k). (27)  modified by the external field). Since the dynamics df is

sufficiently slow compared to that ap, the presence of)
does not modify qualitatively the NCOP behavior ¢f In
particular, the size of the domains ¢f should grow with a
Gharacteristic length_(t) ~t¥2, while the maximum of the
structure factor is located &t=0 and should increase in time

For T;=<T. the structure function diverges at smialbecause
the full mass ternr +gS,— u?/w vanishes, signaling the
appearance of the ordered phase. In fact, the model f
r<w?/w and g>0 displays a high-temperature paramag-
netic phase and a low-temperature ordered phase. Th¥
critical temperature is given by the usual form of the
¢* theory T.=(u?/w—r)(d—2)/(gA% ?K4) with 1/Kg4
=2792I'(d/2), wherel'(x) is the gamma function.

For temperature$; below T, there exists a nonvanishing
order parameteM = (¢,), which can be assumed to be di-
rected along thex=1 direction without loss of generality.
The (N—1) components of the correlation function orthogo-
nal to the order parameter direction diverge at srkalte- A simpl vsis of th i f motion fol oo
flecting the existence of Nambu-Goldstone modes, i.e., exci-. simpie analysis of the equation of motion bF—=e
tations of vanishing energy cost in the long-wavelength limit. 9'VeS the scaling of the crossover time with the coupling

The real-space two-point correlation function takes the formICnOgnSStanw' Indeed it is simple to see that making the rescal-

ith the powert9?,

This kind of behavior persists until the domain size
reaches the typical length associated with the figldnd is
given by the maximum of the structure functionldf At this
stage the dynamics ap slows down because the coupling
with the conserved fieldJ introduces an additional con-
straint on the dynamics ap. For longer times the two fields
equilibrate and the COP behavior eventually becomes domi-
nant.

(N da(r))=M28,,+S.(1), 28
<¢ ( )d’ ( )> 1 ( ) ( ) t/J,2—>t, k/,u—>k, U/,LL—>U, r/M_>r,
Mz__l A T 29 d-1

"3 r— T.) (29) g/u® =g, Alu—A, (34

where S,,, defined in Eq.(27), comes from the transverse the parameter disappears from the equations of motion for
components only. dp=¢,andU=U,:
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0.002 T T T T T T T T T

1%
St =T [k +1+gSt)]e(k,t) ~T yuU(k,1),
(35 0.0015

0.001
%U(k,t) =—Tyuk?p(kt)—Tywk?®U(k,t). (36)

0.0005

As a consequence, the crossover time scales &% Hrom
this analysis it follows that if the dynamics &f is suffi-
ciently slow, then for &t<1/u? the field ¢ exhibits a
NCOP behavior while fot>1/u? a COP behavior. If the
dynamics ofU becomes too fast the first NCOP behavior
shrinks and becomes hardly observable.

This scenario can be confirmed by solving the equations
of motion (35) and (36) in a quasilinear approximation. To
this end we assume that

@,(0 0

-0.0005

-0.001

-0.0015

-0.002 . L L
0 001 002 003 004 005 006 007 008 009 0.1

R(t)=r+gS(t) (37 «

is slowly varying in time, so that it can be considered con- FIG. 1. Dispersion relatiow , (k) in the early regime and in the

stant over successive intervals of time. In other words, Wéate regime. Both quantities are plotted in arbitrary units. Notice the

. - . - . . different long-wavelength behavior in the tw: . irst i
make a piecewise linearization of the equation of motion 9 9 0 cases. The first is

along the trajectory. In spite of that, the approximation istyplcal of NCOP dynamics, whereas the second characterizes COP

sufficient to identify the different regimes of the relaxation ynamics
process.

2
If we neglect the time dependence Rft) and assume it w+(k)=F¢|R|— F¢_FU“_) k2+O(k%). (40)
to be nearly constant, Eq§35) and (36) become a linear IR|
system whose solution has the form . )
A brief calculation reveals that
p(k,t)=c,(kje*+®itc  (kjer-r, u
Cy=p(k,0)+ rYKO+ O(k?), (41)
U(k,t)=c(k)e®+ W+ ¢ (k)ee- 0, (39
wherew . (k) andw_(k) are the eigenvalues of thd ma- cj=% o(k,0)+ %U(k,O) kK>+0(k%Y. (42
trix, 4

Therefore, assuming ¢(k,0)+ (u«/R)U(k,0)=0(1) for
w. (K)= %[—F¢,(k2+R)—FkaZ k—0, the c_oel_‘fici(_ent:g(k) is finite for k—0, while ¢ (K)
vanishes, indicating that the amplitudes of the longest-
wavelength components &f ar r h n-
. \/[F¢(k2+R)+Fuwk2]2+4l“¢l“u,u2k2]. servatior? h o p are decreased due to the co
(39 As a consequence, belowl. the structure factor
C,q(k,t) develops a peak centeredkat O, growing in time
For timet>1 the dynamical behavior of the solution is de- as a power oft. The structure function<,,(k,t) and
termined by the larger eigenvalue, (k). For largek?, the  Cyy(k,t) also develop a peak, centered at a finite value of
eigenvalue w, (k) decreases proportionally te-k?> and  k, say,k, as a result of the competing effect between the
hence large momenta are exponentially damped. Moreovek, dependence of the exponential factor [exp(k)t] and the
we see that, (k) is a function ofk?, which has either an amplitudec(;(k); see Eq(42). This mechanism selects a set
extremum ak=0 or a single maximum fok=0, as one can of exponentially growingd modes with wave vectors in a
verify by inspecting the smakl- behavior of w (k). The certain range centered aroukg, whose dependence on the
behavior ofw+ (k) is shown in Fig. 1 fot<r; andt> ;. coupling u is shown in Fig. 2. Such modes represent an
The crossover time; is defined as the time when the fastestinhomogeneity of th&J field, which in turn affects the spa-
growing mode moves frok=0 to k# 0. Other definitions tial properties of thep subsystem. One witnesses a strong
of 7 are possible, e.g., the time when the peakkat0  feedback process between the two fields and the outcome is
becomes higher than the# 0 one. However, all definitions the slaving of the NCOP dynamics of the figjdto the COP
lead to similar results. dynamics of thel field.

Below the critical temperaturg; and in the early stage of The power-law growth ofC,,(k=0.) can be extracted
the ordering process the value @§(t) is small compared from the quasilinear approximation by usiig0). In the
with r, i.e.,R<0, and the larger eigenvalue is well approxi- early regimeR starts from a negative value and grows to-
mated by wards zero due to the growing @f,,(k,t) for smallk. This
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FIG. 2. Dependence of the wave-vector instability on the FIG. 3. Dependence of the crossover timeon the coupling

coupling parametes in log-log scale. Both quantities are plotted in parametey in log-log scale. Both quantities are plotted in arbitrary
arbitrary units. The squares are obtained from the numerical soludnits. The broken line has slope2. The squares are obtained from
tion of Egs. (18—(20) with T'y=1, I';=5, r=-0.5, g=1, the numerical solution of Egs(18)—(20) with I',=1, I'y=5,
w=0.05, andd=3. The broken line has slope 1. The valuekpis ~ r=—0.5,g=1, w=0.05, andd=3. The crossover timey is de-
taken when the peak & becomes larger than the one kat 0. fined as the time when the peaklat 0 becomes dominant. Other
Other definitions, e.g., the fastest growing mode, lead to a similagefinitions, e.g., the fastest growing mode, lead to a similar depen-
dependence as follows from the rescaliBg). dence as follows from the rescalit(g4).

in turn implies thaiS(t) tends to a finite value for increasing Wherec, is a positive coefficient having a finite limit for
time. By imposing this condition and making use(@D) it  #*/R—w. By imposing thatS(t) has a finite nonzero limit
follows that C,,4(k= 0t)~t%, as in the pure NCOP, i.e., for t—c and making use of Eq43), one obtains in this
the longest-wavelength fluctuations grow faster. We notéeglme

that while the quasilinear approximation leads to the correct

scaling ofC 4 4(k=0)~t%? and of domain sizé (t)~t*? C (K, t) =[L(1)%Kp(t)2 9] oK Km(V], (44)
it givesR(t) ~In(t)/t, which reveals that the approximation is
slightly crude. where

These results are valid fdR/u? not too large, i.e., far va
from the crossover region wheRechanges sign. Unlike the L(t)~t¥ K (t)~(9 "‘_t)
pure NCOP, wherd(t) goes to zero, after a characteristic Toom 4 t ’
time 7= 0(1/u?) the value of|R| becomes O¢?) and the
NCOP behavior ends. By inspection of E40) we see that a behavior typical of COP dynami¢44]. The multiscaling
if |R|/u?<T /T4 the maximum ofw, (k) moves away function ¢(x) is given by
from k=0 and the system loses its NCOP behavior.

This regime corresponds in our model to the instability e(X)=1—(x?—1)2 (46)
that is observed in systems where a nonconserved order pa-
rameter is coupled to a conserved field. We must stress thdhe COP behavior is also observed if one considers the
in order to observe the NCOP behavior the dynamictJof structure functionsC 4 (k,t) and Cyy(k,t). Such a multi-
needs to be suff|C|entIy slow with respect to the ChaI’aCterIStIGcalmg behavior follows from the competition of two mar-
time ¢~ 1/u?, whose dependence gnis shown in Fig. 3.  ginally distinct lengths, namely, the domain sizét) and

For tlmest—O(ll,uz) the quantityR changes sign, be- k_ 1
coming positive, and finally, far—c, tends to a finite value Fmally, we note that the quasilinear approximation in this

w?/w while the maximum ofw, (k) moves again towards regime leads to
vamshmg wave vectors. The dynamics is therefore domi-

(49

nated in the regime> 1/u? by long-wavelength fluctuations. ) Int 12
We can then expana . (k) in powers ofk, obtaining RO—-pw~| | . (47)
2
_ | PP From Eq.(26) we see thaR— u?/w plays the role of the
o+ (K)=Ty r+gs W K= Cak, “3) mass ternt +gS(t) in pure COP dynamicgl4]; therefore,
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FIG. 4. Typical evolution of the structure functi@y,(k,t) for 0 0005 001 0015 002 0025 003 0035 004

different times as shown in the figure. Both quantities are plotted in
arbitrary units. Notice that the two largest times correspond to . . .
t>r and display the characteristic COP peak. The data are from F!CG- 5. Typical evolution of the structure functid,y(k,t).

the numerical solution of Eqs(18—(20) with T'y=1, I',=5, The data are f.rom. the numerical §Qlutlon of E({BS.)—(ZO). with .
r=-05,g=1, w=0.05, andd=3. parameters as in Fig. 4. Both quantities are plotted in arbitrary units.

k

in spite of the fact that the quasilinear approximation is quitex' In Fig. 9 we ShOV.V the multiscaling functigs(x) optamed
crude, it gives, nevertheless, the correct scaling behavior c{omz thez_bdest m. of Cyy(kit) as a functu.)n. of
COP dynamics. (1) k(1) for fixed values of x=Kk/ky(t). S|m|Iar_
The above theoretical predictions were checked by inteS /<S> ¢an be extracted from the other structure functions.
grating numerically the system of equaticii)—(20) by the We note that while the data follow quite well the theoretical
Euler method. Thé integrals were evaluated by a Simpson r?SL.“tMG) for |X._ 1] not too Ia_lrge, they display a large de-
rule discretizing the wave vectors in the interf@lA ]. Fig- viation as|x—1| increases. This is due to the terms neglected
ure 4 displays the structure functiaB,(k.t) for various in (43). We remark, howev.er, that these become less and less
values of the timé. One clearly sees that in the early regime important askr, decreases; as a consequence, we expect that
the fastest growing modes are centered alkou®, because
long-wavelengths fluctuations of the fieltl increase more 14000
rapidly than shorter ones, whereas for 7; a finite wave-
vector peak appears. Moreover, the growth in this late re-

. . 12000 N t= 3000 — 1
gime has a conserved character because its valle=8t TR t= 5000 -~
remains constant. The evolution 6f,,(k,t) and Cyy(k,t) ;L S 5000
is shown in Figs. 5 and 6. Initially the field$ and ¢ evolve 10000 |- {0y 1=80000 ---

as if they were nearly independent and thg, correlations j"
display the usual finite wave vector peak of the conserved ; i
dynamics, whereas th¢ field evolves according to a faster 8000 " ' 1
nonconserved dynamics. The long-wavelength fluctuations
of the U field are hindered by the conservation law and the 6000 - \
presence of theC,, term has only a small effect on the i-" 4
C,4. However, as the domain sidg(t) reaches a critical ! |
value and becomes comparable with the typical length of 4000 / |
the oscillations of the diffusive field, the two fields strongly / “
interact. Within this late regime the dynamics becomes con-
trolled by the conservation law induced by thefield. In
Fig. 7 we show the behavior of the height of the peak of
C 44 versus time, where one clearly sees the crossover from 0 e — =
thz¢early time behavia®’? to the late stage slopd. In the 0 000 00T 00l 002 065 003 00% 00f
crossover regime due to the presence of a double peak the X
maximum height decreases until the peakat disappears. FIG. 6. Time evolution of the structure functid®y(k,t) for
Finally, we report the numerical result concerning thegifferent times. Notice the conserved dynamics at all times. The
multiscaling observed in the late regime. In Fig. 8 we displaydata are from the numerical solution of E¢s8)—(20) with param-
the shape functiofr (x) = kﬂq(t)Cd)d,(ka ,t) as a function of eters as in Fig. 4. Both quantities are plotted in arbitrary units.
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FIG. 7. Height of the peak of the structure function  F|G. 9. Multiscaling exponenp(x) defined in the text. The data

Cgo(km,t) as a function of time. Both quantities are plotted in are from the numerical solution of Eqél8—(20) with T',=1,
arbitrary units. The crossover from the NCOP behavior to the COR" ;=5 r=-0.5, g=1, w=0.05, andd=3. The crosses are ob-

behavior is evident. The dashed line representsttffebehavior,  tained fromC,,4, while the triangles fronC,, . The full line is the
whereas the dash-dotted line #1¢ behavior. The data are from the theoretical predictior(46).
numerical solution of Eq9.18)—(20) with parameters as in Fig. 4.

the range of values dik—1| where there is a good agree- V1. CONCLUSION
ment with (46) should increase with time. This is indeed

observed by using data for increasing time in the best fitmc an N-component version of the phase field model and

Roughly the range INCreases aknlh). . shown that the coupling between the massless transverse
We have explored different types of conservation IaWsmodes and the diffusive field produces an instability at finite
represented by k* with 0<u<2. In all these cases the P y

dynamics selects for intermediate times a peak at finite Val\_/vavelengths. Our model, Where_ th? low-energy Ngmbu-
ues of the wave vectdx. Goldstqne modes.couple to thg diffusive modes, prowdes an
interesting scenario and we believe represents a paradigm for
the Mullins-Sekerka type of phenomena where the soft
modes are represented by the capillary wave spectrum asso-
ciated with the solid-melt interface and the diffusive mode is
the heat transport. These two fields concur to destabilize the
solid-melt boundary in analogy with our findings. On physi-
cal grounds, one expects this kind of instability to occur
during phase separation, because small droplets can dissipate
heat more efficiently and reach rapidly thermal equilibrium
due to the Gibbs-Thomson effect, whereas larger droplets try
T to dissipate energy faster by creating bulges thus increasing
the curvature. As the system cools down upon reaching equi-
T librium the typical length of the bulges; increases and
diverges together with the average domain dif¢). We
- have demonstrated that the presencé& afduces nontrivial
effects on the fieldp because it acts on a time scale longer
. than the noise field, characterized by a short correlation time.
Finally, the ON) model analyzed presents unusual fea-
o . tures since it displays scaling behavior in the early regime
04 05 06 07 08 09 1 11 12 13 14 (t<7¢) and multiscalind15] in the late regime and consti-
x=k/ tutes an example of multiscaling without COP, a phenom-
FIG. 8. Shape functiof (x) of theC,, ,(k,t) structure function ~ €non that to the best of our knowledge, was not observed
in the late stage evolution. The absence of scaling is evident ilpefore. In summary, the present model reveals an unexpect-
figure. The data are from the numerical solution of E48)—(20) edly rich dynamical behavior, which, in many respects, is
with parameters as in Fig. 4. similar to the solidification kinetics.

To summarize, in this paper we have studied the evolution

35
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F(x} 2F

15

05 |
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APPENDIX: EQUILIBRIUM PROPERTIES 2in

. . . . _:reff+gP2, (A8)
In this appendix we shall outline the calculations of the B

equilibrium properties of the model. The partition function
associated with the Hamiltonian
N o [ d% 1 g
Z[{h(X)}]Z H d(;baduaefBH[zb,U]JrBh(,b, (Al) (27T)d k2+2i7\/,3 4)\2 )

—oo a=1

(A9)

where we have included an external fi¢ltk) coupled lin-  Eliminating A with the help of Eqs(A8) and(A9) we find
early to ¢(x) and B=(kgT;) . The field U(x) can be
traced out and one finds, apart from uninteresting constants,
p2_ h? 1 d% 1 o
TraraP? Bl @i kT g TS

(A10)

N
Ziihoh1= [~ 11 do,e sraieiims,  (az)

whereHy is defined by Eq(25). In order to separate the

macroscopic compone® of the field we employ the iden- The first term equalsn?, the square of the average magne-

tity tization per unit volumen= (1/V) dinZy/dh. By using Eq.
(A9) we find explicitly

1:Nf dP25(NP2—2 ¢>i) (A3)
B h
and rewriteZ as m= N W (A11)
[ 0 d)\ © N
Z= NJ dpzf Py H d¢aexl{ — BHer &0l The existence of a spontaneous magnetic phase implies that
o o T et in a zero magnetic external fieloh#0, i.e., the following
condition must be fulfilled:

+Bhep+in| NPZ—) ¢§”, (A4)

lim[r g5+ gP?]=0. Al12

Zszmszfw N o —pN| 2y I pa “*0[ rror] e

o0 —00277 2 4

N .
N o The equation of state reads
—iEPZH 11 d¢aexp[—ﬁ/22 a

—o a=1 a

d
+B8> hydel. d°k 1
ﬁ% a¢a} ref‘f+gm2+ngf (27T)d k2+reﬁ+gsx+gm2 m:h'

(A5) (A13)

In the case of a uniform external field directed along the
component 1 lj;=h), after eliminating the¢, fields, Z  whereS, is given by

X

- f dIxV ¢,V b+ 2iN B2

reads
*® = d\ ddk 1
Z:Ne(le)ln(ZTr/B)f dPZf _eNQ' A6 _
. om (A6) S.=gT; 27 KTt gS T gn?" (A14)
Q0= —,BJ d9x riffP2+ 9P“—i EPZ} In order to determine the critical temperatdrg we require
2 4 B m?=0 andr¢;+gS.=0:

1 ddk 2h2
_Ejmln(k2+2i)\lﬁ)—iﬁ4)\ . (A7)

Te=(p?Iw—r)(d—2)/(gA*"?Ky), (A15)
In order to evaluat& we apply the saddle point estimate in
the limit N—oo, imposing the conditionsaZ/d\)=0 and
(6219P?)=0, which lead to the conditions where 1K 4=2792I"(d/2), with T'(x) the gamma function.
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