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We discuss the static and kinetic properties of a Ginzburg-Landau spherically symmetric O(N) model
recently introduced@U. Marini Bettolo Marconi and A. Crisanti, Phys. Rev. Lett.75, 2168~1995!# in order to
generalize the so-called phase field model of Langer@Rev. Mod. Phys.52, 1 ~1980!; Science243, 1150
~1989!#. The Hamiltonian contains two O(N) invariant fieldsf andU bilinearly coupled. The order parameter
field f evolves according to a nonconserved dynamics, whereas the diffusive fieldU follows a conserved
dynamics. In the limitN→` we obtain an exact solution, which displays an interesting kinetic behavior
characterized by three different growth regimes. In the early regime the system displays normal scaling and the
average domain size grows ast1/2; in the intermediate regime one observes a finite wave-vector instability,
which is related to the Mullins-Sekerka instability; finally, in the late stage the structure function has a
multiscaling behavior, while the domain size grows ast1/4. @S1063-651X~96!06606-8#

PACS number~s!: 05.70.Ln, 64.60.Ht, 81.10.Fq, 82.20.Mj

I. INTRODUCTION

When a system described by an order parameter, initially
placed into a high-temperature single phase region of its
phase diagram, is brought to a point inside the coexistence
curve by a sudden change of temperature it becomes thermo-
dynamically unstable and phase separates as a result of the
existence of many competing ground states. After the quench
the system can order kinetically through either nucleation or
spinodal decomposition. In the latter process a microscopic
long-wavelength fluctuation initially present is amplified and
determines the formation and evolution of various patterns
characterized by the presence of a universal length scale
L(t), associated with the typical domain size and separation
among topological defects. As the system orders,L(t) grows
in time in a power-law fashiont1/z and the time-dependent
structure factorC(k,t) displays dynamical scaling.

A successful approach to the study of these phenomena is
represented by the time-dependent Ginzburg-Landau equa-
tion. Many years ago Hohenberg and Halperin@1# provided a
useful classification of the various models, which comprises
a vast class of dynamic critical phenomena, in terms of few
parameters. Within their scheme two models have received a
great deal of attention: modelA, where a single field evolves
towards equilibrium with nonconserved order parameter
~NCOP! dynamics, and modelB, where the order parameter
is conserved~COP! @2#.

The NCOP dynamics is aimed to describe an ordering
process similar to that of the Ising model with conventional
Monte Carlo spin flip dynamics, while COP dynamics ac-
counts for the approach to equilibrium of an alloy. In this
case, one observes that the system orders by growing drop-
lets larger than a critical size at the expenses of smaller drop-
lets, while keeping the total amount of material fixed. The
effect of the conservation law is to slow down the phase

separation process, because the material has to be transported
via diffusion through the system before being added to a
growing region. The value of the dynamical exponentz is
z52 for NCOP dynamics, whereas for conserved dynamics
it is z53 for a scalar order parameter andz54 for a vector
order parameter, indicating that conservation laws play an
important role in the dynamic process.

While COP and NCOP dynamics have been widely stud-
ied, the phase field model@3#, which describes the coupling
of a NCOP system with a diffusive COP field such as tem-
perature or concentration, seems not to have been completely
explored, in spite of the fact that it displays a variety of
interesting peculiar features. To mention only the most strik-
ing of these, we recall that the phase field model accounts for
the regularity of the shapes observed during the growth of
crystals into a supercooled melt. According to the phase field
model, a planar solid front growing in the supercooled liquid
undergoes the so-called Mullins-Sekerka instability. This
phenomenon can be understood as follows. The latent heat,
released when the liquid freezes, is diffused into the colder
liquid and thus promotes the freezing of more material. The
larger the temperature gradient the faster is the advancement
of the front. Now, imagine slightly perturbing the isothermal
flat solid-liquid interface in a slowly varying fashion. As a
result of the deformation, the temperature gradient will be
larger on the bulges of such a boundary and thus the heat
flux. This makes a solid tip grow faster than a flat portion of
interface and provides a mechanism by which perturbation of
a finite wavelength is amplified, as discovered by Mullins
and Sekerka@4,5#.

In a recent Letter @6# we have introduced an
N-component version of the phase field model in order to
study the evolution of a nonconserved order parameterf
bilinearly coupled to a conserved fieldU. In the limit
N→` we were able to obtain some analytical results on the
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nonequilibrium relaxation behavior of the model. Here we
expand these results.

The model, inspired by modelC @1#, displays several in-
teresting features: the evolution of the vector fieldf is non-
conserved in the early regime and then after a crossover time
it develops an instability at finite wavelength due to the cou-
pling with the conserved fieldU. In the very late regime the
COP behavior eventually becomes dominant andf shows a
genuine COP evolution, including multiscaling. A similar
mechanism was reported by Somoza and Sagui@7# in a nu-
merical study of modelC, where they observed that, not-
withstanding, the nonconserved field evolves faster than the
conserved field. For late times the growth is driven by diffu-
sion of the conserved variable and the order parameter be-
comes slaved by the diffusive field.

The paper is organized as follows. In Sec. II we give a
brief physical motivation of the model. The equations defin-
ing the model are given in Sec. III and its equilibrium and
dynamical properties are discussed in Secs. IV and V, re-
spectively. Finally, Sec. VI contains a brief summary of the
results and discussions.

II. MOTIVATION OF THE MODEL

The model we discuss in the present paper belongs to the
family of O(N) spherical models and it has been introduced
@6# with the aim of studying exactly the coupling of a NCOP
field with a diffusive COP field. The O(N) generalization
proves to be fruitful because, while retaining the salient fea-
tures of the phenomena occurring during the diffusion lim-
ited growth, it allows for some analytical results in the limit
N→`.

Historically, models containing couplings quadratic with
respect to the material NCOP fieldf and linear with respect
to the COP diffusive thermal fieldu were introduced as early
as the 1970’s in the framework of the dynamical critical
phenomena and named modelsC. Later, Langer, in order to
study first-order phase transitions accompanied by latent heat
of fusion, put forth the so-called phase field model@3#, in
which the coupling was assumed to be bilinear with respect
to the two fields.

The material is characterized by an order parameterf,
which assumes a positive value in the solid phase and a
negative value in the liquid phase. The local temperature of
the system is treated as an additional dynamical field obeying
a heat diffusion equation in the presence of sources repre-
sented by the amount of material changing phase. The solidi-
fication takes place adiabatically so that no heat can flow to
the outside. One defines the dimensionless temperature field
asu(x,t)5cp@T(x,t)2Tm#/L, whereL is the latent heat of
fusion per mole,cp is the specific molar heat at constant
pressure, andTm is the bulk melting temperature. The spatial
average ofu at the initial time is the so-called undercooling
parameterD and is a negative quantity.

The thermal field diffuses according to the modified Fou-
rier equation

]u~x,t !

]t
5D¹2u~x,t !1

]f~x,t !

]t
, ~1!

whereD is the thermal diffusivity and the last term on the
right-hand side is the amount of material that crystallizes per
unit time and is thus proportional to the heat released during

the first-order transition. Bothcp andD are assumed to be
equal in the two phases. The evolution of the order parameter
is determined by the nonlinear time-dependent equation of
the Ginzburg-Landau type@8–10#:

]f~x,t !

]t
52G

d

df~x,t !
F@f,u#

52G@2¹2f1rf1gf31au#. ~2!

To describe a two-phase system the form ofF is chosen to
be a double well forr,0. The coupling to the thermal field
u can create an unbalance in such a way that for negative
values ofau the liquid phase (f;2A2r /g) is metastable
with respect to the solid (f;1A2r /g). In the absence of
coupling to the temperature field, i.e.,a50, Eq. ~2! repre-
sents the familiar Cahn-Allen equation, also called model
A. The process contains two stages: during the first stage the
solid grows at the expenses of the liquid, while in the second
stage the total amount of solid is nearly constant and the
growth is limited by diffusion of the thermal field.

Interestingly, the two dynamical equations~1! and~2! can
be derived from a Lyapounov functionalF, which plays the
role of the time-dependent Ginzburg-Landau potential in the
present problem. If one performs the transformation
U5u2f and eliminatesu in favor of the new fieldU, one
can write Eqs.~1! and ~2! as

]f~x,t !

]t
52G

dF
df~x,t !

U
U

, ~3!

]U~x,t !

]t
5
D

a
¹2

dF
dU~x,t !

U
f

, ~4!

with the Lyapounov functional

F@f,U#5E ddxF12 ~¹f!21
r

2
f21

g

4
f411

a

2
~U1f!2G .

~5!

The functionalF has two equal minima when the tempera-
ture field vanishes, i.e., forU52f, and generates a com-
plex dynamical behavior, which has been the object of some
studies. However, its global properties are not so well
known. This leads us to formulate an O(N) invariant vecto-
rial generalization of the above model. This kind of model,
in fact, lends itself to nearly analytical solutions, thus pro-
viding useful insights on the properties of the scalar order
parameter solutions.

III. THE O „N… MODEL

We shall consider a system described by two coupled
N-component vector fieldsf5„f1(x,t), . . . ,fN(x,t)… and
U5„U1(x,t), . . . ,UN(x,t)…, whose Hamiltonian can be rep-
resented by@11,9#
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H@f~x!, U~x,t !#5E ddxF12 ~¹f!2

1
r

2
f21

g

4N
~f2!21

w

2
U21mUfG ,

~6!

wherer andg, with g.0 andw.0, are the standard qua-
dratic and quartic couplings of the Ginzburg-Landau model
and the last term represents a bilinear coupling between the
field f andU. The first three terms in Eq.~6! constitute the
familiar Ginzburg-Landau-Wilson Hamiltonian describing
an O(N) f4 model, whereas the last two terms represent the
interaction between the order parameter field and an external
fluctuating fieldU.

We assume that the fieldf evolves according to NCOP
dynamics:

]fa~x,t !

]t
52Gf

d

dfa~x,t !
H@f,U#1ha~x,t !, ~7!

whereas the fieldU is conserved and relaxes according to

]Ua~x,t !

]t
5GU¹2

d

dUa~x,t !
H@f,U#1ja~x,t !. ~8!

The noises appearing on the right-hand sides of Eqs.~7! and
~8! have zero average and two-point correlations:

^ha~x,t !hb~x8,t8!&52 TfGfda,bd~x2x8!d~ t2t8!, ~9!

^ja~x,t !jb~x8,t8!&522 TfGUda,b¹2d~x2x8!d~ t2t8!,
~10!

^ha~x,t !jb~x8,t8!&50, ~11!

whereTf is the temperature of the final equilibrium state and
GU andGf are the kinetic coefficients.

Introducing the Fourier components of the fields, one can
write the evolution equation as

]fa~k,t !

]t
5Ff

a~k!1ha~k,t !, ~12!

]Ua~k,t !

]t
5FU

a ~k!1ja~k,t !, ~13!

whereFf,U are the Fourier transforms of the first term on the
right-hand sides of Eqs.~7! and ~8!. In the limit N→` the
cubic term entering intoFf can be decoupled and we have

Ff
a~k!5Mff~k,t !fa~k,t !1MfU~k,t !Ua~k,t !, ~14!

FU
a ~k!5MUf~k,t !fa~k,t !1MUU~k,t !Ua~k,t !, ~15!

where the matrix elements are given by

Mff~k,t !52Gf@k21r1gS~ t !#,

MfU~k,t !52Gfm,

MUf~k,t !52GUmk2,

MUU~k,t !52GUwk
2. ~16!

The quantityS(t) is the integratedf-structure function

S~ t !5
1

N(
a51

N

^fa~x,t !fa~x,t !&

5E ddk

~2p!d
^fa~k,t !fa~2k,t !& ~17!

and the integral contains a phenomenological momentum
cutoff L. The average is over the external noisesh and j
and initial conditions.

To study the behavior at finite temperatureTf it is useful
to introduce the equations of motion for the three equal-time
real-space connected correlation functionsCff(r ,t)
5^fa(R1r ,t)fa(R,t)&, CfU(r ,t)5^fa(R1r ,t)Ua(R,t)&,
andCUU(r ,t)5^Ua(R1r ,t)Ua(R,t)&, whose Fourier trans-
forms are the structure functions. These correlations are in-
dependent of the indexa due to the internal symmetry. In
the N→` limit the structure functions evolve according to
the set of equations

1

2

]

]t
Cff~k,t !5Mff~k,t !Cff~k,t !1MfU~k,t !CfU~k,t !

1GfTf , ~18!

]

]t
CfU~k,t !5MUf~k,t !Cff~k,t !1@MUU~k,t !

1Mff~k,t !#CfU~k,t !,

1MfU~k,t !CUU~k,t !, ~19!

1

2

]

]t
CUU~k,t !5MUf~k,t !CfU~k,t !1MUU~k,t !CUU~k,t !

1GUTfk
2. ~20!

In what follows we shall be more interested in the behavior
of the fieldf, since it is the relevant order parameter of the
system.

IV. EQUILIBRIUM PROPERTIES

In this section we investigate the equilibrium properties of
the model~12! and ~13!. It can be shown that the random
process characterized by the Langevin equations~9!–~13!
obeys detailed balance since the following ‘‘potential condi-
tions,’’ analogous to the Onsager relations, are fulfilled@12#:

d

dfa~k!
Ff

b~2k8!5
d

dfb~k8!
Ff

a~2k!, ~21!

d

dfa~k!
FU

b ~2k8!5
GUk8

2

Gf

d

dUb~k8!
Ff

a~2k!, ~22!

d

dUa~k!
FU

b ~2k8!5
k8 2

k2
d

dUb~k8!
FU

a ~2k!. ~23!
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If detailed balance holds, the stationary probability density
reads

Pst@f,U#5N expS 2
1

Tf
H@f,U# D , ~24!

whereN is a normalization constant.
The equilibrium probability density is quadratic in the

field U; therefore, as far as the static properties off are
involved, the fieldU can be traced out. One is then left with
an effective Hamiltonian for the fieldf:

Heff@f#5E ddxF12 ~¹f!21
r eff
2

f21
g

4N
~f2!2G , ~25!

where r eff5r2m2/w is the ‘‘renormalized mass.’’ The im-
portance of the fieldU can be fully appreciated only in the
nonequilibrium dynamics of the system, as will be discussed
in Sec. V.

Before considering the dynamics, we briefly discuss the
static properties of this model. Unlike the case where theU is
quenched@13#, the system displays for space dimensions
d.2 an order-disorder transition whenTf is lower than the
critical temperatureTc . In order to locate the critical surface
Tf5Tc(r ,g,m,w) one considers the long-range behavior of
the structure functionsCff(k), which can be computed from
~25!. The fourth-order term makes the calculation difficult
for finite N. However, forN→` we can use the Hartree
approximation, exact in this limit, and we readily obtain for
T.Tc

Cff~k!5
Tf

k21r1gS̀ 2m2/w
, ~26!

S`5E
uku,L

ddk

~2p!d
Cff~k!. ~27!

ForTf<Tc the structure function diverges at smallk because
the full mass termr1gS̀ 2m2/w vanishes, signaling the
appearance of the ordered phase. In fact, the model for
r,m2/w and g.0 displays a high-temperature paramag-
netic phase and a low-temperature ordered phase. The
critical temperature is given by the usual form of the
f4 theory Tc5(m2/w2r )(d22)/(gLd22Kd) with 1/Kd
52pd/2G(d/2), whereG(x) is the gamma function.

For temperaturesTf belowTc there exists a nonvanishing
order parameterM5^f1&, which can be assumed to be di-
rected along thea51 direction without loss of generality.
The (N21) components of the correlation function orthogo-
nal to the order parameter direction diverge at smallk, re-
flecting the existence of Nambu-Goldstone modes, i.e., exci-
tations of vanishing energy cost in the long-wavelength limit.
The real-space two-point correlation function takes the form

^fa~r !fa~r !&5M2da11S`~ t !, ~28!

M252
1

g S r2
m2

w D S 12
Tf

Tc
D , ~29!

whereS` , defined in Eq.~27!, comes from the transverse
components only.

The other equilibrium correlation functions can also be
obtained from the stationary equilibrium distribution and
read forT.Tc

CUU~k!5
Tf

w2m2~k21r1gS̀ !21 , ~30!

CfU~k!52S m

wD Tf

k21r1gS̀ 2m2/w
. ~31!

Note that bothCfU(k) andCUU(k) are singular fork→0.
We conclude by noting that to obtain the static structure

functions from the dynamical equations one has to supple-
ment the requirement that the right-hand sides of Eqs.~18!–
~20! vanish with the stronger condition

lim
t→`

@MUf~k,t !Cff~k,t !1MUU~k,t !CfU~k,t !#50, ~32!

lim
t→`

@Mff~k,t !CfU~k,t !1MfU~k,t !CUU~k,t !#50 ~33!

to ensure that the equilibrium properties of the model are
independent on the kinetic coefficientsGf andGU . The con-
ditions ~32! and ~33! can also be deduced from the equilib-
rium properties of the model~see the Appendix!.

V. DYNAMICAL PROPERTIES

Since the behavior atTf50 is representative of the entire
dynamics in the ordered phase whenTf,Tc , we shall ne-
glect the noise terms in the following analysis@2#. For gen-
eral initial conditions the two fields are not in equilibrium
and we may expect that the relaxation off is only slightly
modified by the external fieldU. Since the dynamics ofU is
sufficiently slow compared to that off, the presence ofU
does not modify qualitatively the NCOP behavior off. In
particular, the size of the domains off should grow with a
characteristic lengthL(t);t1/2, while the maximum of the
structure factor is located atk50 and should increase in time
with the powertd/2.

This kind of behavior persists until the domain size
reaches the typical length associated with the fieldU and is
given by the maximum of the structure function ofU. At this
stage the dynamics off slows down because the coupling
with the conserved fieldU introduces an additional con-
straint on the dynamics off. For longer times the two fields
equilibrate and the COP behavior eventually becomes domi-
nant.

A simple analysis of the equation of motion forN→`
gives the scaling of the crossover time with the coupling
constantm. Indeed it is simple to see that making the rescal-
ings

tm2→t, k/m→k, U/m→U, r /m→r ,

g/md21→g, L/m→L, ~34!

the parameterm disappears from the equations of motion for
f[fa andU[Ua :
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]

]t
f~k,t !52Gf@k21r1gS~ t !#f~k,t !2GfmU~k,t !,

~35!

]

]t
U~k,t !52GUmk2f~k,t !2GUwk

2U~k,t !. ~36!

As a consequence, the crossover time scales as 1/m2. From
this analysis it follows that if the dynamics ofU is suffi-
ciently slow, then for 1!t!1/m2 the field f exhibits a
NCOP behavior while fort@1/m2 a COP behavior. If the
dynamics ofU becomes too fast the first NCOP behavior
shrinks and becomes hardly observable.

This scenario can be confirmed by solving the equations
of motion ~35! and ~36! in a quasilinear approximation. To
this end we assume that

R~ t !5r1gS~ t ! ~37!

is slowly varying in time, so that it can be considered con-
stant over successive intervals of time. In other words, we
make a piecewise linearization of the equation of motion
along the trajectory. In spite of that, the approximation is
sufficient to identify the different regimes of the relaxation
process.

If we neglect the time dependence ofR(t) and assume it
to be nearly constant, Eqs.~35! and ~36! become a linear
system whose solution has the form

f~k,t !5cf
1~k!ev1~k!t1cf

2~k!ev2~k!t,

U~k,t !5cU
1~k!ev1~k!t1cU

2~k!ev2~k!t, ~38!

wherev1(k) andv2(k) are the eigenvalues of theM ma-
trix,

v6~k!5
1

2
@2Gf~k21R!2GUwk

2

6A@Gf~k21R!1GUwk
2#214 GfGUm2k2#.

~39!

For time t@1 the dynamical behavior of the solution is de-
termined by the larger eigenvaluev1(k). For largek

2, the
eigenvaluev1(k) decreases proportionally to2k2 and
hence large momenta are exponentially damped. Moreover,
we see thatv1(k) is a function ofk2, which has either an
extremum atk50 or a single maximum fork50, as one can
verify by inspecting the small-k behavior ofv1(k). The
behavior ofv1(k) is shown in Fig. 1 fort,t f and t.t f .
The crossover timet f is defined as the time when the fastest
growing mode moves fromk50 to kÞ0. Other definitions
of t f are possible, e.g., the time when the peak atk50
becomes higher than thekÞ0 one. However, all definitions
lead to similar results.

Below the critical temperatureTc and in the early stage of
the ordering process the value ofgS(t) is small compared
with r , i.e.,R,0, and the larger eigenvalue is well approxi-
mated by

v1~k!5GfuRu2S Gf2GU

m2

uRu D k21O~k4!. ~40!

A brief calculation reveals that

cf
15f~k,0!1

m

R
U~k,0!1O~k2!, ~41!

cU
15

GUm

GfR
Ff~k,0!1

m

R
U~k,0!Gk21O~k4!. ~42!

Therefore, assumingf(k,0)1(m/R)U(k,0)5O(1) for
k→0, the coefficientcf

1(k) is finite for k→0, while cU
1(k)

vanishes, indicating that the amplitudes of the longest-
wavelength components ofU are decreased due to the con-
servation law.

As a consequence, belowTc the structure factor
Cff(k,t) develops a peak centered atk50, growing in time
as a power oft. The structure functionsCfU(k,t) and
CUU(k,t) also develop a peak, centered at a finite value of
k, say,kf , as a result of the competing effect between the
k dependence of the exponential factor exp@v1(k)t# and the
amplitudecU

1(k); see Eq.~42!. This mechanism selects a set
of exponentially growingU modes with wave vectors in a
certain range centered aroundkf , whose dependence on the
coupling m is shown in Fig. 2. Such modes represent an
inhomogeneity of theU field, which in turn affects the spa-
tial properties of thef subsystem. One witnesses a strong
feedback process between the two fields and the outcome is
the slaving of the NCOP dynamics of the fieldf to the COP
dynamics of theU field.

The power-law growth ofCff(k50,t) can be extracted
from the quasilinear approximation by using~40!. In the
early regimeR starts from a negative value and grows to-
wards zero due to the growing ofCff(k,t) for smallk. This

FIG. 1. Dispersion relationv1(k) in the early regime and in the
late regime. Both quantities are plotted in arbitrary units. Notice the
different long-wavelength behavior in the two cases. The first is
typical of NCOP dynamics, whereas the second characterizes COP
dynamics.
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in turn implies thatS(t) tends to a finite value for increasing
time. By imposing this condition and making use of~40! it
follows thatCff(k50,t);td/2, as in the pure NCOP, i.e.,
the longest-wavelength fluctuations grow faster. We note
that while the quasilinear approximation leads to the correct
scaling ofCff(k50,t);td/2 and of domain sizeL(t);t1/2,
it givesR(t); ln(t)/t, which reveals that the approximation is
slightly crude.

These results are valid forR/m2 not too large, i.e., far
from the crossover region whereR changes sign. Unlike the
pure NCOP, whereR(t) goes to zero, after a characteristic
time t f5O(1/m2) the value ofuRu becomes O(m2) and the
NCOP behavior ends. By inspection of Eq.~40! we see that
if uRu/m2,GU /Gf the maximum ofv1(k) moves away
from k50 and the system loses its NCOP behavior.

This regime corresponds in our model to the instability
that is observed in systems where a nonconserved order pa-
rameter is coupled to a conserved field. We must stress that
in order to observe the NCOP behavior the dynamics ofU
needs to be sufficiently slow with respect to the characteristic
time t f;1/m2, whose dependence onm is shown in Fig. 3.

For times t5O(1/m2) the quantityR changes sign, be-
coming positive, and finally, fort→`, tends to a finite value
m2/w while the maximum ofv1(k) moves again towards
vanishing wave vectors. The dynamics is therefore domi-
nated in the regimet@1/m2 by long-wavelength fluctuations.
We can then expandv1(k) in powers ofk, obtaining

v1~k!5GUS m2

r1gS
2wD k22c4k

4, ~43!

where c4 is a positive coefficient having a finite limit for
m2/R→w. By imposing thatS(t) has a finite nonzero limit
for t→` and making use of Eq.~43!, one obtains in this
regime

Cff~k,t !5@L~ t !2km~ t !22d#w@k/km~ t !#, ~44!

where

L~ t !;t1/4, km~ t !;S d4 lnt

t D 1/4, ~45!

a behavior typical of COP dynamics@14#. The multiscaling
functionw(x) is given by

w~x!512~x221!2. ~46!

The COP behavior is also observed if one considers the
structure functionsCfU(k,t) andCUU(k,t). Such a multi-
scaling behavior follows from the competition of two mar-
ginally distinct lengths, namely, the domain sizeL(t) and
km

21 .
Finally, we note that the quasilinear approximation in this

regime leads to

R~ t !2m2/w;S lntt D 1/2. ~47!

From Eq. ~26! we see thatR2m2/w plays the role of the
mass termr1gS(t) in pure COP dynamics@14#; therefore,

FIG. 2. Dependence of the wave-vector instabilitykf on the
coupling parameterm in log-log scale. Both quantities are plotted in
arbitrary units. The squares are obtained from the numerical solu-
tion of Eqs. ~18!–~20! with Gf51, GU55, r520.5, g51,
w50.05, andd53. The broken line has slope 1. The value ofkf is
taken when the peak atkf becomes larger than the one atk50.
Other definitions, e.g., the fastest growing mode, lead to a similar
dependence as follows from the rescaling~34!.

FIG. 3. Dependence of the crossover timet f on the coupling
parameterm in log-log scale. Both quantities are plotted in arbitrary
units. The broken line has slope22. The squares are obtained from
the numerical solution of Eqs.~18!–~20! with Gf51, GU55,
r520.5, g51, w50.05, andd53. The crossover timet f is de-
fined as the time when the peak atk50 becomes dominant. Other
definitions, e.g., the fastest growing mode, lead to a similar depen-
dence as follows from the rescaling~34!.
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in spite of the fact that the quasilinear approximation is quite
crude, it gives, nevertheless, the correct scaling behavior of
COP dynamics.

The above theoretical predictions were checked by inte-
grating numerically the system of equations~18!–~20! by the
Euler method. Thek integrals were evaluated by a Simpson
rule discretizing the wave vectors in the interval@0,L#. Fig-
ure 4 displays the structure functionCff(k,t) for various
values of the timet. One clearly sees that in the early regime
the fastest growing modes are centered aboutk50, because
long-wavelengths fluctuations of the fieldf increase more
rapidly than shorter ones, whereas fort.t f a finite wave-
vector peak appears. Moreover, the growth in this late re-
gime has a conserved character because its value atk50
remains constant. The evolution ofCfU(k,t) andCUU(k,t)
is shown in Figs. 5 and 6. Initially the fieldsU andf evolve
as if they were nearly independent and theCUU correlations
display the usual finite wave vector peak of the conserved
dynamics, whereas thef field evolves according to a faster
nonconserved dynamics. The long-wavelength fluctuations
of theU field are hindered by the conservation law and the
presence of theCfU term has only a small effect on the
Cff . However, as the domain sizeL(t) reaches a critical
value and becomes comparable withl f , the typical length of
the oscillations of the diffusive field, the two fields strongly
interact. Within this late regime the dynamics becomes con-
trolled by the conservation law induced by theU field. In
Fig. 7 we show the behavior of the height of the peak of
Cff versus time, where one clearly sees the crossover from
the early time behaviortd/2 to the late stage slopetd/4. In the
crossover regime due to the presence of a double peak the
maximum height decreases until the peak atk50 disappears.

Finally, we report the numerical result concerning the
multiscaling observed in the late regime. In Fig. 8 we display
the shape functionF(x)5km

d (t)Cff(xkm ,t) as a function of

x. In Fig. 9 we show the multiscaling functionw(x) obtained
from the best fit of Cff(k,t) as a function of
L(t)2km(t)

22d for fixed values of x5k/km(t). Similar
curves can be extracted from the other structure functions.
We note that while the data follow quite well the theoretical
result ~46! for ux21u not too large, they display a large de-
viation asux21u increases. This is due to the terms neglected
in ~43!. We remark, however, that these become less and less
important askm decreases; as a consequence, we expect that

FIG. 4. Typical evolution of the structure functionCff(k,t) for
different times as shown in the figure. Both quantities are plotted in
arbitrary units. Notice that the two largest times correspond to
t.t f and display the characteristic COP peak. The data are from
the numerical solution of Eqs.~18!–~20! with Gf51, GU55,
r520.5, g51, w50.05, andd53.

FIG. 5. Typical evolution of the structure functionCfU(k,t).
The data are from the numerical solution of Eqs.~18!–~20! with
parameters as in Fig. 4. Both quantities are plotted in arbitrary units.

FIG. 6. Time evolution of the structure functionCUU(k,t) for
different times. Notice the conserved dynamics at all times. The
data are from the numerical solution of Eqs.~18!–~20! with param-
eters as in Fig. 4. Both quantities are plotted in arbitrary units.
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the range of values ofux21u where there is a good agree-
ment with ~46! should increase with time. This is indeed
observed by using data for increasing time in the best fit.
Roughly the range increases as 1/km(t).

We have explored different types of conservation laws
represented byGUk

m with 0,m,2. In all these cases the
dynamics selects for intermediate times a peak at finite val-
ues of the wave vectork.

VI. CONCLUSION

To summarize, in this paper we have studied the evolution
of an N-component version of the phase field model and
shown that the coupling between the massless transverse
modes and the diffusive field produces an instability at finite
wavelengths. Our model, where the low-energy Nambu-
Goldstone modes couple to the diffusive modes, provides an
interesting scenario and we believe represents a paradigm for
the Mullins-Sekerka type of phenomena where the soft
modes are represented by the capillary wave spectrum asso-
ciated with the solid-melt interface and the diffusive mode is
the heat transport. These two fields concur to destabilize the
solid-melt boundary in analogy with our findings. On physi-
cal grounds, one expects this kind of instability to occur
during phase separation, because small droplets can dissipate
heat more efficiently and reach rapidly thermal equilibrium
due to the Gibbs-Thomson effect, whereas larger droplets try
to dissipate energy faster by creating bulges thus increasing
the curvature. As the system cools down upon reaching equi-
librium the typical length of the bulgesl f increases and
diverges together with the average domain sizeL(t). We
have demonstrated that the presence ofU induces nontrivial
effects on the fieldf because it acts on a time scale longer
than the noise field, characterized by a short correlation time.

Finally, the O(N) model analyzed presents unusual fea-
tures since it displays scaling behavior in the early regime
(t,t f) and multiscaling@15# in the late regime and consti-
tutes an example of multiscaling without COP, a phenom-
enon that to the best of our knowledge, was not observed
before. In summary, the present model reveals an unexpect-
edly rich dynamical behavior, which, in many respects, is
similar to the solidification kinetics.

FIG. 7. Height of the peak of the structure function
Cff(km ,t) as a function of time. Both quantities are plotted in
arbitrary units. The crossover from the NCOP behavior to the COP
behavior is evident. The dashed line represents thetd/2 behavior,
whereas the dash-dotted line thetd/4 behavior. The data are from the
numerical solution of Eqs.~18!–~20! with parameters as in Fig. 4.

FIG. 8. Shape functionF(x) of theCf,f(k,t) structure function
in the late stage evolution. The absence of scaling is evident in
figure. The data are from the numerical solution of Eqs.~18!–~20!
with parameters as in Fig. 4.

FIG. 9. Multiscaling exponentw(x) defined in the text. The data
are from the numerical solution of Eqs.~18!–~20! with Gf51,
GU55, r520.5, g51, w50.05, andd53. The crosses are ob-
tained fromCff , while the triangles fromCUU . The full line is the
theoretical prediction~46!.
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APPENDIX: EQUILIBRIUM PROPERTIES

In this appendix we shall outline the calculations of the
equilibrium properties of the model. The partition function
associated with the Hamiltonian

Z@$h~x!%#5E
2`

`

)
a51

N

dfadUae
2bH@f,U#1bhf, ~A1!

where we have included an external fieldh(x) coupled lin-
early to f(x) and b5(kBTf)

21. The field U(x) can be
traced out and one finds, apart from uninteresting constants,

Z@$h~x!%#5E
2`

`

)
a51

N

dfae
2bHeff@f#1bhf, ~A2!

whereHeff is defined by Eq.~25!. In order to separate the
macroscopic componentP of the field we employ the iden-
tity

15NE
2`

`

dP2dSNP22(
a

fa
2 D ~A3!

and rewriteZ as

Z5NE
2`

`

dP2E
2`

` dl

2pE2`

`

)
a51

N

dfaexpF2bHeff@fa#

1bhf1 ilSNP22(
a

fa
2 D G , ~A4!

Z5N È`

dP2E
2`

` dl

2p
expF2bNS r eff2 P21

g

4
P4

2 i
l

b
P2D G E

2`

`

)
a51

N

dfaexpF2b/2(
a

3S 2E ddx¹fa¹fa12il/bfa
2 D 1b(

a
hafaG .

~A5!

In the case of a uniform external field directed along the
component 1 (h15h), after eliminating thefa fields, Z
reads

Z5Ne~N/2!ln~2p/b!E
2`

`

dP2E
2`

` dl

2p
eNV, ~A6!

V52bE ddxF r eff2 P21
g

4
P42 i

l

b
P2G

2
1

2E ddk

~2p!d
ln~k212il/b!2 i

b2h2

4l
. ~A7!

In order to evaluateZ we apply the saddle point estimate in
the limit N→`, imposing the conditions (]Z/]l)50 and
(]Z/]P2)50, which lead to the conditions

2il

b
5r eff1gP2, ~A8!

P25E ddk

~2p!d
1

k212il/b
2

b2h2

4l2 . ~A9!

Eliminatingl with the help of Eqs.~A8! and ~A9! we find

P25
h2

~r eff1gP2!2
1
1

bE ddk

~2p!d
1

k21r eff1gP2
5m21S` .

~A10!

The first term equalsm2, the square of the average magne-
tization per unit volumem5 (1/V) dlnZN /dh. By using Eq.
~A9! we find explicitly

m5
b

2il
5

h

r eff1gP2
. ~A11!

The existence of a spontaneous magnetic phase implies that
in a zero magnetic external fieldmÞ0, i.e., the following
condition must be fulfilled:

lim
h→0

@r eff1gP2#50. ~A12!

The equation of state reads

F r eff1gm21gTfE ddk

~2p!d
1

k21r eff1gS̀ 1gm2Gm5h,

~A13!

whereS` is given by

S`5gTfE ddk

~2p!d
1

k21r eff1gS̀ 1gm2 . ~A14!

In order to determine the critical temperatureTc we require
m250 andr eff1gS̀ 50:

Tc5~m2/w2r !~d22!/~gLd22Kd!, ~A15!

where 1/Kd52pd/2G(d/2), with G(x) the gamma function.
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