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Abstract 

The self-consistent relativistic Thomas-Fermi theory of heavy positive ions with N electrons and 
nuclear charge Ze is shown to lead to a chemical potential f i  which has the scaling property 

p = Z 4 / 3 F ( N / Z ; ~ / Z 2 / 3 ) ,  

with E = a 2 Z 2 ,  a being the fine structure constant. Combining this with the Layzer-Bahcall expansion 
for the total energy E(Z, N ) ,  namely, 

m m  

E ( Z , N ) = Z 2  I: E,,(N)E"'Z-", 
n = O  m = O  

it is proved that the coefficients E,,(N) at large N have the asymptotic behavior Nn-2m'3+1/3 . The 
corresponding result for the scaling of the relativistic Thomas-Fermi energy is 

ETF(Z, N )  = Z7/3F, (N/Z;  

Scaling properties of the higher order terms in Enm(N)  and E(Z, N )  are also proposed. 

Introduction 

To exhibit regularities in the energy E ( Z , N )  of atomic ions with nuclear 
charge Ze and N electrons, there have been, historically, two approaches. Many 
of the earliest utilized the statistical theory of Thomas [l] and Fermi [2], which 
leads to the result for large Z and N that 

E ~ ~ ( z ,  N )  = - z ~ ' ~ ~ ~ ( N / z )  e2/ao. (1) 
where the function f l ( N / Z )  is known from numerical solution of the Thomas- 
Fermi equation [3]. Below we shall use atomic units in which the hartree, 
e2/ao = 27 eV, is the unit of energy, a0 being the Bohr radius. Important progress 
along an apparently different direction resulted when Layzer [4] proposed the 
1/Z expansion in which E(Z,  N) is developed in the form 

(2) 
March and White [ 5 ]  demonstrated the connection between Eq. (2) and the 

statistical limit (1) for heavy positive ions by showing that the general coefficient 
Eno(N)  for large N behaves as 

(3) 

E(Z,  N )  = -Z2(Eoo(N)) + Elo(N)/Z + E20(N)/Z2 + * * . 

(0) n + 1 / 3  ( 1 ) N n  + C ( 2 ) ~ n - 1 / 3  +. . . E , ~ = c ,  N + c ,  n - . 
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In Eq. (2), Eoo(N) is determined solely by the bare Coulomb field, while E,,o(N) 
for n 2 1 involves of course the electron-electron interactions. It is also relevant 
to note here that the convergence of Eq. (2) has been shown by Kato [6] to 
follow for sufficiently large 2. 

Everything discussed so far is based on the nonrelativistic Schrodinger 
equation. 

Self-consistent Relativistic Thomas-Fermi Theory-Scaling Properties 

Our object in the present paper is first to exhibit the scaling properties of 
the self-consistent relativistic Thomas-Fermi theory [7,8] of positive ions, which 
will lead us to the appropriate relativistic generalization of Eq. (1). Later, we 
shall also discuss relativistic generalizations of Eq.(2) and (3), which will be 
motivated by the results of the relativistic Thomas-Fermi theory. 

If we subtract, from the outset, the rest mass energy mc2, we can write the 
semiclassical energy equation for the fastest electron. This energy is equivalent 
to the chemical potential p, which must be a constant throughout the entire 
electronic cloud of the positive ion. Otherwise, electrons could redistribute in 
space to lower the total energy. If pf(r) is the maximum momentum of this 
electron at position r, while V(r) is the self-consistent potential energy in which 
the electrons move, then using the customary relativistic expression for the 
kinetic energy we can write 

( 4 )  2 4 112- 
p = ( c 2 p : ( r ) + m  c ) mc2+ V(r). 

The maximum momentum pf(r) is related as usual to the electron density p by [9] 

p ( r )  = (837/3h3)p:(r).  ( 5 )  

Third we must add to Eqs. ( 4 )  and (5) the requirement of self-consistency 
embodied in the Poisson equation 

(6) v v = -V ( p  - V )  = -437pe2, 

where we have obviously utilized the constancy of the chemical potential in space. 
Following now the scaling conventionally used in the nonrelativistic theory 

of heavy positive ions [9], we introduce dimensionless quantities 4 and x defined 

2 2 

by 

p - V ( r )  = (Ze2/r)q5(x),  r = bx, b = 0 . 8 8 5 ~ ~ / Z ' / ~ .  (7) 

Equation (6) can then be rewritten 

2 1 d 2  1 d 2  Z e 2  d 2 d  - - - . . r ( p - ~ ) = - - z e  + = 7 7 = 4 r p e .  
r dr r dr2 b x dx 

At this stage we return to Eq. (4) .  Rearranging this, and then squaring, almost 
immediately yields 

( p  - V)* +2mc2(p - V )  = c2p:, (9) 
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and hence in terms of 4, x,  and p, we find 

Utilizing Eq. (8) for the electron density p and writing d24/dx2 = d”, we obtain, 
after a little rearrangement, the result 

(11) 
const z413 4 4 4” ’ I 3  

mc2 (i)2+;=(,) 
where the constant is readily written but is not, in fact, needed for our present 
purposes. Equation (1 1) correctly reduces to the dimensionless nonrelativistic 
Thomas-Fermi equation 4” = 43/2/x1’2 in the limit c tends to infinity. What is 
of central importance for the present discussion of the scaling properties of the 
relativistic Thomas-Fermi theory is that, since the fine structure constant a is 
proportional to c-l, and 8 = a2Z2  is proportional to c - ~ Z ~ ,  therefore, it is quite 
clear from Eqn. (11) that the fine structure constant always appears in relativistic 
Thomas-Fermi theory in the combination a2Z413 = 8/Z213. 

Having established this scaling property, we next note that, just as for the 
nonrelativistic Thomas-Fermi theory, the following boundary conditions [9] are 
obtained for a positive atomic ion with N electrons and nuclear charge Ze:  

4(0) = 1, W a )  
a4 N 

-xc(,) =1-2 
XC 

where the positive ion has a finite radius r, = bx,. 

given from Eq. (10) by 
Since the electron density p is zero at r,, the chemical potential is evidently 

p - V(r , )  = 0.  (13) 
However just outside r,, it is clear that the positive ion must behave electrostati- 
cally as if all its electronic charge were lumped at the point nucleus at r = 0 and 
therefore it follows that 

(14) 

(15) 

V(r: )  = -(Z - N)e2/rc .  

p = - (Z - N)e2/rc .  

Hence, from Eqs. (13) and (14) the chemical potential is 

Therefore the scaling of the chemical potential is determined by the scaling of r,. 
However now, as is well known [9], in the nonrelativistic Thomas-Fermi 

theory of positive ions, x, = x, (N/Z) .  This result is now modified because of the 
presence of the term in q52/x2 proportional to &/Z213 in Eq. (11). Thus one 
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immediately has the scaling property for the positive ion radius n, in relativistic 
Thomas-Fermi theory 

x, = x , ( N / Z ;  F / Z ~ ' ~ ) .  (16) 
Combining Eqs. (15) and (16), it follows that the scaling of the chemical potential 
p in the relativistic Thomas-Fermi theory is given by 

p = Z 4 j 3 F ( N / Z ;  E / Z ' / ~ ) .  (17) 
This is the essential result for discussing the scaling properties of the total binding 
energy of the relativistic Thomas-Fermi theory. 

We want to stress at this point is that it is possible to obtain the result (17) 
for the chemical potential by focusing on the outer region of the positive ion, 
i.e., on the positive ion radius. This avoids a severe difficulty, known to Vallarta 
and Rosen [7], namely, that with a point nucleus the electron density is not 
normalizable. It is known that the introduction of the finite size of the nucleus 
will allow one to obtain a normalizable electron density, and since the size of 
the positive ion is five or six orders of magnitude larger than the nuclear radius, 
it is evident that the radius of a heavy positive ion must be extremely insensitive 
to the nuclear radius. Therefore, it is quite appropriate to evaluate the positive 
ion radius in the limit when the nuclear radius goes to zero, even though we 
know that just at the limiting point the electron density is not normalizable. This 
dependence of the normalization on the nuclear radius has been discussed very 
recently for neutral atoms [lo],* which, however, have infinite radius and zero 
chemical potential. 

Having established the important scaling property (17) of the relativistic 
Thomas-Fermi theory, it will be helpful at this stage to make contact with the 
relativistic generalization of Eq. ( 2 ) ,  due to Layzer and Bahcall [ll]. 

Generalization of 112 Expansion to Include Fine Structure Constant 

This generalization takes the form 

n = O  m=O 

It must be said from the outset that the expansion (18) has some difficult points 
associated with it which are not present in the nonrelativistic expansion (2). 
Relevant work, related to these difficulties is that of Ermolaev and Jones 
[12, 131.1 Nevertheless, it can be argued that Eq. (18), which reduces to Eq. (2) 
if we neglect all terms except rn = 0, is the natural relativistic expansion, in terms 
of the parameter E = a2Z2 .  We shall see below that from it one can obtain 
meaningful results in the limit of large N. As to the difficult points referred to 
above, one might mention additionally that, if one uses the Dirac equation as 

* The authors of Ref. 10 have rediscovered the Vallarta-Rosen theory of Ref. 7. 
t In Ref. 13, some mathematical foundation for the Layzer-Bahcall expansion is provided. 
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basis, then with a point nucleus there are singularities occurring when CYZ = 1. 
Second, one ought strictly to allow for the fact that the coefficients Enm(N) can 
also depend on F ,  as discussed for example by Doyle [14]. This is due to 
degeneracy and in this paper we shall be considering heavy positive ions with 
closed shell configurations only. Our main task below will be to obtain the form 
of Enm(N) for large N. 

We have the usual relation for the chemical potential that 

and we shall now combine Eqs. (18) and (19) with the relativistic Thomas-Fermi 
form (17) for the chemical potential. First, from Eqs. (18) and (19) it follows 
that for large N, 

To compare Eq. (17) of the relativistic Thomas-Fermi theory with Eq. (20), let 
us introduce the variables N / Z  and &/Z2I3 into this latter equation to obtain 

It follows that to obtain the scaling property (17) at large N and Z we must choose 

or, on integration, 

En,(N) = C(0)Nn-2m/3+1/3 nm +. . . (23) 
where the dots represent higher order terms. This result reduces, as it must, to 
the nonrelativistic equation (3) of March and White when we put rn = 0. Of 
course, the higher order terms indicated in Eq. (23) cannot be obtained solely 
from the relativistic Thomas-Fermi theory. Therefore we shall use the bare 
Coulomb field example briefly in the next section, the details being relegated to 
the Appendix, to suggest the appropriate generalization of the power law depen- 
dence exhibited in Eq. (23) for the higher order terms. This Coulomb field 
example is useful also to us in another context; namely, excluding other alterna- 
tive formulations of the relativistic Thomas-Fermi theory than the Vallarta- 
Rosen form employed above. 

Relativistic Treatment of Bare Coulomb Field 

Though the main interest below is in the energy levels given by the Dirac 
equation for a bare Coulomb field, let us briefly review the nonrelativistic 
analogue. With X closed shells, to which case we shall restrict ourselves, the 
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total energy, &(Z, N )  say, is easily written. Each shell of principal quantum 
number n has energy -Z2/2n2,  and since such a closed shell holds 2n2 electrons 
it follows that the energy per shell is simply -2'. Hence for K closed shells, 
the total energy, which in this noninteracting electron model is simply the sum 
of the one-electron energies over occupied states, is given by 

Ep""re'(2, N )  = -Z2X, (24) 
where evidently 

(25 )  
A- 2 X ( K +  1)(2K+ 1 )  
1 3 

N = C 2 n  = 

For a really large number of closed shells, the leading term in the solution of 
Eq. (25) for X is given by X = (%)1'3N1'3, revealing Np1l3 as a basic expansion 
parameter for large N. 

We have next studied the sum of the one-electron energies over occupied 
states from the Dirac energy levels for a bare Coulomb field, with potential 
energy -Ze2/r. These levels are given by [9] 

-1/2 a 222 
mc2[ ( 1  + n,+[(j+&CY 2 2 2 3 m) -11. 

This problem has first been studied numerically, for a set of values of the 
number of closed shells X, up to X equal to 20. Though we are primarily 
interested in the dependence on N, the total number of electrons in the atomic 
ion, Eqs. (24) and (25) indicate that the dependence on X is likely to be simpler 
to represent at first than that on the total number of electrons. 

We have therefore plotted in Figure 1 the difference between the relativistic 
and nonrelativistic energies, denoted by ERel, divided by a 4Z4, against the 
number of closed shells, for various values of Z from 10 to 136. We stress here 
that, while from these plots we want to extract the dependence of ERe1/a4Z4 

Figure 1. 

4 

of closed 
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on X for large X, physical significance should not be ascribed to the plots for 
independent choices for X and 2. To be specific, it is not physical to consider 
X S  7 for 2 = 136 or X >  2 for 2 = 10 in Figure 1. However, the point which 
emerges from these numerical studies is that one can write, for large X, 

E ~ ~ ~ / ~ ~ z ~  = ~ ~ ( 2 )  + D ~ ( z ) / x +  o(I/P). (27) 
Some approximate analysis which demonstrates that Erel tends to a constant, 
independent of X for large X is presented in the Appendix. However even 
without this mathematics, it is quite clear that since the electrons in an atomic 
ion which move really fast are in the K shell, at most it will be a few inner shells 
which will dominate the relativistic correction, which must therefore evidently 
become independent of the number of closed shells as X becomes large. Evidently 
for smaller X there must be a dependence on the number of closed shells and 
it is shown in the Appendix that there is an expansion of Ere, in powers of 1/X 
as displayed in Eq. (27). 

In the Appendix, further comments are made on the singularity in the Dirac 
equation for a point nucleus at a2 = 1. However, even at 2 = 1/a = 137, it 
turns out that the function Do(Z) in Eq. (27) remains bounded, though the 
singular behaviour at aZ = 1 is reflected in the divergence of its derivative with 
respect to Z at this point aZ = 1. 

What has been established here, by study of the bare Coulomb field case, is 
that in spite of the singularity in the Dirac equation for a point nucleus, there 
is still a meaningful expansion in 1 /X which from Eq. (27) turns out to be 
equivalent to an expansion in l/N”3. Thus we can hope to make progress, when 
we treat real atoms with their electron-electron interactions (cf. Fig. 2), by 
generalizing the result (23) which has been established from the relativistic 
Thomas-Fermi theory to include higher order terms by an expansion in l/N1’3. 
This will be discussed below, after we have made some brief remarks on the 

Figure 2. -Ere, in hartree for the krypton ion, 2 = 36, as a function of the number 
N of electrons from relativistic self-consistent field theory. Bare Coulomb results 
are shown for comparison. The inclusion of interactions is seen to speed the 
convergence to the limiting value as the number of electrons gets large. This is 
understandable in that the outer electrons contribute less to the binding energy in 

the presence of the self-consistent field than for the bare Coulomb case. 
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way this Coulomb field example can be used to demonstrate the less satisfactory 
nature of the other alternative proposals for a relativistic Thomas-Fermi theory 
compared with the Vallarta-Rosen form which we use exclusively in the present 
paper. 

Because of the normalization difficulty referred to above for a point nucleus 
in the Vallarta-Rosen theory, alternative proposals have been put forward by 
Gilvarry [15] and by Rudkjobing [16]. While the proposal of Gilvarry has been 
examined numerically by Waber and Canfield [17] and compared with a normaliz- 
able modification of the Vallarta-Rosen density, in the course of the present 
work we have adopted the different approach of studying analytically the relation 
of the alternative proposals [15,16] to the summation of the Dirac energy levels 
for a point nucleus with potential energy -Ze2/r. By comparison with the results 
presented in the Appendix, it is found that these alternatives lead one to results 
which are not compatible with the Dirac energy levels for this bare Coulomb 
field problem. Therefore, since only the Vallarta-Rosen theory is satisfactory 
for the total energy of the bare Coulomb field problem for many closed shells, 
the considerations of the present paper are all based on the Vallarta-Rosen 
form of the relativistic Thomas-Fermi theory. We have already referred to work 
on normalizable densities in this theory with a finite nucleus [lo], and for further 
discussion related to this aspect of relativistic Thomas-Fermi theory, the work 
of Miiller [18] should also be mentioned here. 

Partial Summation of Layzer-Bahcall Expansion 

We turn to the final topic of the paper, namely the way in which a partial 
summation of the Layzer-Bahcall expansion can be formally achieved, based 
on an expansion in the parameter N-1'3 which emerged from the Coulomb field 
argument of the previous section. 

Expressing the above findings explicitly in a series for the coefficients Enm(N) 
in the Layzer-Bahcall expansion (18), we propose then for large N the generaliz- 
ation of Eq. (23 ) ,  established from the relativistic Thomas-Fermi theory, as 

We stress that this proposal has the following limiting cases correctly contained 
within it: (a) the relativistic Thomas-Fermi theory as the leading term; (b) the 
March-White nonrelativistic expansion [5] for the limiting case m = 0; and (c) 
the form of the Dirac bare Coulomb field results for n = 0. 

Adopting this as the series expansion for large N, we can insert it back into 
Eq. (18), the Layzer-Bahcall series then being 

E ( Z ,  N )  = z2( C C c ; A N ~ - ~ ~ ' ~ ~ ~ / ~  E m Z Y  
n m  
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which can be formally summed to yield 

E(2 ,  N )  = Z 7 / 3 F 1 ( N / 2 ;  E / N ’ ’ ~ ) + Z ’ F ~ ( N / Z ;  e /N2l3)  

This form has (a) the relativistic Thomas-Fermi energy as its leading term, and 
(b) the nonrelativistic expansion given very recently by March and Parr [19] as 
the limiting case when the fine structure constant, or equivalently E ,  is put equal 
to zero. 

Conclusion 

We have used the relativistic Thomas-Fermi theory of Vallarta and Rosen 
[7] to establish the scaling property of the chemical potential of heavy positive 
ions given in Eq. (17). This is then used to prove the asymptotic dependence of 
the coefficients E,,(N) in the Layzer-Bahcall expansion (18) for large N as 
proportional to Nn-2m’3+1/3 . This corresponds in the relativistic Thomas-Fermi 
theory to an energy which scales as 2 7 ’ 3 F 1 ( N / 2 ;  E / N ’ / ~ ) .  This contains the well 
known nonrelativistic scaling (1) of the energy of positive ions in the limit as 
E = a’2’ tends to zero. 

By numerical and analytical study of the bare Coulomb field energy levels 
as given by the Dirac equation, the generalization of the result ( 2 3 )  for large N 
is porposed to have the form (28). This then leads to the partial summation of 
the Layzer-Bahcall expansion as displayed in Eq. (30). While the first term in 
this Eq. (30) for the total energy of heavy positive ions is just that given by the 
relativistic Thomas-Fermi theory, one can expect in higher order terms in the 
expansion in Z-1’3 that exchange and correlation corrections must appear, at 
some order. Equally fundamentally, at some stage in the relativistic expansion 
in E ,  the quantum electrodynamic corrections must appear. This leads on to the 
final, cautionary remark on the present approach, based on relativistic Thomas- 
Fermi theory and its relation to the 112 expansion. While we believe that the 
analytical structure of the energy E(Z,  N, E )  must be of basic interest for relativis- 
tic atomic theory, it has to be stressed that numerical Dirac-Fock calculations 
can now be routinely made for any atom, and it is unlikely that a relativistic 
Thomas-Fermi theory, or a 112 calculation, could add to such numerical 
knowledge. As emphasized here, one purpose of such approaches is to discuss 
trends in E,,,/Z4 as a function of N and Z. Even here though, it should be 
cautioned that for small numbers of closed shells the shell structure is pronounced, 
and for large numbers of closed shells, and therefore in practice for large 2, an 
expansion in (a2)’ presents problems and, as already remarked, the quantum 
electrodynamic effects come in. In spite of these somewhat limiting conclusions, 
the scaling properties proposed here in the asymptotic limit of large N seem 
nonetheless of some interest for basic theory. 
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Appendix 

Some approximate analysis of the sum of the one-electron energies over 
occupied states using the bare Coulomb field Dirac energy levels will be presented 
here. This will make clear mathematically why the relativistic energy shift Ere, 
tends to a constant as the number of closed shells gets large. It will also show 
why it is not proportional to E’ = a4Z4, the reason being that the energy is not 
an analytic function of Z as Z tends to l /a  = 137 from Dirac’s theory for a 
point nucleus. 

We seek the sum of the first N = (X/3)(N+ 1)(2X+ 1) energy levels (26). 
This we can write in the form 

where dn, is the degeneracy of the level and is given by 

if n, # 0, 
if n, = 0. 

4(n’- n,), I 2(n’- n r ) ,  dn. = 

Now if E << 1, we can expand Eq. (31) in powers of E and then make the 
double summation. Otherwise we can split Eq. (31) into parts: (i) a nonanalytic 
part at E = 1, and (ii) an analytic part. The nonanalytic part is given by 2(2X- 1) 
terms corresponding to the choice j = $. Let us denote by SN the sum of the 
nonanalytic terms 

N 4[(1- & ) ‘ I 2 +  n‘-  13 
sN(&,x )=2(1 -E)1 /2+  c 1/2  1 /2 .  (32) , , ’= ,C(n ’ -1)+1+2(n ‘ - l ) ( l -E)  3 

By using the Euler-Maclaurin summation formula we approximate this by 

s N ( & ,  x) 21 4[(n’- 1 + 2(n’- 1)(1 - & ) 1 / 2 ]  1$:1’2-2(1 -&)1’2, 

and then we obtain 

4 x2 
3 1  

SN(F, N )  = 4 4 1  - 7-7 (1 - E ) ’ ” + -  - 
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For large values of N, this formula can be expanded in powers of 1/N and we 
obtain a series whose coefficients depend on (1 - E ) :  

SN(&, N )  = 4 x  4- ifi(&) +fz(&)( 1/N) -t ' * . (34) 

The summation of the terms containing j > i  is straightforward; in fact we 
can now use a Taylor expansion 

The evaluation of Eq. (35) reduces to the summation of a series in powers of E 

and we can write 

This then yields the form 

The conclusion is now clear. By combining Eqs. (37) and (34), we find that, 
provided we subtract the nonrelativistic energy, the relativistic energy shift has 
an expansion in powers of l/N. 
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