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The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We
present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite-size scaling
method, of the critical properties of the Ising model on some two-dimensional deterministic fractal lattices with
different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite
temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular, we
considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff di-
mensionsd,;=In8/In3=1.892 ... andd,=In12/In4=1.792 . . ., respectively. The data show in a clear
way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing
several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with
a finite-size scaling analysis, we were able to determine numerically the critical exponents in each case and to
provide an estimate of their errors. Finally, we considered the hyperscaling relation and found indications that
it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.
[S0163-182698)02545-4

[. INTRODUCTION tional invariance plays a crucial role in phase transitions on
fractal supports. These systems besides serving in practice to
The present understanding of phase transitions has greatfgodel natural materials such as porous rocks, aerogels,
benefited from the study of the spin-lattice models, perhapsponges, etc., provide a geometric realization of noninteger
the simplest examples of extended systems showing nordausdorff dimension. Therefore they offer a possibility of
trivial cooperative behavior, such as spontaneous symmetrgsting thee-expansion technique far not integer. Finally,
breaking. In most cases one is interested in studying systenggie can explore systems whose geometrical dimension is
whose geometrical properties are regular so that one assumesry near to its lower critical dimensiofin the Ising model
that the spins occupy the cells of a regular Bravais latticeis one: i.e., one is the largéintege) dimension in which the
Near the critical point, i.e. when the correlation length issystem does not have a phase transition at finite tempera-
much larger than the lattice spacing, the influence of thdure).
lattice structure becomes negligible and only the embedding In the present study we shall consider lattices obtained by
dimension, the number of components of the order parametéemoving sites from a square lattice. If the diluted lattice is
together with its symmetry, and the nature of the couplinggenerated by a sequence of random deletions one obtains the
concur to determine the values of the critical exponents. so-called site diluted Ising modésDIM), whose phase dia-
Such universal behavior is absent if the lattice is a fractalgram has been studigdee, for instance, Refs. 4)-6n this
because the translational invariance is replaced by the mugtase, one finds that the critical temperatligetends to zero
weaker dilation invariance. Notwithstanding the intense acas the probabilityp of having a site tends to the percolation
tivity on various physical problems in a space which insteadhreshold p,=0.592746 (on a square lattige Notice that
of being Euclidean is a fractal lattice, the issue of the phasenly at the percolation threshofg}. the lattice manifests true
transitions and of the critical properties on self-similar sup-self-similarity [and fractal dimension 1.895@Ref. 7)], but
ports has been rarely addressetiUnlike critical phenom-  the phase transition occurs only &t0. Thus to observe
ena in spaces of integer dimension those occurring in selfsimultaneously genuine criticality and self-similarity we con-
similar geometries have not been explored so far, apart frorsider a nonstochastic lattice, the so-called Sierpinski carpet
some isolated cases. One expects that the lack of transl@&SC). As pointed out some years ago, one can decide
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whether a lattice is able to support an order-disorder transi-
tion of the Ising type by looking at its order of ramification
R, which is finite if after eliminating a finite number of
bonds one can isolate an arbitrarily large sublattice. Only if
R=x does a phase transition occur. Thus the SC displays a
critical point at finite temperature, while the Sierpinski gas-
ket does not, being characterized by a firlRe This is a
manifestation of the fact that, when considering nonregular
structures, the embedding dimension alone is not sufficient to
determine the phase behavior.

The deterministic SC we consider, in spite of having a
lower Hausdorff dimension than that of the SDIM, is always

above the percolation threshold by construction. One can o . o—e
thus observe the interplay between fractal geometry and ther-
modynamics. FIG. 1. SC of dimensiom,=In8/In 3 for L=9. Filled circles

In the present work we shall investigate the critical behay€Present cells to which Ising spins are assigned, whereas empty
ior of the Ising model on two classes of fractal lattices thecircles represent cells which have been eliminated from the original
two-dimensional Sierpinski gasket and the two-dimensionafdvare lattice. The links represent the interactions among spins.

Sierpinski carpet. The first lattice, with Hausdorff dimension ] ] ] )
dy=In15/n5=1.682 606 .., can bestudied analytically data analysis on the basis of which we determined the values

and an exact real-space renormalization-group treatme@f the various pritical exponents and of thg criticgl coupling.
rules out the possibility of a finite ordering temperature. Theln Sec. VI we illustrate the results of the simulations for the
Sierpinski carpet instead displays a genuine transition at fifractal withdy=In12/in4, with special emphasis on the hy-
nite temperature that we have characterized numerically foperscaling relation. Finally in Sec. VII we present the con-
two different fractal dimensionsdy=In8/n3, and d,  clusions.
=In12/In4.

In statistical mechanics it is usually assumed that in the II. THE MODEL AND OBSERVABLES
infinite volume limit (V— o) the average of a given observ-
able calculated over a subvolume sufficiently |arge Compared Let us introduce the lattice models that we shall consider
with the bulk correlation length yields a result independentn numerical studies. We have first considered a SC, named
of the particular choice and location of the cell within the hereafter fractah, constructed starting from a square lattice
sample, and moreover, that this average converges to tfd L XL cells with L=3", dividing it into 3X3 blocks of
average value over the whole sample. In the fractal lattice§qual size and discarding the cells contained in the central
that we consider such a property breaks down below th&lock. Divide again each of the remaining blocks inta 3
critical point because the system cannot be regarded as salb-blocks and discard all the central elements. Carry on this
uniform material over length scales larger than the correlaprocedure until the smallest sub-block contains a single cell.
tion length, due to the presence of voids of all sizes whichThe resulting structure is formed By cells, whereV is re-
render the system effectively not uniform. Even the correlalated to the linear dimension through the Hausdorff dimen-
tion length depends on the position. However we shall shovgion dy as V=L%. In this case, dy=In8/n3
that this system has a second-order phase transition and thafl.892 789. .. . Of course one can build many different SC
means the existence of a divergent length s@alen the with the same fractal dimension, but having different distri-
thermodynamic limit. Although the fractal is not homoge- butions of voids. This can be quantified by means of the
neous, we postulate the existence of this “average” correlaso-called lacunarit§. In the present work we stick to the
tion length at least near criticality. To assume the existenc€ymmetrical fractal shown in Fig. 1. We define bonds be-
of such a length is in some sense similar to what happen&veen the remaining cells. The number of bomis
when studying the diffusion problem on a lattice. There, of

course, a walker does not diffuse with the same law from any 8
point of the lattice, but one can still define a diffusive type of N=gzV+glL, (1)
behavior of the typdR~t¥dw by averaging over all possible

initial posit_ions of the walker. . : so thatN is proportional toV in the thermodynamic limit.
We outline the plan of the paper: in Sec. Il we mtroduce,\Iote that this fractal ha® =

the lattices and define the observables of the Ising model g e fractalB, the construction follows the same pro-
which will be measured in the simulations, and give SOM&q e ‘bt now one considersc4 blocks and discards the
detalls_ about the numerical procedu're employed to obtaln_th ur central ones. This lattice has fractal dimensidg
statistical averages. In Sec. lll we illustrate some analytlca_In 12/In3=1.792 481 ... and in this case the relation be-

reﬁ_ulrt]s concet:)rtnl_ng dletl)ttlces W|thff|n|te ra{n,\'/];.'cgt'??( (()jrder, ween the number of bonds, the linear dimensioth., and
which were obtained by means of an exact Migdal-Kadanoft, "\ ber of celly/ is

decimation procedure. In Sec. IV we recall briefly the state-

ment of the finite size scaling method. In Sec. V we illustrate

the results of the simulations for the fractal characterized by N= §V+ EL ©
dy=In8/In3 and discuss at some length the details of the 2 2
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Now, at each unit cell we assign a dichotomic spin vari- o
ablec= = 1. The total energy of the system with ferromag-
netic interactions is defined as

H:_E gigj, (3)

where(i,j) are nearest-neighbor cells. The energy normal-
ized to the number of links is a quantity that has a well-
defined thermodynamic limit, and the specific heat is "

C=N((E?)—(E)?). 4

Since our primary target is to obtain information about the
critical behavior of the model we first locate the critical point
and then we extract the critical exponents. To achieve this
goal we introduce the observables which are relevant. These
are defined as follows: the intensive magnetizatibn

FIG. 2. Sierpinski gaskdSG). The spins live in the sites of the
1 construction. We have marked withthe spins that are decimated.
M = v 2 o (5) See the text for more details.
1

Such a formula is very interesting because one can obtain
the isothermal susceptibility: the behavior of the critical exponents and the critical tem-
perature near the lower critical dimension of the Ising model;
for instance whe —1

x=V(M?)=(IM])?), (6)
and the Binder cumulant 1 1
1 (M%) If one assumes that the dimensionality of the system corre-
=53~ o) (7)  sponds to the Hausdorff dimensioni.e. D=dy
(M) =1.892789..) oneobtains B,=0.56 andv=1.12. Nu-
merically [solving g(8.)=0 and 1¥=g’(B.) for D=1.89,
IIl. MIGDAL-KADANOFF METHOD that corresponds to fractdl] one obtains
The Migdal-KadanoffMK) decimation is an approxima- B.=0.5120, v»=1.4009. (12

tion very suitable for analyzing low dimensional systems.
MK is exact in one dimension, but lacks predictability in
higher dimensions. The starting point is the formula for the _ _
variation of the inverse temperaturg)(with the scale factor pc=0.5906, »=1.511. (13

in the MK approximation in a system of dimensionality — Obviously this approach does not take into account the

For the fractalB (D=1.79) the results are

D %10 ramification and lacunarity of the model. Nonetheless in this
section we have obtained a first guess of the critical tempera-
dg ture and of thev exponent for a system with the same fractal
Ezg(ﬁ), (8) dimension that the Sierpinski carp@h the most symmetric
version that we will study numerically in the next sections.
9(B)=(D—1)8 Exact solution of the Sierpinski gasket
. The decimation can be carried out exactly on the Sierpin-
+sini(g)coshB)In[tank(B)], ©) ski gasket, recovering the same lattice after a decimation
wheret is the logarithm of the scale factor in the block con- transformation. o
struction. We express the Boltzmann weight in the usual way
The zeroes 0§ (B) yield the inverse critical temperatures
of the system. Also, it is possible to compute thexponent exp(Bs;S;) =cosh B)[1+s;stani(B)], (14)
from

where we have denoted I® ands, two generic spins be-
longing to the lattice. We denote by the spins that we

1 dg(B) decimate and by the rest of the spins.
P T . (10 The decimation over the: spins is the following(see
B=F Fig. 2.
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> . exd B(o1pu1t orpot mapot m10o+ mapat popst poo3t uzoz+ uso)]
H1ip2 p3=E

=F2, (1+kopy)(1+koyuo) (L+kpmypmo) (1+Kuyop) (14K ps)

X(1+Kkpopa)(1+Kupoz)(1+Kuzos)(1+kusos)
k2

=8(1+k)3(1+k?)(1—3k+5k?—3k3+k*)| 1+ 0109+ 0102+ 003) |,
( )( )( ) 1—3k+5k2—3k3+k4( 102+ 0103+ 0203)

(15

where we have definek=tanh(8) and F = cosH(B). PL(t)=LP"g(tLY"), (19
The Sierpinski gasket is self-similar under this decimation

transformation and we can see that Etp) corresponds to a Where the scaling functiog(x) has the limiting behavior

nearest-neighbor Ising interaction with a renormalized coud(X) =const ax—0 andg~Xx"" asx—c.

pling (BR). i.e., Thus at the critical point one can write the following
finite-size scaling formulas for the observablsse, for in-
exf Br(o102+ 02031 0301 ] stance, Ref.
=F'(1+kro102)(1+Kro103)(1+Kro203) x(L,t=0)xL”1+0O(L~ )], (20)
Ke(1+k — alv -
S TN P s P | C(L,t=0)=L«[1+O(L~*)], 21)

1+k3 _ _ . L
R where w is the correction-to-scaling exponefit is just the

(16)  slope of the field-theoretica® function at the fixed point or
equivalently the largest irrelevant scaling exponent in the
Wilson renormalization groypandt is the reduced tempera-
ture of the model.

For nondimensional quantities, denotedAyin the prox-
imity of the critical point {<1) one has the scalings:

and we have denoted witky=tanh(8g) the renormalizek
andF’ = cosh(Bg). We finally arrive at the following exact
recursion [by matching the coefficient of of;o,+ 0505
+0304) of Egs.(15) and(16)]

k2 _ kr(1+kg)
1-3k+5k?2—3k3+k*  1+kd

AL, H)=fA(LY"t)+ L “ga(LY"t)+O(L™2%), (22

17
wheref , andg, are scaling functions. Their derivatives with

The critical points correspond to the solutions of the previoud®SPect toB behave as

recursion formula. The solutions ake=0 andk=1, i.e., are

B=0 and B=oo; therg is no phase transition af[ any finite d_A(L,t:O)xLl/V[lJrO(L—w)]_ (23)
temperature. From Fig. 2 it is clear th& remains finite dg

even when the linear size diverges.
300 — T T
|

IV. FINITE-SIZE SCALING METHOD (FS9

For a finite system whose typical linear size.iswhich is
assumed to be much larger than the lattice spaeinthe
finite-size scaling hypothesis'? postulates that upon ap-
proaching the critical point the average value of a given ob-
servable P depends on the size and on the temperature
through the following scaling relation:

PL<t>_f( L )
P.(O &) wl L | .
I I R L

whereT, andt are, respectively, the critical and the reduced 0.6670 0.6675 0.6680 0.6685 0.6690
temperatureg=|T—T,|/T. of the system, ané®.. represents A

the value ofP in the infinite volume limit. IfP..(t) behaves FIG. 3. SDM extrapolation for the derivative of(M|) in a L
ast™” whent—0, since the correlation length diverges as—2187 lattice. Circles are results relative to Wolff algorithm,
&.~177, it is clear thatP (t) will saturate when thef,.  crosses are relative to SW. The extra point refers to another simu-
becomes comparable with This can be formalized by writ- |ation (not a SDM extrapolation The region where the SDM ex-
ing: trapolation has small errors is very small.

250 —

200 —

(n<|M|>)" (L)

(18)




PRB 58 CRITICAL PROPERTIES OF THE ISING MODEL D. .. 14 391

TABLE I. Values of the coupling3 where the Binder cumulants TABLE lll. Maxima of U’(L).

meet each other.

L No. files Bsim Bo(L) Max. of U’(L)

81 243 729 2187

27 ~ 6600 0.580 0.5743) 8.4012)
27 0.669383) 0.6717@5) 0.67345%3) 0.6745%2) 81 ~ 5800 0.629 0.6252) 17.569)
81 0.67302) 0.674225)  0.675021) 243 ~ 4000 0.650 0.6493) 35.92)
243 0.674867) 0.675464) 729 ~ 13900 0.6618 0.6611) 69.94)
729 0.67581) 2187 ~ 2400 0.668 0.6688) 1323)

In particular in the present work we have chogeto be the  can be obtained from the number of times that the valoé¢

Binder cumulany and A= In{|M|). the energy is generated during a Monte C4NtgC) simula-
The w exponent can be calculated using the effectivetion. Given the density of states @= 3, the value of a

critical exponents that are extracted from the peaks of theertain operatof at 8, # By is given by

observables at lattice sizésandsL. Let us take the suscep-

tibility, for example. We obtain the effectiv L,sL (g —
y p ey(v) ( ) ; O(By.E)N(E) e (B1—Bo)E

as
) (O(B1)= . (27)
Y 1 x(sL > N(E)e (B1BoE
;(L,SL)—EH’]X(L) . (24) E
Using the scaling formulas and working in the large Iattices,Th'S_ gxtrapolatlon Is exact. The problem is that for large
we obtain deviationsA 8= B,— Bq the errors in the extrapolation are

very large, and then one has to restrict oneself to stgll
y y B values(of order 14V).
~(Lsb=—+BL™", (25 In d=2 the valueg2(L) hardly changes witlD, and with
the help of the SDM one can reach the peak of every observ-
where y/v is the infinite volume extrapolation of the ratio able with a single simulation at a certagth We found that
vlv(L,sL) measured on finite lattices. We obtainandy/v  this is not the case on fractal lattices with<<2 because the
by fitting the data to formul#25). transition region turns out to be very large, and sometimes
In order to determine the critical temperature, let us callwe were forced to perform different simulations at different
BCO(L) the value ofB where the observabl® (with positive  points, depending on the observables, in order to get their
dimension displays a maximum. In order to assess its loca-corresponding peaks.
tion several simulations at different values@re needed in To compute thermal averages we have employed a com-
principle, and even doing so its precise determination is hardhination ofm steps of the classical Metropolis algorithm fol-
However, the spectral density metiddSDM) renders such lowed by n steps of the Wolff single-cluster algorithtf,
task easier and much faster. In fact, by using the data from which gives a very short autocorrelation time. We checked
single simulation at a given temperature, S8y, one can that such method is sufficient to ensure ergodicity. However,
obtain information about somg; in the neighborhood of the Wolff algorithm is unable to flip clusters of intermediate
Bo. With SDM one usually gains one order of magnitude insize, which might be important in our model, where there are
the accuracy of the location of the peak. domains of spins at every scale. That is why we have applied
The idea is to write the partition function under the form: in addition a Swendsen-Wan@W) algorithm}® which is
more consuming in computing time than the Wolff algo-
rithm, but is able to flip domains of spins of every scale. In
Zx E € ﬁH(U):Z 2 e A 5(H—-E) fact, we have compargd the results o?‘ the two dilyferent pro-
{confg E {confg . .
cedures. Figure 3 shows that the two methods give compat-
B ible results in a region around the simulation point, where the
=2 e FN(E), (26)  SDM extrapolation is vali i i
= polation is valigaway from this region, the SDM
extrapolation gives large errors and it is therefore not reli-
whereH (o) is the Hamiltonian as a function of the configu- able, so that it is not surprising that it gives different results
ration {o} andN(E) is the energy density of states, which for the two algorithms We also note the narrow range of

TABLE II. Maxima of (In{[M]))’(L). TABLE IV. Maxima of y(L).
L No. files Bsim Bo(L) Max. of (In{|M[))" (L) L No. files Bsim B, (L) Max. of x(L)
27 ~ 6600 0.580 0.5798) 13.191) 27 ~ 6600 0.580 0.59436) 27.913)
81 ~ 5800 0.629 0.62783) 28.446) 81 ~ 5800 0.629 0.63442) 179.22)
243 ~ 4000 0.650 0.6502) 58.52) 243 ~ 2000 0.651 0.6539%) 11644)
729 ~ 13900 0.6618 0.6622) 115.44) 729 ~ 8000 0.663 0.66402) 77597)

2187 ~ 6400 0.6682 0.6682) 2181) 2187 ~ 4400 0.669 0.66936) 5188358)
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TABLE V. Fits to Eq.(28) for different observable®, lattices TABLE VI. Values of B(L) where the Binder cumulants take
81, 243, 729, and 2187. the values 0.5, 0.6, and 0.7.
] Be(*) vl Jdo L=81 L=243 L=729 L=2187
X 0.675227) 0.5893) 0.5 0.6197%27) 0.646774) 0.660262) 0.667363)
(In{M[y)’ 0.67425) 0.621) 0.6 0.625514) 0.649592) 0.6617376) 0.6680994)
u’ 0.67477) 0.61(2) 0.7 0.631342) 0.6524%2) 0.66320%9) 0.6688686)

validity of the SDM which is used to extrapolate the numeri-The positions of the intersections of the Binder cumulants
cal data, which makes even more troublesome the problemre reported in Table | and indicate that=0.675. How-

of finding the peaks of observables in order to perform FSSever, considering that the curves of the largest lattices have
As far as the observables directly measured are concernegdmost the shape of a “step function,” and that the intersec-
one can hardly see differences in the two simulation algotions take place within the zone of sudden change of slope, it
rithms; however, discrepancies exist when one looks at thg difficult to obtain them with good precision. We have es-

derivatives of the measured quantities. timated the value 0B, by other means, as we shall see in the
next section.
V. NUMERICAL RESULTS FOR THE FRACTAL A It has been observétithat on fractal lattices, as the ones

) ] ~we consider, a certain number of stages of construction of
We now focus attention on the SC of fractal dimensionihe SC is necessary in order to obtain reliable predictions
d,=In8/In3 described in Sec. lifractal A), and provide apout the critical behavior. Actually, as we shall see in the

evidence of the existence of a phase transition at a finitgext sections, we were forced to discard the smallest lattice
value of 5. The behavior of the SC should interpolate be-gjzes | =27,81, in certain fits to obtain reliable results.

tween thed=1 andd=2 cases. Ind=1, 8. diverges. In

fact, with a similar analysis of the partition function to the
one used in the Appendix, it can be analytically calculated
that £(8) ~|Intanh(@)| !, which means that, whepg— o, 1. Position of the maxima

— zﬁ . .
§(B)~e”. If we defineB (L) as the value ofg for which In a FSS analysis, every observaflewhich diverges in

&=L, then B,(L)~InL in d=1. This means a smooth S - :
growth; it is therefore necessary to pay attention in order t he thermodynamic limit whefs = 5.() displays a peak for

demonstrate thgB.(L) does not diverge witl. in the case inite L, Iocatgd at a different valu@o(L). When L in-

under scrutiny. creases, the dl'fference betwegg(L) and B.(°) becomes
We performed different simulations for lattice sizes with smaller according to the law

L=27, 81, 243, 729, and 2187, and concluded that there are 1

several evidences of the occurrence of a phase transition in Bo(L) = Be(ee)ocL ™

the Ising model on this Sierpinski carpet. Not only the aver- , .

age magnetization changes from 0 to 1 going from the dis’-A‘ three-parameter fit determines the values of exponent

ordered to the ordered phase, but we also observed that so%@d of B(>). To produce such a fit we have considered

observables, shown below, present peaks increasing as pofl €€ different observables: the derivative of the logarithm of
ers of the sizel.. The most stringent criterion to locate the nedr?r?griletltzhat:?nn,lthe der'\t/izti:@)otrtﬁe B'?ﬁrer Cumunkfig't
critical coupling, 3. is to study the crossing of the Binder gis la emS:xinfa aetl tﬁgs\(/:aelﬂes of (.L) Sehsgwn iieTil:)?es ”es
cumulants relative to different volumes.ds= 1, where there " gndylv respectively. In thesec;ables We renort the vaI’ues
is not a phase transition at a finite value@fthe cumulants  Tesp y: b

cross each other g=o. This is not the case in this model. of the_ peaks for the_ different lattice sizes together with the
statistics performed in correspondence with elachliere and

in the following, each file is made of 200 steps of SW, 400
steps of Metropolis and 2000 cluster sweeps with the Wolff
algorithm. The integrated correlation time is always less than
a file of measurements.

The best fits are obtained discarding the 27 data from
the three tables. We obtain the results shown in Table V. All
the fits yield y2/DF<1 (where DF means the number of
degrees of freedom in the)fitwe conclude from these that

A. v exponent andB.(«)

(28)

1o= T ‘ T T T T ‘ T T T T ‘ T T ™

U,

TABLE VII. Fit of the values of Table VI to Eq(28).

Yo Be(*) vl
Toez . oes Toes 0.5 0.6758) 0.5856)
8 0.6 0.67514) 0.5892)
0.7 0.67521) 0.5843)

FIG. 4. Binder cumulants fok=81, 243, 729, 2187.
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3. Peaks of(In{IM[))’ (L) and U]

According to the finite-size-scaling ansatz the derivatives
of (I{M]))(L) andU, must show a peak increasing la¥".
] The values of the maxima in correspondence with daahe
- reported in Tables Il and Il
] In the case ofJ| a two-parameter fit gives

1.73

1.72

v/v (L)

i e 1.9(8) L>81: » '=0.6004), x*DF=1.37, (32

which again agrees with our previous result E2p).

7/v ()=1.730(1) For (In{|M[))’(L) we obtain

1.70—

P R B B B I L=729,2187: » '=0.5795). (33
0.00000 0.00005 0.00010 0.00015 0.00020 0.00025
L7 For L>27 orL>81 the fits are badi.e., y?/DF is large.
FIG. 5. Fit to obtain the scaling corrections jp using L In these two Case(sierlvatl_ves ofu and Ir(|M|>) we ha_lve .
—81,243,729.2187. not the necessary accuracy in order to have a stable fit taking
into account the scaling corrections.
Bo(2)=0.67511) » 1=0.591), (29
B. y/v exponent: scaling ofy
and The isothermal susceptibility6) displays a peak increas-
H ylv
»=1.701). (30 'ngasL’’.

By fitting the peaks withL”"” we obtain a poory?/DF;
however, after discarding the data relativelte- 27,81 we

We remark that we obtain a better result using the SUSCeRsy 4 in ay2DF<1. The result is

tibility than the other two observabléthe derivatives of the
Iogari_thm of the absolute value of the magnetization and of L>81: y/»v=1.7291), x?/DF=0.6. (34)
the Binder cumulant
In order to include also the data relativelte- 27,81, we
2. Fits at fixed values of the Binder cumulant considered the scaling corrections to such a fit according to
Let us now check the values B() andv obtainedsee  Ea. (24). Applying the procedure of the fiEq. (24)] to the
Table \) employing Eq.(28) with different definitions of the data of Table IV[i.e., we compute the effective exponent
apparent critical couplinggo(L). We consider now a fixed ¥/v using all the lattice sizes: i.e.y/v(27,81),
valuegy of the Binder cumulant), (5), and defingd(L) via  ¥/»(81,217)...] we find

th ti
© equation yIv=1.762), ©=02714), Y4DF=7, (35

UL(B(L))=go- (3D which is unsatisfactory. However, if we discard only the
It is clear from Ref. 17 thaB(L) behaves likeBo(L), see 2/ data we end up with
Eq. (28). , L>27: y/v=17301), »=1.98). (36)
We have used fog, the values 0.5, 0.6, and 0(Zee Fig.
4). The values of theg(L) given by condition(31) are col- In the last fit, shown in Fig. 5, we have not degrees of

lected in Table VI for the lattice sizés=81, 243, 729, 2187, freedom, because we have fitted three data to 24}, which
and the results of fitting these values to E2B) are shown in  contains three free parameters. However, the resulyfoiis
Table VII. We see that these values gf(>) and v~ ' are  compatible with Eq(34) having included thé. = 81 data and
compatible with those given in EqR9). We remark that the the exponentv represents the correction to the scaling. It is

fits reported in Table VII have been obtained using only theclear that the final value of/v in the fit is really stable
lattice sizes 243, 729, and 2187. In all these fits the numbefalmos) independently of they value.

of degrees of freedom is zero, and the reader should take the we conclude that
results of Table VII as a check of our previous estimates of
B and 1b. w=1.98), /v=1.73Q1). (37

TABLE VIII. Absolute value of the magnetization at the critical point for the different lattice sizes.

L (IM_[)(0.6751) (IM_[)(0.6750) (IM_[)(0.6752) (IMLY(Be())
27 0.85462) 0.85442) 0.85482) 0.85464)
81 0.794%1) 0.79421) 0.79491) 0.79455)
243 0.73451) 0.73381) 0.73511) 0.73458)
729 0.67421) 0.67291) 0.67541) 0.674214)

2187 0.6133®) 0.6111@8) 0.615619) 0.61336234)
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TABLE IX. Comparison between the results for the phase tran- TABLE X. Results of the simulation of the fract8l

sition in thed=1, d=2, andd=1.89 (fractal A) Ising models.

L Bsim Bc(L) Max. of dM/dB  Max. of x(L)

Be v Y w

64 0.7396  0.74548) 5.7913) 86.512)
d=1 o 00 0 2 256 0.8060 0.8093) 9.0612) 839.85)
this fractal 0.675@) 1.701) 2.94(2) 1.98) 1024 0.8480  0.85(8) 12.675) 84843)
d=2 0.44... 1 1.75 4/3 4096 0.8780 0.878B) 16.606) 88808101)
By usingr=1.70(1) we can write down the result for the VI. NUMERICAL RESULTS FOR THE FRACTAL B

exponent . . .
In order to provide further evidence for the hyperscaling

y=2.942). (39  relation we considered a second fractal lattice, the Sierpinski
carpetB, described in Sec. Il, whose Hausdorff dimension is
dy=In12/In4. We carried out a finite-size scaling analysis
with lattice sizes ofL =64, 256, 1024, and 4096. We were
Having computed the critical value of the couplifigg.  interested in the verification of the hyperscaling relatiéh.
(29)], we can extract th@/v exponent from the scaling law: In order to get an estimate of the critical exponepts and
B/v from a single simulation for every size we considered
(IML[Y(Be(0))o LA, (39 in this case the observablgsand the derivative of the mag-
netization with respect t@, as it is explained in the follow-

We have written in Table VIl the values dfM.[) in  jnq naragraphs. The results of the simulations are shown in
correspondence with the points 0.6751, 0.6750, and 0.675Z5pje X.

and the final value that we take to make the(fitat is, it The exponenty/v is obtained from the peak of the sus-
takes into account the error in our final value&y. ceptibility. A fit with the three first lattice sizes gives the
Only by fitting the lattice sizes with =243 it is possible 51 e ylv=1.6532), and thevalue y/v=1.6755(4) with
. “ - 2 _ . . ! "
to obtain a “reasonable” fit ¢/DF=2.4/1; we have only ihe three last ones. This difference means the existence of
one degree of freedomin particular scaling corrections. We shall take as our best estimate the
value

C. Blv exponent: scaling of(|M|)

Blv=0.08Q1). (40)

The quality of the data is not good for trying a fit taking into ylv=1.6712). (42)
account the scaling corrections.
Differentiating the magnetization with respect gy we

D. d, and hyperscaling obtain a quantity which scales &§'~#'”. Discarding again
i , the L=64 data, we find
Having obtained the values of/ v=1.730(1) andg/v
=0.080(1) we can consider the hyperscaling relation 1-8
T=0.24](3), X2/DF=3.1. (43
LY g (41)
14 14

The large value of?/DF again shows the existence of large

whered is the dimension that controls hyperscaling. In ourSc@ling corrections. However, using only the data of the lat-

case, we obtaid=1.8902), which is close to the Hausdorff i€ SizesL=1024 andL =4096 we have found (% B)/v

dimension of the lattice under scrutiny. =0.20(3) that is compatible in the error bars with £4g).
Finally we remark that it is clear from the standard deri- NOw we need an estimate of theexponent in order to

vation of the hyperscaling relations that the dimension thag€t 8/v from Eq. (43). We have obtained a good fit to Eq.
plays a role is the Hausdorff one. (28) using the positions of the peaks of the derivativevbf

with respect to8. These are shown g&(L) in Table X. In
this case we are dealing with a three-parameter fit, so that we

need to use the four lattice sizes for consistency. Letting
The specific heat, for positive values af has a peak vary freely, we obtain the best fit for

which scales withL®’”. In our case, this peak is very flat
showing a plateau that goes down as the lattice size in-  ,=3238), B.(*)=0.9283), x?/DF=0.95.
creases. This corresponds to a negative value of the exponent (44)
a. Our numerical estimate i8= — 1.15(which derives from
vdy=2—a). Notice that such a value lies between the zeroThis fit is shown in Fig. 6. Using this result for and Eq.
value of the two-dimensional Ising model and the infinitely (43), we get
negative value of the one-dimensional Ising model.

As expected the exponents for the present lattice interpo- Blv=0.06910). (45)
late between the corresponding values of thel andd
=2 cases as shown in Table IX. The value of thexponent With the resultg42) and(45), we obtain through the hy-
in d=1 is calculated in the Appendix. perscaling relatior{41), the valued=1.81(3). Theerror in

E. a/v exponent: the specific heat
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0.85—

3 C
Q: 0.80 — — b
v=3.23(8)
B ()=0.928(3)
0.75 — —
P | | L |
0.10 0.15 0.20 0.25
L1
FIG. 6. Best fit toB () obtained when varying, using the FIG. 7. Derivative of the Binder cumulant as a function@for
values ofg(L) shown in Table X. The error iB.() contains the  several values of. =4,8,16,32,64,128. .. for the Ising model in
uncertainty inv. one dimension.

this value is large owing to the scaling corrections, but it ising the same fractal dimensiog, », andy may vary with
perfectly compatible with the Hausdorff dimension of thethe lacunarity, but the sum of their ratios cannot. We finally

fractal. remark that the model under study could provide a very good
benchmark to study the thermodynamics of the Ising model
VII. CONCLUSIONS near its lower critical dimension.
In the present paper we have considered the issue of phase ACKNOWLEDGMENTS

transitions on discrete fractal lattices. First, by means of an ish hank ey f ful di
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firmed the absence of a finite-temperature critical point forSions: J-M.C. was supported by a Spanish MEC grant. J. J.
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Then we focused on lattices with infinite ramification or- 9rant- Th_e numerical work was don_e using the RTNN paral-
der and performed extensive MC simulations on determinis!€ machine(composed by 32 Pentium Pro processdes
tic Sierpinski carpets of different sizes and different Haus-Cated at Zaragoza University.
dorff dimensions, where we observed the presence of a
finite-temperature phase transition. The FSS analysis was ap- APPENDIX
plied in order to extract from the data the critical exponents | this appendix we will compute the correction-to-
and their numerical errors. scaling exponent for the one-dimensional Ising model.
The present study represents a massive attempt to deter- \we will use the Binder cumular(), which can be writ-
mine numerically the critical properties of Ising models ontgn as

fractal lattices. We have illustrated the difficulties one en-

counters when dealing with these systems, which are due to U _ c
g L(B)= : (A1)
the slow convergence of the averages to the infinite volume 2(M?)2
limit.
Interestingly, the hyperscaling relation, which was not ob-where
tained before for such lattices, indicates that the rold of N 2
the Euclidean case is taken by the Hausdorff dimension. Fi- (M”>C=—V , (A2)
nally we should comment about the universality of the ah" |,

present results. As pointed out by Wu and Hgn a true . s o .
self-similar structure the statement of universality survivesW'th h the magnetic field andy the partition function for

only in a weak version. In fact, the various exponents mighlmeI V.olume\_/bﬁln thg‘_ case,\I/_= L). v th f i f
depend on the detailed structure of the fractal. It has bee{}] tis p_%‘?’s' € fto ||agorlja :ze ega:ﬁt ytt N trans erlmatrlx or
found, by means of approximate treatments, that the expo- € one-dimensional model, and the two eigenvalues are
nents vary even when the fractal dimension remains fixed, A1 ,=eP{costh)=[sinfP(h)+e *f]1Y¥3.  (A3)
because they depend also on other geometrical character
tics such as the connectivity and the lacunarity. This is no
too surprising since due to the scale invariance a small ZV=)\\1’+)\\2’. (A4)
change at the smallest stage may be magnified up to t .
Iargegt one. In other wordsg,J the Igttice strL?cture, wFr)ﬂch izlgrom Bgs.(A2) and(Ad), we obtain

fﬁen the partition function is

normal critical phenomena does not enter with all its details 5 1—-[tankB)]Y
here plays a much more important role. However, we have (M%e=V ezﬁﬁ, (A5)
verified that the hyperscaling relation holds for the two frac- [tani(5)]

tals we have considered, which suggests that for lattices haand
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Ve?P(3e*—1)[(2 sinh(B))?V — (2 costi B))?V]+ 12V2e*A(4 sinh B)cosh B))Y

4 =
M2 [(2 sink(8))V+ (2 costi B))V]?

(A6)

We put these expressions intAl), and consider the de- We calculated numerically this derivative and obtained the
rivative of the Binder cumulant. It has a peak at finite valuesplot shown in Fig. 7 for several values bf
of B for eachL, B.(L). The peak of the derivative of the Fitting to Eq.(A7) we obtain, wher. —, the asymptotic
Binder cumulant scales ds'” plus scaling corrections. In limit
d=1, v=oo, so that we have

U[(B:(L))=A+BL™“+0O(L™%). (A7) w=2 (A8)
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