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Critical properties of the Ising model on Sierpinski fractals:
A finite-size scaling-analysis approach
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The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We
present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite-size scaling
method, of the critical properties of the Ising model on some two-dimensional deterministic fractal lattices with
different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite
temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular, we
considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff di-
mensionsdH5 ln 8/ln 351.8927 . . . anddH5 ln 12/ln 451.7924 . . . , respectively. The data show in a clear
way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing
several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with
a finite-size scaling analysis, we were able to determine numerically the critical exponents in each case and to
provide an estimate of their errors. Finally, we considered the hyperscaling relation and found indications that
it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.
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I. INTRODUCTION

The present understanding of phase transitions has gr
benefited from the study of the spin-lattice models, perh
the simplest examples of extended systems showing n
trivial cooperative behavior, such as spontaneous symm
breaking. In most cases one is interested in studying syst
whose geometrical properties are regular so that one ass
that the spins occupy the cells of a regular Bravais latt
Near the critical point, i.e. when the correlation length
much larger than the lattice spacing, the influence of
lattice structure becomes negligible and only the embedd
dimension, the number of components of the order param
together with its symmetry, and the nature of the couplin
concur to determine the values of the critical exponents.

Such universal behavior is absent if the lattice is a frac
because the translational invariance is replaced by the m
weaker dilation invariance. Notwithstanding the intense
tivity on various physical problems in a space which inste
of being Euclidean is a fractal lattice, the issue of the ph
transitions and of the critical properties on self-similar su
ports has been rarely addressed.1–3 Unlike critical phenom-
ena in spaces of integer dimension those occurring in s
similar geometries have not been explored so far, apart f
some isolated cases. One expects that the lack of tran
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tional invariance plays a crucial role in phase transitions
fractal supports. These systems besides serving in practic
model natural materials such as porous rocks, aerog
sponges, etc., provide a geometric realization of noninte
Hausdorff dimension. Therefore they offer a possibility
testing thee-expansion technique fore not integer. Finally,
one can explore systems whose geometrical dimensio
very near to its lower critical dimension„in the Ising model
is one: i.e., one is the larger~integer! dimension in which the
system does not have a phase transition at finite temp
ture….

In the present study we shall consider lattices obtained
removing sites from a square lattice. If the diluted lattice
generated by a sequence of random deletions one obtain
so-called site diluted Ising model~SDIM!, whose phase dia
gram has been studied~see, for instance, Refs. 4–6!. In this
case, one finds that the critical temperatureTc tends to zero
as the probabilityp of having a site tends to the percolatio
threshold pc50.592746 ~on a square lattice!. Notice that
only at the percolation thresholdpc the lattice manifests true
self-similarity @and fractal dimension 1.8958~Ref. 7!#, but
the phase transition occurs only atT50. Thus to observe
simultaneously genuine criticality and self-similarity we co
sider a nonstochastic lattice, the so-called Sierpinski ca
~SC!. As pointed out some years ago, one can dec
14 387 ©1998 The American Physical Society
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whether a lattice is able to support an order-disorder tra
tion of the Ising type by looking at its order of ramificatio
R, which is finite if after eliminating a finite number o
bonds one can isolate an arbitrarily large sublattice. Onl
R5` does a phase transition occur. Thus the SC displa
critical point at finite temperature, while the Sierpinski ga
ket does not, being characterized by a finiteR. This is a
manifestation of the fact that, when considering nonregu
structures, the embedding dimension alone is not sufficien
determine the phase behavior.

The deterministic SC we consider, in spite of having
lower Hausdorff dimension than that of the SDIM, is alwa
above the percolation threshold by construction. One
thus observe the interplay between fractal geometry and t
modynamics.

In the present work we shall investigate the critical beh
ior of the Ising model on two classes of fractal lattices, t
two-dimensional Sierpinski gasket and the two-dimensio
Sierpinski carpet. The first lattice, with Hausdorff dimensi
dH5 ln 15/ln 551.682 606. . . , can bestudied analytically
and an exact real-space renormalization-group treatm
rules out the possibility of a finite ordering temperature. T
Sierpinski carpet instead displays a genuine transition a
nite temperature that we have characterized numerically
two different fractal dimensions,dH5 ln 8/ln 3, and dH
5 ln 12/ln 4.

In statistical mechanics it is usually assumed that in
infinite volume limit (V→`) the average of a given observ
able calculated over a subvolume sufficiently large compa
with the bulk correlation length yields a result independ
of the particular choice and location of the cell within th
sample, and moreover, that this average converges to
average value over the whole sample. In the fractal latti
that we consider such a property breaks down below
critical point because the system cannot be regarded
uniform material over length scales larger than the corre
tion length, due to the presence of voids of all sizes wh
render the system effectively not uniform. Even the corre
tion length depends on the position. However we shall sh
that this system has a second-order phase transition and
means the existence of a divergent length scalej` in the
thermodynamic limit. Although the fractal is not homog
neous, we postulate the existence of this ‘‘average’’ corre
tion length at least near criticality. To assume the existe
of such a length is in some sense similar to what happ
when studying the diffusion problem on a lattice. There,
course, a walker does not diffuse with the same law from
point of the lattice, but one can still define a diffusive type
behavior of the typeR;t1/dw by averaging over all possibl
initial positions of the walker.

We outline the plan of the paper: in Sec. II we introdu
the lattices and define the observables of the Ising mo
which will be measured in the simulations, and give so
details about the numerical procedure employed to obtain
statistical averages. In Sec. III we illustrate some analyt
results concerning lattices with finite ramification orde
which were obtained by means of an exact Migdal-Kadan
decimation procedure. In Sec. IV we recall briefly the sta
ment of the finite size scaling method. In Sec. V we illustr
the results of the simulations for the fractal characterized
dH5 ln 8/ln 3 and discuss at some length the details of
i-
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data analysis on the basis of which we determined the va
of the various critical exponents and of the critical couplin
In Sec. VI we illustrate the results of the simulations for t
fractal withdH5 ln 12/ln 4, with special emphasis on the h
perscaling relation. Finally in Sec. VII we present the co
clusions.

II. THE MODEL AND OBSERVABLES

Let us introduce the lattice models that we shall consi
in numerical studies. We have first considered a SC, nam
hereafter fractalA, constructed starting from a square latti
of L3L cells with L53n, dividing it into 333 blocks of
equal size and discarding the cells contained in the cen
block. Divide again each of the remaining blocks into 333
sub-blocks and discard all the central elements. Carry on
procedure until the smallest sub-block contains a single c
The resulting structure is formed byV cells, whereV is re-
lated to the linear dimension through the Hausdorff dime
sion dH as V5LdH. In this case, dH5 ln 8/ln 3
51.892 789 . . . . Of course one can build many different
with the same fractal dimension, but having different dist
butions of voids. This can be quantified by means of
so-called lacunarity.8 In the present work we stick to th
symmetrical fractal shown in Fig. 1. We define bonds b
tween the remaining cells. The number of bondsN is

N5
8

5
V1

2

5
L, ~1!

so thatN is proportional toV in the thermodynamic limit.
Note that this fractal hasR5`.

For the fractalB, the construction follows the same pro
cedure, but now one considers 434 blocks and discards th
four central ones. This lattice has fractal dimensiondH
5 ln 12/ln 351.792 481 . . . and in this case the relation b
tween the number of bondsN, the linear dimensionL, and
the number of cellsV is

N5
3

2
V1

1

2
L. ~2!

FIG. 1. SC of dimensiondH5 ln 8/ln 3 for L59. Filled circles
represent cells to which Ising spins are assigned, whereas e
circles represent cells which have been eliminated from the orig
square lattice. The links represent the interactions among spin
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Now, at each unit cell we assign a dichotomic spin va
ables561. The total energy of the system with ferroma
netic interactions is defined as

H52(
^ i , j &

s is j , ~3!

where ^ i , j & are nearest-neighbor cells. The energy norm
ized to the number of links is a quantity that has a we
defined thermodynamic limit, and the specific heat is

C5N~^E2&2^E&2!. ~4!

Since our primary target is to obtain information about t
critical behavior of the model we first locate the critical po
and then we extract the critical exponents. To achieve
goal we introduce the observables which are relevant. Th
are defined as follows: the intensive magnetizationM

M5
1

V (
i

s i , ~5!

the isothermal susceptibility:

x5V~^M2&2^uM u&2!, ~6!

and the Binder cumulant

U5
1

2S 32
^M4&

^M2&2D . ~7!

III. MIGDAL-KADANOFF METHOD

The Migdal-Kadanoff~MK ! decimation is an approxima
tion very suitable for analyzing low dimensional system
MK is exact in one dimension, but lacks predictability
higher dimensions. The starting point is the formula for t
variation of the inverse temperature (b) with the scale factor
in the MK approximation in a system of dimensionali
D,9,10

db

dt
5g~b!, ~8!

g~b!5~D21!b

1sinh~b!cosh~b!ln@ tanh~b!#, ~9!

wheret is the logarithm of the scale factor in the block co
struction.

The zeroes ofg(b) yield the inverse critical temperature
of the system. Also, it is possible to compute then exponent
from

1

n
5

dg~b!

db U
b5bc

. ~10!
-

l-
-

is
se

.

e

Such a formula is very interesting because one can ob
the behavior of the critical exponents and the critical te
perature near the lower critical dimension of the Ising mod
for instance whenD→1

bc.
1

2~D21!
, n.

1

D21
. ~11!

If one assumes that the dimensionality of the system co
sponds to the Hausdorff dimension~i.e. D5dH
51.892 789. . . ) one obtains bc.0.56 andn.1.12. Nu-
merically @solving g(bc)50 and 1/n5g8(bc) for D51.89,
that corresponds to fractalA# one obtains

bc50.5120, n51.409. ~12!

For the fractalB (D51.79) the results are

bc50.5906, n51.511. ~13!

Obviously this approach does not take into account
ramification and lacunarity of the model. Nonetheless in t
section we have obtained a first guess of the critical temp
ture and of then exponent for a system with the same frac
dimension that the Sierpinski carpet~in the most symmetric
version! that we will study numerically in the next section

Exact solution of the Sierpinski gasket

The decimation can be carried out exactly on the Sierp
ski gasket, recovering the same lattice after a decima
transformation.

We express the Boltzmann weight in the usual way

exp~bs1s2!5cosh~b!@11s1s2tanh~b!#, ~14!

where we have denoted bys1 ands2 two generic spins be-
longing to the lattice. We denote bym the spins that we
decimate and bys the rest of the spins.

The decimation over them spins is the following~see
Fig. 2!.

FIG. 2. Sierpinski gasket~SG!. The spins live in the sites of the
construction. We have marked withm the spins that are decimated
See the text for more details.
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(
m1 ,m2 ,m3561

exp@b~s1m11s1m21m1m21m1s21m1m31m2m31m2s31m3s31m3s2!#

5F( ~11ks1m1!~11ks1m2!~11km1m2!~11km1s2!~11km1m3!

3~11km2m3!~11km2s3!~11km3s3!~11km3s2!

58~11k!3~11k2!~123k15k223k31k4!F11
k2

123k15k223k31k4
~s1s21s1s31s2s3!G ,

~15!
io
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where we have definedk[tanh(b) andF5cosh9(b).
The Sierpinski gasket is self-similar under this decimat

transformation and we can see that Eq.~15! corresponds to a
nearest-neighbor Ising interaction with a renormalized c
pling (bR). i.e.,

exp@bR~s1s21s2s31s3s1!#

5F8~11kRs1s2!~11kRs1s3!~11kRs2s3!

5F8~11kR
3 !F11

kR~11kR!

11kR
3 ~s1s21s1s31s2s3!G ,

~16!

and we have denoted withkR5tanh(bR) the renormalizedk
andF85cosh3(bR). We finally arrive at the following exac
recursion @by matching the coefficient of (s1s21s2s3
1s3s1) of Eqs.~15! and ~16!#

k2

123k15k223k31k4
5

kR~11kR!

11kR
3

. ~17!

The critical points correspond to the solutions of the previo
recursion formula. The solutions arek50 andk51, i.e., are
b50 and b5`: there is no phase transition at any fini
temperature. From Fig. 2 it is clear thatR remains finite
even when the linear size diverges.

IV. FINITE-SIZE SCALING METHOD „FSS…

For a finite system whose typical linear size isL, which is
assumed to be much larger than the lattice spacinga, the
finite-size scaling hypothesis11,12 postulates that upon ap
proaching the critical point the average value of a given
servable P depends on the size and on the temperat
through the following scaling relation:

PL~ t !

P`~ t !
5 f S L

j`~ t ! D , ~18!

whereTc andt are, respectively, the critical and the reduc
temperaturet5uT2Tcu/Tc of the system, andP` represents
the value ofP in the infinite volume limit. IfP`(t) behaves
as t2r when t→0, since the correlation length diverges
j`;t2n, it is clear thatPL(t) will saturate when thej`

becomes comparable withL. This can be formalized by writ-
ing:
n

-

s

-
e

PL~ t !5Lr/ng~ tL1/n!, ~19!

where the scaling functiong(x) has the limiting behavior
g(x)5const asx→0 andg;x2r asx→`.

Thus at the critical point one can write the followin
finite-size scaling formulas for the observables~see, for in-
stance, Ref. 5!:

x~L,t50!}Lg/n@11O~L2v!#, ~20!

C~L,t50!}La/n@11O~L2v!#, ~21!

wherev is the correction-to-scaling exponent~it is just the
slope of the field-theoreticalb function at the fixed point or
equivalently the largest irrelevant scaling exponent in
Wilson renormalization group!, andt is the reduced tempera
ture of the model.

For nondimensional quantities, denoted byA, in the prox-
imity of the critical point (t!1) one has the scalings:

A~L,t !5 f A~L1/nt !1L2vgA~L1/nt !1O~L22v!, ~22!

wheref A andgA are scaling functions. Their derivatives wit
respect tob behave as

dA

db
~L,t50!}L1/n@11O~L2v!#. ~23!

FIG. 3. SDM extrapolation for the derivative of ln^uMu& in a L
52187 lattice. Circles are results relative to Wolff algorithm
crosses are relative to SW. The extra point refers to another s
lation ~not a SDM extrapolation!. The region where the SDM ex
trapolation has small errors is very small.
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In particular in the present work we have chosenA to be the
Binder cumulantU andA5 ln^uMu&.

The v exponent can be calculated using the effect
critical exponents that are extracted from the peaks of
observables at lattice sizesL andsL. Let us take the suscep
tibility, for example. We obtain the effective (g/n) (L,sL)
as

g

n
~L,sL!5

1

ln s
ln

x~sL!

x~L !
. ~24!

Using the scaling formulas and working in the large lattic
we obtain

g

n
~L,sL!5

g

n
1BL2v, ~25!

whereg/n is the infinite volume extrapolation of the rati
g/n(L,sL) measured on finite lattices. We obtainv andg/n
by fitting the data to formula~25!.

In order to determine the critical temperature, let us c
bc

O(L) the value ofb where the observableO ~with positive
dimension! displays a maximum. In order to assess its lo
tion several simulations at different values ofb are needed in
principle, and even doing so its precise determination is h
However, the spectral density method13 ~SDM! renders such
task easier and much faster. In fact, by using the data fro
single simulation at a given temperature, sayb0, one can
obtain information about someb1 in the neighborhood of
b0. With SDM one usually gains one order of magnitude
the accuracy of the location of the peak.

The idea is to write the partition function under the form

Z} (
$confs%

e2bH~s!5(
E

(
$confs%

e2bH~s! d~H2E!

5(
E

e2bEN~E!, ~26!

whereH(s) is the Hamiltonian as a function of the config
ration $s% and N(E) is the energy density of states, whic

TABLE I. Values of the couplingb where the Binder cumulant
meet each other.

81 243 729 2187

27 0.6693~3! 0.67176~5! 0.67345~3! 0.67455~2!

81 0.6730~2! 0.67422~5! 0.67502~1!

243 0.67486~7! 0.67546~4!

729 0.6759~1!

TABLE II. Maxima of (ln^uMu&)8(L).

L No. files bsim bO(L) Max. of (ln̂ uMu&)8(L)

27 ; 6600 0.580 0.5796~3! 13.19~1!

81 ; 5800 0.629 0.6275~1! 28.46~6!

243 ; 4000 0.650 0.6505~2! 58.5~2!

729 ; 13900 0.6618 0.6622~1! 115.4~4!

2187 ; 6400 0.6682 0.6681~2! 218~1!
e
e

,

ll

-

d.

a

can be obtained from the number of times that the valueE of
the energy is generated during a Monte Carlo~MC! simula-
tion. Given the density of states atb5b0, the value of a
certain operatorO at b1Þb0 is given by

^O~b1!&5

(
E

O~b0 ,E! N~E! e2~b12b0!E

(
E

N~E!e2~b12b0!E

. ~27!

This extrapolation is exact. The problem is that for lar
deviationsDb5b12b0 the errors in the extrapolation ar
very large, and then one has to restrict oneself to smallDb
values~of order 1/AV).

In d>2 the valuebc
O(L) hardly changes withO, and with

the help of the SDM one can reach the peak of every obs
able with a single simulation at a certainb. We found that
this is not the case on fractal lattices withdH,2 because the
transition region turns out to be very large, and sometim
we were forced to perform different simulations at differe
points, depending on the observables, in order to get t
corresponding peaks.

To compute thermal averages we have employed a c
bination ofm steps of the classical Metropolis algorithm fo
lowed by n steps of the Wolff single-cluster algorithm,14

which gives a very short autocorrelation time. We check
that such method is sufficient to ensure ergodicity. Howev
the Wolff algorithm is unable to flip clusters of intermedia
size, which might be important in our model, where there
domains of spins at every scale. That is why we have app
in addition a Swendsen-Wang~SW! algorithm,15 which is
more consuming in computing time than the Wolff alg
rithm, but is able to flip domains of spins of every scale.
fact, we have compared the results of the two different p
cedures. Figure 3 shows that the two methods give com
ible results in a region around the simulation point, where
SDM extrapolation is valid~away from this region, the SDM
extrapolation gives large errors and it is therefore not r
able, so that it is not surprising that it gives different resu
for the two algorithms!. We also note the narrow range o

TABLE III. Maxima of U8(L).

L No. files bsim bO(L) Max. of U8(L)

27 ; 6600 0.580 0.5744~3! 8.40~2!

81 ; 5800 0.629 0.6252~2! 17.56~9!

243 ; 4000 0.650 0.6493~2! 35.8~2!

729 ; 13900 0.6618 0.6617~1! 69.8~4!

2187 ; 2400 0.668 0.6680~3! 132~3!

TABLE IV. Maxima of x(L).

L No. files bsim bx(L) Max. of x(L)

27 ; 6600 0.580 0.59431~6! 27.97~3!

81 ; 5800 0.629 0.63442~4! 179.2~2!

243 ; 2000 0.651 0.65394~7! 1164~4!

729 ; 8000 0.663 0.66402~2! 7759~7!

2187 ; 4400 0.669 0.66936~1! 51883~58!
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validity of the SDM which is used to extrapolate the nume
cal data, which makes even more troublesome the prob
of finding the peaks of observables in order to perform F
As far as the observables directly measured are conce
one can hardly see differences in the two simulation al
rithms; however, discrepancies exist when one looks at
derivatives of the measured quantities.

V. NUMERICAL RESULTS FOR THE FRACTAL A

We now focus attention on the SC of fractal dimensi
dH5 ln 8/ln 3 described in Sec. II~fractal A!, and provide
evidence of the existence of a phase transition at a fi
value of b. The behavior of the SC should interpolate b
tween thed51 and d52 cases. Ind51, bc diverges. In
fact, with a similar analysis of the partition function to th
one used in the Appendix, it can be analytically calcula
that j(b);u ln tanh(b)u21, which means that, whenb→`,
j(b);e2b. If we definebc(L) as the value ofb for which
j.L, then bc(L); ln L in d51. This means a smoot
growth; it is therefore necessary to pay attention in orde
demonstrate thatbc(L) does not diverge withL in the case
under scrutiny.

We performed different simulations for lattice sizes w
L527, 81, 243, 729, and 2187, and concluded that there
several evidences of the occurrence of a phase transitio
the Ising model on this Sierpinski carpet. Not only the av
age magnetization changes from 0 to 1 going from the
ordered to the ordered phase, but we also observed that s
observables, shown below, present peaks increasing as
ers of the size,L. The most stringent criterion to locate th
critical coupling,bc is to study the crossing of the Binde
cumulants relative to different volumes. Ind51, where there
is not a phase transition at a finite value ofb, the cumulants
cross each other atb5`. This is not the case in this mode

FIG. 4. Binder cumulants forL581, 243, 729, 2187.

TABLE V. Fits to Eq.~28! for different observablesO, lattices
81, 243, 729, and 2187.

O bc(`) n21

x 0.67522~7! 0.589~3!

(ln^uMu&)8 0.6742~5! 0.62~1!

U8 0.6747~7! 0.61~2!
-
m
.

ed
-
e

te
-

d

o
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in
-
-
me
w-

The positions of the intersections of the Binder cumula
are reported in Table I and indicate thatbc.0.675. How-
ever, considering that the curves of the largest lattices h
almost the shape of a ‘‘step function,’’ and that the inters
tions take place within the zone of sudden change of slop
is difficult to obtain them with good precision. We have e
timated the value ofbc by other means, as we shall see in t
next section.

It has been observed16 that on fractal lattices, as the one
we consider, a certain number of stages of construction
the SC is necessary in order to obtain reliable predicti
about the critical behavior. Actually, as we shall see in
next sections, we were forced to discard the smallest lat
sizes,L527,81, in certain fits to obtain reliable results.

A. n exponent andbc„`…

1. Position of the maxima

In a FSS analysis, every observableO which diverges in
the thermodynamic limit whenb5bc(`) displays a peak for
finite L, located at a different valuebO(L). When L in-
creases, the difference betweenbO(L) and bc(`) becomes
smaller according to the law

bO~L !2bc~`!}L21/n. ~28!

A three-parameter fit determines the values of exponenn
and of bc(`). To produce such a fit we have consider
three different observables: the derivative of the logarithm
the magnetization, the derivative of the Binder cumulant~7!
and the isothermal susceptibility~6!. These three quantitie
display maxima at the values ofbO(L) shown in Tables II,
III and IV, respectively. In these tables we report the valu
of the peaks for the different lattice sizes together with
statistics performed in correspondence with eachL. Here and
in the following, each file is made of 200 steps of SW, 4
steps of Metropolis and 2000 cluster sweeps with the W
algorithm. The integrated correlation time is always less th
a file of measurements.

The best fits are obtained discarding theL527 data from
the three tables. We obtain the results shown in Table V.
the fits yield x2/DF,1 ~where DF means the number o
degrees of freedom in the fit!; we conclude from these that

TABLE VI. Values of b(L) where the Binder cumulants tak
the values 0.5, 0.6, and 0.7.

g0 L581 L5243 L5729 L52187

0.5 0.61972~7! 0.64677~4! 0.66026~2! 0.66736~3!

0.6 0.62551~4! 0.64959~2! 0.661737~6! 0.668099~4!

0.7 0.63134~2! 0.65245~2! 0.663205~9! 0.668868~6!

TABLE VII. Fit of the values of Table VI to Eq.~28!.

g0 bc(`) n21

0.5 0.6753~2! 0.585~6!

0.6 0.6751~4! 0.589~2!

0.7 0.6752~1! 0.584~3!
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bc~`!50.6751~1! n2150.59~1!, ~29!

and

n51.70~1!. ~30!

We remark that we obtain a better result using the susc
tibility than the other two observables~the derivatives of the
logarithm of the absolute value of the magnetization and
the Binder cumulant!.

2. Fits at fixed values of the Binder cumulant

Let us now check the values ofbc(`) andn obtained~see
Table V! employing Eq.~28! with different definitions of the
apparent critical couplingbO(L). We consider now a fixed
valueg0 of the Binder cumulantUL(b), and defineb(L) via
the equation

UL„b~L !…5g0 . ~31!

It is clear from Ref. 17 thatb(L) behaves likebO(L), see
Eq. ~28!.

We have used forg0 the values 0.5, 0.6, and 0.7~see Fig.
4!. The values of theb(L) given by condition~31! are col-
lected in Table VI for the lattice sizesL581, 243, 729, 2187
and the results of fitting these values to Eq.~28! are shown in
Table VII. We see that these values ofbc(`) and n21 are
compatible with those given in Eq.~29!. We remark that the
fits reported in Table VII have been obtained using only
lattice sizes 243, 729, and 2187. In all these fits the num
of degrees of freedom is zero, and the reader should take
results of Table VII as a check of our previous estimates
bc and 1/n.

FIG. 5. Fit to obtain the scaling corrections inx using L
581,243,729,2187.
p-

f

e
er
he
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3. Peaks of„ lnŠzMz‹…8„L… and UL8

According to the finite-size-scaling ansatz the derivativ
of (ln^uMu&)(L) andUL must show a peak increasing asL1/n.
The values of the maxima in correspondence with eachL are
reported in Tables II and III.

In the case ofUL8 a two-parameter fit gives

L.81: n2150.600~4!, x2/DF51.37, ~32!

which again agrees with our previous result Eq.~29!.
For (ln̂ uMu&)8(L) we obtain

L5729,2187: n2150.579~5!. ~33!

For L.27 or L.81 the fits are bad~i.e., x2/DF is large!.
In these two cases~derivatives ofU and ln̂ uMu&) we have

not the necessary accuracy in order to have a stable fit ta
into account the scaling corrections.

B. g/n exponent: scaling ofx

The isothermal susceptibility~6! displays a peak increas
ing asLg/n.

By fitting the peaks withLg/n we obtain a poorx2/DF;
however, after discarding the data relative toL527,81 we
obtain ax2/DF,1. The result is

L.81: g/n51.729~1!, x2/DF50.6. ~34!

In order to include also the data relative toL527,81, we
considered the scaling corrections to such a fit according
Eq. ~24!. Applying the procedure of the fit@Eq. ~24!# to the
data of Table IV@i.e., we compute the effective expone
g/n using all the lattice sizes: i.e.g/n(27,81),
g/n(81,217), . . .# we find

g/n51.76~2!, v50.27~14!, x2/DF57, ~35!

which is unsatisfactory. However, if we discard only theL
527 data we end up with

L.27: g/n51.730~1!, v51.9~8!. ~36!

In the last fit, shown in Fig. 5, we have not degrees
freedom, because we have fitted three data to Eq.~24!, which
contains three free parameters. However, the result forg/n is
compatible with Eq.~34! having included theL581 data and
the exponentv represents the correction to the scaling. It
clear that the final value ofg/n in the fit is really stable
~almost! independently of thev value.

We conclude that

v51.9~8!, g/n51.730~1!. ~37!
TABLE VIII. Absolute value of the magnetization at the critical point for the different lattice sizes.

L ^uMLu&(0.6751) ^uMLu&(0.6750) ^uMLu&(0.6752) ^uMLu&(bc(`))

27 0.8546~2! 0.8544~2! 0.8548~2! 0.8546~4!

81 0.7945~1! 0.7942~1! 0.7949~1! 0.7945~5!

243 0.7345~1! 0.7338~1! 0.7351~1! 0.7345~8!

729 0.6742~1! 0.6729~1! 0.6754~1! 0.6742~14!

2187 0.61338~8! 0.61110~8! 0.61561~9! 0.61336~234!
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By usingn51.70(1) we can write down the result for theg
exponent

g52.94~2!. ~38!

C. b/n exponent: scaling ofŠzM z‹

Having computed the critical value of the coupling@Eq.
~29!#, we can extract theb/n exponent from the scaling law

^uMLu&„bc~`!…}L2b/n. ~39!

We have written in Table VIII the values of^uMLu& in
correspondence with the points 0.6751, 0.6750, and 0.6
and the final value that we take to make the fit~that is, it
takes into account the error in our final value ofbc).

Only by fitting the lattice sizes withL>243 it is possible
to obtain a ‘‘reasonable’’ fit (x2/DF52.4/1; we have only
one degree of freedom!, in particular

b/n50.080~1!. ~40!

The quality of the data is not good for trying a fit taking in
account the scaling corrections.

D. ds and hyperscaling

Having obtained the values ofg/n51.730(1) andb/n
50.080(1) we can consider the hyperscaling relation

2
b

n
1

g

n
5d, ~41!

whered is the dimension that controls hyperscaling. In o
case, we obtaind51.890(2), which is close to the Hausdorf
dimension of the lattice under scrutiny.

Finally we remark that it is clear from the standard de
vation of the hyperscaling relations that the dimension t
plays a role is the Hausdorff one.

E. a/n exponent: the specific heat

The specific heat, for positive values ofa, has a peak
which scales withLa/n. In our case, this peak is very fla
showing a plateau that goes down as the lattice size
creases. This corresponds to a negative value of the expo
a. Our numerical estimate isa.21.15~which derives from
ndH522a). Notice that such a value lies between the ze
value of the two-dimensional Ising model and the infinite
negative value of the one-dimensional Ising model.

As expected the exponents for the present lattice inte
late between the corresponding values of thed51 and d
52 cases as shown in Table IX. The value of thev exponent
in d51 is calculated in the Appendix.

TABLE IX. Comparison between the results for the phase tr
sition in thed51, d52, andd51.89 ~fractal A! Ising models.

bc n g v

d51 ` ` ` 2
this fractal 0.6752~1! 1.70~1! 2.94 ~2! 1.9~8!

d52 0.44 . . . 1 1.75 4/3
2,

r

-
t

n-
ent

o

o-

VI. NUMERICAL RESULTS FOR THE FRACTAL B

In order to provide further evidence for the hyperscali
relation we considered a second fractal lattice, the Sierpin
carpetB, described in Sec. II, whose Hausdorff dimension
dH5 ln 12/ln 4. We carried out a finite-size scaling analys
with lattice sizes ofL564, 256, 1024, and 4096. We wer
interested in the verification of the hyperscaling relation~41!.
In order to get an estimate of the critical exponentsg/n and
b/n from a single simulation for every sizeL, we considered
in this case the observablesx and the derivative of the mag
netization with respect tob, as it is explained in the follow-
ing paragraphs. The results of the simulations are show
Table X.

The exponentg/n is obtained from the peak of the su
ceptibility. A fit with the three first lattice sizes gives th
value g/n51.6530(2), and thevalue g/n51.6755(4) with
the three last ones. This difference means the existenc
scaling corrections. We shall take as our best estimate
value

g/n51.67~2!. ~42!

Differentiating the magnetization with respect tob, we
obtain a quantity which scales asL (12b)/n. Discarding again
the L564 data, we find

12b

n
50.241~3!, x2/DF53.1. ~43!

The large value ofx2/DF again shows the existence of larg
scaling corrections. However, using only the data of the
tice sizesL51024 andL54096 we have found (12b)/n
50.20(3) that is compatible in the error bars with Eq.~43!.

Now we need an estimate of then exponent in order to
get b/n from Eq. ~43!. We have obtained a good fit to Eq
~28! using the positions of the peaks of the derivative ofM
with respect tob. These are shown asbc(L) in Table X. In
this case we are dealing with a three-parameter fit, so tha
need to use the four lattice sizes for consistency. Lettinn
vary freely, we obtain the best fit for

n53.23~8!, bc~`!50.928~3!, x2/DF50.95.
~44!

This fit is shown in Fig. 6. Using this result forn and Eq.
~43!, we get

b/n50.069~10!. ~45!

With the results~42! and~45!, we obtain through the hy-
perscaling relation~41!, the valued51.81(3). Theerror in

- TABLE X. Results of the simulation of the fractalB.

L bsim bc(L) Max. of dM/db Max. of x(L)

64 0.7396 0.74548~6! 5.797~3! 86.57~2!

256 0.8060 0.8094~3! 9.06~2! 839.8~5!

1024 0.8480 0.8501~6! 12.67~5! 8484~3!

4096 0.8780 0.8782~6! 16.6~6! 88808~101!
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this value is large owing to the scaling corrections, but it
perfectly compatible with the Hausdorff dimension of t
fractal.

VII. CONCLUSIONS

In the present paper we have considered the issue of p
transitions on discrete fractal lattices. First, by means of
exact Migdal-Kadanoff decimation transformation we co
firmed the absence of a finite-temperature critical point
the Sierpinski gasket.

Then we focused on lattices with infinite ramification o
der and performed extensive MC simulations on determi
tic Sierpinski carpets of different sizes and different Ha
dorff dimensions, where we observed the presence o
finite-temperature phase transition. The FSS analysis was
plied in order to extract from the data the critical expone
and their numerical errors.

The present study represents a massive attempt to d
mine numerically the critical properties of Ising models
fractal lattices. We have illustrated the difficulties one e
counters when dealing with these systems, which are du
the slow convergence of the averages to the infinite volu
limit.

Interestingly, the hyperscaling relation, which was not o
tained before for such lattices, indicates that the role ofd of
the Euclidean case is taken by the Hausdorff dimension.
nally we should comment about the universality of t
present results. As pointed out by Wu and Hu,18 on a true
self-similar structure the statement of universality surviv
only in a weak version. In fact, the various exponents mi
depend on the detailed structure of the fractal. It has b
found, by means of approximate treatments, that the ex
nents vary even when the fractal dimension remains fix
because they depend also on other geometrical charac
tics such as the connectivity and the lacunarity. This is
too surprising since due to the scale invariance a sm
change at the smallest stage may be magnified up to
largest one. In other words, the lattice structure, which
normal critical phenomena does not enter with all its det
here plays a much more important role. However, we h
verified that the hyperscaling relation holds for the two fra
tals we have considered, which suggests that for lattices

FIG. 6. Best fit tobc(`) obtained when varyingn, using the
values ofbc(L) shown in Table X. The error inbc(`) contains the
uncertainty inn.
s
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ing the same fractal dimension,b, n, andg may vary with
the lacunarity, but the sum of their ratios cannot. We fina
remark that the model under study could provide a very go
benchmark to study the thermodynamics of the Ising mo
near its lower critical dimension.
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APPENDIX

In this appendix we will compute the correction-to
scaling exponent for the one-dimensional Ising model.

We will use the Binder cumulant~7!, which can be writ-
ten as

UL~b!52
^M4&c

2^M2&c
2

, ~A1!

where

^Mn&c5
]nlnZ V

]hn U
h50

, ~A2!

with h the magnetic field andZV the partition function for
the volumeV ~in this case,V[L).

It is possible to diagonalize exactly the transfer matrix
the one-dimensional model, and the two eigenvalues are

l1,25eb$cosh~h!6@sinh2~h!1e24b#1/2%. ~A3!

Then the partition function is

ZV5l1
V1l2

V . ~A4!

From Eqs.~A2! and ~A4!, we obtain

^M2&c5V e2b
12@ tanh~b!#V

11@ tanh~b!#V
, ~A5!

and

FIG. 7. Derivative of the Binder cumulant as a function ofb for
several values ofL54,8,16,32,64,128 . . . for the Ising model i
one dimension.
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^M4&c5
Ve2b~3e4b21!@„2 sinh~b!…2V2„2 cosh~b!…2V#112V2e4b

„4 sinh~b!cosh~b!…V

@„2 sinh~b!…V1„2 cosh~b!…V#2
. ~A6!
-
e

e

e
We put these expressions into~A1!, and consider the de
rivative of the Binder cumulant. It has a peak at finite valu
of b for eachL, bc(L). The peak of the derivative of th
Binder cumulant scales asL1/n plus scaling corrections. In
d51, n5`, so that we have

UL8„bc~L !…5A1BL2v1O~L22v!. ~A7!
d
f
h

e

b
l
n

s
We calculated numerically this derivative and obtained th
plot shown in Fig. 7 for several values ofL.

Fitting to Eq.~A7! we obtain, whenL→`, the asymptotic
limit

v52. ~A8!
-
-
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