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The effect of fluid confinement in a narrow cylindrical pore is studied by 
means of a density-functional approach. An extension of the smoothed-density 
approximation to the two-component case is employed to explore the structure 
and phase behaviour of a mixture in a cylindrical pore. Contact is made with 
the previous local-density treatment and with the macroscopic thermodynamic 
approach. 

1. Introduction 

Owing to their large mobility, fluids composed of different chemical species can 
come into contact and mix. Surfaces, on the other hand, have the ability to select one 
or more components from a mixture by adsorbing some more strongly than others. 
The converse may also be true, i.e. two components not easily miscible in a normal 
environment can be mixed in the presence of an adsorbing interface. 

Whereas a great number of statistical-mechanical studies have been devoted to the 
bulk properties of mixtures (see e.g. [1]), the understanding of their non-uniform 
properties is still in its infancy. 

Recently several groups [2-4] have embarked upon the theoretical study of the 
behaviour of mixtures at fluid-fluid and solid-fluid interfaces and have clarified some 
aspects of their wetting properties. These studies have accounted for the observed 
values of the liquid-vapour surface tension and also how these change with thermo- 
dynamic variables such as pressure, temperature and bulk concentration. Also, in the 
last four years pores and slits have attracted a great deal of attention because of their 
theoretical and industrial importance. In practice most separation processes require 
the use of adsorbents of high surface area, and these requirements are commonly met 
by means of porous materials. In these systems fluids are under extreme conditions 
of non-uniformity, as a result of the presence of strong external fields due to solid 
substrates. The phase diagrams of pure simple fluids in capillaries have been recently 
elucidated by employing a variety of approaches such as density-functional methods 
(DF) (see e.g. [5-8], and grand canonical Monte Carlo (GCMC) (see e.g. [8-1 l], 
molecular-dynamics (MD) [8, 12] and 'Gibbs-ensemble' [10] simulations. In par- 
ticular, the last generation of DF theories, namely the smoothed-density approxi- 
mation (SDA), developed in its present form by Tarazona [13, 14], has been shown 
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in a thorough comparative study [8] to be in good quantitative agreement with the 
simulation results. 

At present, the only available information on the structure and thermodynamics 
of confined mixtures is represented by the recent work of Tan et  al. [3], who applied 
the local-density approximation (LDA) to the modelling of an argon-krypton 
mixture in a cylindrical carbon dioxide pore. Although their results await further 
testing against computer simulation, one might anticipate, on the grounds of previous 
experience with pure fluids [7, 8], that the calculated structure and phase boundaries 
will be poorly represented by the LDA, especially for the smaller pores. Some 
preliminary MD simulations for binary mixtures in cylindrical pores have recently 
been performed, and these have been compared directly with DF-theory results. To 
date, no systematic studies of mixtures in contact with planar walls have appeared; but 
some preliminary calculations have been performed by Piotrovskaya and Smirnova 
[15], who report density profiles for an Ar-Kr mixture near a graphite wall. 

The aim of the present paper is to investigate the influence of fluid structure on 
phase equilibria in very narrow pores. To do this, we need a detailed description of 
the short-range interactions of the fluid, and this is achieved by means of a suitable 
generalization of the SDA to the two-component case. In view of the small difference 
in the atomic radii of argon (species 1) and krypton (species 2), we have assumed 
a common diameter al~ = 022 ~--" 0", but have kept the Lennard-Jones attractive 
parameters el and e2 different. 

The paper is organized as follows. In section 2 we give a brief outline of the theory; 
in section 3 we obtain the asymptotic equation that describes the liquid-vapour 
equilibrium in a large pore, by means of a very simple approximate analysis. We also 
give the conditions for the occurrence of critical points, analogous to those stated for 
confined pure fluids. In section 4 we present the results for the surface tension at a free 
liquid-vapour interface within the SDA and compare with the LDA predictions. In 
section 5 we present the results for the structure of mixtures in pores for a variety of 
bulk compositions and we discuss the numerical findings. We give our conclusions in 
section 6. 

2. Theory 

The grand potential g2 of a non-uniform two-component fluid mixture is the 
minimum of the grand potential functional [4] 

Ov[{p , } ]  = V [ {p , } ]  + Y, d r [Z , ( r )  - ,ulp,(r),  (1) 
i = 1  Q, 

where {Pi (r)} denotes the density profiles in the presence of external potentials V, (r), 
and #i is the equilibrium chemical potential of species i. In (1), r is the position 
coordinate and the Helmholtz free-energy functional F[{pi}] is a unique functional of 
the densities. We shall divide the latter into two parts: 

F[{p,(r)}]  = F~,[{p , (r )}]  + F. . [{p , (r )}] .  (2) 

The first term on the right-hand side represents the free energy arising from the 
repulsive forces between atoms, while the second represents the contribution from the 
attactive forces. Within the mean-field approximation we write for the latter 

FaR ~--" .Z drdr ' u i j ( I r  - r ' l )p i (r )p j (r ' ) ,  (3) 
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where uij is the attractive part of  the pairwise potential between molecules of  species 
i and j. The equilibrium density profiles pi(r) are obtained by solving the coupled 
integral equations that result from minimizing ~ with respect to pi (r): 

= 0 (i = 1, 2). (4) @,(r) 
The pair potential between molecules of  types i and j was chosen to be a cut and 
shifted Lennard-Jones (L J) potential characterized by a well depth e o and collision 

'"<.re,. 
(r > r~), 

,~a7 (r) = 4ea [ ( ? ) ' 2  -- ( ? ) 6 ] ,  

diameter trq: 

(5) 

while uo(r), the attractive part of the fluid-fluid potential, follows from a WCA 
division [16] of the cut and shifted LJ potential and is given by 

{ -[~ij "4- ~j(rr (r ~< 2'/6o'q), 

uq(2) = ~j(r)  - q~,j(rc) (2'/ra,j < r ~< re), (6) 

0 (r ~< re). 

Following the WCA perturbation theory [16], we replace F ~  by the free-energy 
functional of  an equivalent hard-sphere mixture. Our choice of the reference hard- 
sphere diameters sets di = ai~, i.e. d~ is taken to be temperature-independent (cf. 
[8, 17]). Thus we have 

F~[p, ,  P2; au[a221 = Fns(PL, P2; an[a22). (7) 

The hard sphere system itself is well described by the Mansoori equation of  state [18]. 
FHs consists of  an ideal-gas contribution, which contains an entropy-of-mixing term 
plus a configurational term: 

§ f { / l}+aF.s[{,o,(,')}l, F.s[{p; } ]  = k T , ~  c~'p,(r) In - 
i = 1  

where k is the Boltzmann constant and A~ is the de Broglie wavelength. In the L D A  
AFHs the hard-sphere excess free-energy functional is written as 

AF. s = f dr Af "s(p, (r), P2(r)), (9) 

where Af "s is the excess free energy per unit volume of a uniform hard-sphere fluid. 
This approximation has already been employed by several authors in the study of 
inhomogeneous mixtures [2-4]. One of the shortcomings of this approximation is the 
failure to describe the oscillatory density profiles that are usually observed for fluids 
at high pressures near solid substrates (see figures 2 and 3). Some years ago, Tarazona 
[13, 14] proposed a simple free-energy functional for AFas that does reproduce 
oscillatory profiles in the case of a pure fluid. In addition, Tarazona's functional has 
the merit of  being fully thermodynamically consistent and can describe interracial 
phenomena such as the growth of a wetting film on the approach to bulk coexistence 
[19]. This is in marked contrast with the traditional integral-equation theories [20]. In 
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treating phenomena such as condensation in pores, thermodynamic consistency is a 
necessary condition if one wishes to extract any meaningful information. 

The SDA developed by Tarazona [13, 14] is based on the use of  a coarse-grained 
or smoothed density f3(r), the density obtained by averaging the local density over an 
appropriately chosen local volume. This approach then accounts realistically for the 
repulsion between the cores. The pure-fluid case is easily generalized to a special kind 
of  mixture for which the hard cores of  the different components are equal. The more 
general case of  arbitrary size ratios is currently being developed by the Cornell group. 
For the equal-sized mixture the SDA form of AFHs is 

AFHs = .f dr Lot (r) A~q + pz(r)A~k2] 

f drLo, (r) + p2(r)] A~bHS(/3~ota,(r)), (10) 

where A~O~ is the hard-sphere excess free energy per particle of  species i, and the 
smoothed total density is given by 

f dr'w(tr - r']; ~totat(r))[pt(r') + p2(r')], (l l) 

where w is a normalized weight function. Full details of  the density expansion of w 
and its derivation can be found in Tarazona's original paper [13] and in [14]. The 
Carnahan-Starling expression for ASHs is 

kT(4 - 30) 
a ~ , . s ( ~ , o , )  = ( l  - 0 )  2 

with 

17 = 1~ PtOt O'3. 
Inserting the above expressions for AFHs into (1) and functionally differentiating 

with respect to pi(r), one obtains the equations for the equilibrium densities, which 
are then solved by a straightforward iteration procedure [3, 4]. 

The external field was chosen to be produced by a smooth infinitely long cylinder 
whose walls are infinitely thick and of  uniform density: 

nPsesiO'~, (--~)3 [~2 (--~) 6 I9 ( R ) -  13 ( R ) ] ,  (13) V~(s) = 

with 

I.(x) = J o  dO[-xcosO + (1 - x 2 sin2 0)l/2] -n, (14) 

where Ps is the density of  the solid wall (p~tr3j = 0-988). The Lennard-Jones par- 
ameters for the fluid mimic the Ar -Kr  mixture, and the wall parameters represent 
CO2-Ar and CO2-Kr interactions: 

au = tr22 = 3-405A, el/k = 1 1 9 . 8 K , )  

trsl = �89 + 1-066)trlt, e2/el = 1-3614, 

trs2 = �89 + 1.118)trlt, cs/el = 1-6307. 

0 5 )  

Note that the choice tr~ -# ~q2 indicates that the wall potentials experienced by argon 
and krypton have minima and zeros at different positions. The attractive interactions 
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between species and also between each species and the solid are treated by using the 
Lorentz-Berthelot mixing rule 

eij = (eiF, j )  1/2 (16) 

The cut-off radius was fixed at 2-5a. .  In contrast, we did not truncate the fluid-wall 
interactions. 

3. Phase equilibria in a wide pore 

In order to gain some insight into the phase behaviour of fluid mixtures in 
pores, we shall start by making some general observations based on surface thermo- 
dynamics. 

The model pore is schematized by an infinitely long open cylinder of radius R. 
The true equilibrium configuration of  the confined fluid is the one that minimizes the 
thermodynamic grand potential functional (1). 

In the limit when the radius becomes large we can separate 12 into a bulk and a 
surface contribution: 

.(~ = Off V + ~s=fAsf, (17) 

where 09~ is the grand potential per unit volume of a uniform phase ~, 7~f its solid-fluid 
interracial tension, and V (not to be confused with V~ of (13)) and A are respectively 
the volume occupied by the fluid in the pore and the solid-fluid interfacial area. 
Equilibrium between two distinct phases ~t and fl implies equality of their grand 
potentials: ~ = .Q~, or 

- 09" = (~f  - ~ f ) - ~ .  (18) COB 

The difference on the right-hand side of (18) can be related to the surface tension 7~# 
of the free 0tfl interface using Young's equation: 

y~# cos 0 = ys~f - y~f, (19) 

which defines the so-called contact angle 0. If we set the geometrical ratio in (1 8), 
Asr/V = 2/R~, we arrive at the following equation: 

off - co ~ - 2y~#cos0 
R~ (20) 

A quite different situation is encountered when the phase fl completely wets the 
solid substrate and forms an annulus of  thickness t on the internal wall of  the cylinder 
while the ct phase occupies the remaining space in the pore. In this case one must 
account not only for a different geometrical ratio, but also for the presence of 
long-range attractive forces in the system. In physically relevant situations these 
forces decay as the inverse third power of  the distance from the wall. Retarded forces 
are probably not relevant in the study of mesoporous media. The contribution of  
dispersion forces to the grand potential of the fl phase exhibiting the wetting layers 
is proportional to 1/t 2 (also called the disjoining pressure, by the Russian school). 
Since t itself grows upon approaching bulk ~t-fl coexistence as (co # - Oflt) -1/3, one 
obtains the following equation of state [2]: 

09 # _ c~ ~ = 27~# (21) 
- ~t" 
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Thermodynamic relations can be applied to express the differences J - co" as a 
function of ordinary intensive variables. We shall consider only two cases. 

(a) The concentration of  species 1 in the reservoir that is in contact with the pore 
is kept constant and the pressure P of  the fluid in the reservoir is varied. Thus we 
obtain from (20) 

a r e _  o96 = p, _ p~ = 27,~ (22) 
R ~ '  

where P~ is the pressure of the metastable fl phase having the same chemical potential 
as the ~ phase and R~ is a suitably chosen effective radius. For  small deviations from 
bulk coexistence we can expand the pressures of  the two phases about their value at 
coexistence to obtain 

2 

P ~ -  P~ = ~ ( p T -  p~)A~, (23) 
i = 1  

where A#i = /~i - /~o~x. If  the ~ phase is a gas phase, we can write this difference in 
terms of  the saturation densities: A/t~ = kTln (pi[p~ t) and, since the concentration is 
kept constant, we have In (Pi/P~') = In (PIP, a,). Substituting these results into (22), 
we obtain for a vapour-liquid equilibrium 

k r l n ( L ~  = _ 27~a2 cos0 (24) 
\ ) 

i = 1  

(b) An alternative way of restoring the phase equilibrium, broken by the presence 
of  the walls, would be to keep the pressure of  the a phase constant and to use the 
concentration variable to control the difference in the bulk contributions to the grand 
potential. In this case Evans and Marini Bettolo Marconi [2] derived 

A/~ p~ + A/~2 p~ = 27,~ cos 0 (25) 

Using the Gibbs-Duhem equation, we eliminate A/~ to obtain 

(P~ Pz ~)  27,a cos 0. A/h 

In this paper we limit our investigation to equilibria belonging to case (a) and compare 
the macroscopic prediction with the self-consistent microscopic calculations based on 
the density-functional theory. To conclude this section, we shall state the conditions 
for the occurrence of  criticality in a confined mixture. As discussed in [2], the 
coexistence line for a one-component fluid in a pore ends in a capillary critical point 
where two phases in equilibrium become identical. This phenomenon has been termed 
'capillary criticality', and for a given radius it is characterized by well-defined values 
of  the temperature and chemical potential, which are different from the corresponding 
bulk critical values. 

The conditions for criticality of  a fluid mixture confined in a pore are directly 
analogous to those that describe the criticality of  the pure fluid. Along a coexistence 
line the grand potentials of  the two phases are equal. Their first derivatives with 
respect to the fields are not equal, but show a finite jump on going from one phase 
into the other. However, it may happen that as the temperature, the concentration or 
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the size of the pore is varied, the two phases eventually coalesce, defining a critical 
point. At this point the first derivatives become continuous. In order to observe 
criticality in a mixture, two kinds of conditions must be satisfied. First, 

[ 
det LOFjjr, v , A _  = 0. (26) 

This condition alone is not sufficient to identify a critical point. We also require 

O (detFa#il'~ (0/~2~ d (det[O/~,l~ {al~, 
bq Larjj} \alGA.~., aQ a~jl \ar,/~.~., = O, (i = 1 , 2 ) ,  

(27) 

r ,  - ] d r [ p , ( , )  - pbulk]. 

Unfortunately, these formally exact equations cannot be solved analytically because 
one does not know the functional dependence of ~ on the control parameters. As a 
result, this information has to be extracted from explicit numerical DFT calculations. 

In the case of large pores, however, parametrizations of  the solutions, as used in 
the past, might be helpful in locating the critical points [2]. 

4.  Resu l t s  and discuss ions  

The SDA is a very attractive approximation, since it generally provides accurate 
descriptions of both the thermodynamics and the structure of confined fluids. The 
critical region forms an obvious exception, since the mean-field treatment of the 
attractive contribution of the free energy (3) neglects important fluctuations and 
therefore will not be in agreement with experiments on more advanced theoretical 
treatments of  critical phenomena [21]. 

The method that we use requires a small amount of computation time---orders of 
magnitude less than the traditional simulation methods. Furthermore, if the com- 
parison between theory and simulation is made at the reduced temperature T[Tc, 
the agreement is quite remarkable [8]. Here we present some results for the equally 
sized two-component mixture for several values of the bulk-gas composition y = 
pg(p~ + p~) and the bulk pressure. The temperature was chosen to be T* = 1-044. 
This corresponds to T[T~ = 0.8 for the pure component 1 (Ar) and T/Tc = 0-588 
for the pure component 2 (Kr). The bulk critical temperature of the mixture varies 
smoothly with compositional changes [1]. 

A necessary ingredient of the macroscopic equations like the Kelvin equation (24) 
is knowledge of the liquid-vapour interfacial tension. To this end, we apply the SDA 
to the study of  the planar interface between a liquid and its vapour at bulk coexist- 
ence. A systematic study of this subject is still lacking. Telo de Gama and co-workers 
[4] obtained some results within the LDA framework for the Ar-Kr  mixture and 
compared them with MC simulations. They reported fair agreement between theory 
and simulation and observed that the LDA closely follows the prediction 

?Ar-kr = XAr)% + (1 -- XAr)~kr, (28) 

where XA~ is the mole fraction in the liquid phase. The difference between the actual 
value and that given by (28) defines the so-called 'surface-tension excess'. This 
quantity turns out to be negative in each of the approaches mentioned above [4]. We 
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Surface tensions. 

y X ~/~l l /~l l  ( S D A )  )'~,/en ( L D A )  

1 1 0"1802 0-2063 
0"925 0"7303 0"3174 0"3574 
0"6 0"1723 0"6680 0-7494 
0-2 0-0300 0"8156 0"9144 
0 0 0"8538 0-954 

have made  a similar compar ison  between the L D A  and the SDA,  starting f rom the 
same form o f  the free energy for a uniform system. The surface tension in the L D A  
is always larger than the corresponding quant i ty  in the S D A  by about  15%, as has 
already been noted for  pure fluids. In the table we present the results for a temperature 
T* = 1.044 and different concentrat ions.  

The partial-density profiles at a free interface are shown in figure 1 for yg = 0-6 
and T* = 1-044. 

5. Pore study 

We shall start with the widest pore that  we studied, i.e. R~* = R~/tr = 8. This 
could correspond to 27 A for argon,  a typical mesoporous  material size. In figure 2 
we show two solutions at capillary condensat ion,  where the grand potential  function 
displays two separate minima o f  equal depth. The ratio o f  the bulk pressure to the 
pressure at coexistence ( P s a t )  is P/Psat = 0.6876 and the bulk composi t ion is y = 
0.925. The 'gas-like'  density profiles show two pronounced  peaks and a shoulder in 

O ~ 

00 o- 
O 

d -  

b 

d -  

o- 
O 

O 

I ! I 

- 1 0  - 5  0 5 10 

Figure 1. SDA and LDA liquid-vapour profiles for an Ar-Kr  mixture at a temperature 
T[T~ r = 0.8 and at bulk-gas mole fraction of Ar, yg~ = 0.6: , Kr (SDA); - - -, Ar 
(SDA); . . . . . .  , Kr (LDA); . . . .  , Ar (LDA). The height z is measured in units of the Ar 
diameter (e = ell). 
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Figure 2. Ar (species 1) and Kr (species 2) density profiles from the SDA in a cylindrical pore 
of radius R = 8trli at a temperature TITS' = 0"8 (P/P,,= 0-6876); the bulk-gas mole 
fraction of Ar is yg~ = 0.925: - - ,  Ar (liquid); . . . .  , Ar (gas); - - -, Kr (liquid); . . . . . .  , 
Kr (gas). The radial distance r is measured in units of the Ar diameter (a = trtl ). 

the more strongly adsorbed component  (Ar), and a two-peak structure in the other 
component  (Kr). The major  peak of  each species is very similar in height and shape 
to the corresponding peaks of  the liquid phase, and the second peak also follows this 
trend. Wetting 'annuli '  appear  to be formed at the cylindrical wall, whereas towards 
the axis of  the cylinder the profiles are monotonically decreasing. Note that, although 
Kr  experiences a larger attraction towards the wall, the Ar density is larger in both 
phases, owing to the large difference in their chemical potentials, which favours argon. 

For  comparison we present the LDA profiles in figure 3 for the same conditions 
used in figure 2. As has been noted previously for the case of  pure fluids (see e.g. 
[8, 17]), the LDA does not show any liquid structure and the amount  adsorbed is less 
than in the SDA. This is because the LDA does not allow the local density to become 
large at the walls. 

Figure 4 shows the pure argon fluid at capillary condensation. We note that the 
Ar peak is higher than the corresponding peak in figure 2 owing to the lack of 
competit ion with the other component,  together with the different value of  the applied 
bulk pressure (moreover, the bulk vapour  pressure decreases as the mole fraction yg 
decreases). Figure 5 shows the partial-density profiles for a mixture with y = 0.6. The 
results for y = 0.2 (not shown) appear  to be very similar. Remarkably,  the structure 
of  the gas phase is totally different from that seen in figures 2 and 4. No liquid is seen 
to coat the walls. Surprisingly, we re-encounter a layered structure in the pure Kr  (i.e. 
y = 0) system, shown in figure 6. In view of  the higher critical temperature of  this 
pure component  and the increased interaction with the wall, the layered structure is 
probably more stable as a result. Of  course, the pore also appears to be slightly smaller 
to Kr  (by about  5%), but this does not seem to have a pronounced influence. The 
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Figure 3. Ar (species 1) and Kr (species 2) density profiles from the LDA (P/P~, = 0.7985) 
for the same conditions as in figure 2 (for key to curves see caption to figure 2. 
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Figure 4. Liquid and gas density profiles from the SDA for pure Ar (y~s = 1) in a cylindrical 
pore of  radius R = 8ejj at a temperature T/T~ ̂ ~ = 0-8 (P/Pat = 0-7278~: - - - ,  liquid, 

, gas. 
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Figure 5. Ar (species 1) and Kr  (species 2) density profiles from the SDA in a cylindrical pore 
of  radius R = 8tr~ at a temperature T / T ~  = 0.8 (P/P,, = 0-6483); the bulk-gas mole 
fraction of  Ar is y ~  = 0.6 (for key to curves see caption to figure 2). 
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Figure 6. Liquid and gas density profiles from the SDA for pure Kr  ( y ~  = 0) in a cylindrical 
pore of radius R = 8al~ at a temperature T / T ~  = 0.8 (P/Pat = 0-5295): - - - ,  liquid; 
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Figure 7. Ar  (species 1) and Kr  (species 2) density profiles from the SDA in a cylindrical pore 
of radius R = 3all at a temperature T/T~ r = 0.8 (P/Put = 0.2574); the bulk-gas mole 
fraction of Ar  is Ygas = 0.2 (for key to curves see caption to figure 2). 

rather high value of the maximum of  the first layer should also be noted. We speculate 
that the mechanism by which the liquid film is washed out for intermediate values of 
y is related to the increase of the interfacial tension, which makes the film unfavorable. 
As y --* 0, however, the interaction between the fluid and the wall becomes more 
effective. The first peak approximately doubles in height, and this seems to lower the 
energy by a sufficient amount  to compensate for the accompanying increase in sur- 
face tension. As a result, the film is restored. Further work on the planar solid- 
fluid interface is in progress to help elucidate this effect. As the pore size decreases, 
the structure becomes more and more pronounced at high pressures, and this is 
reflected in the adsorption isotherms. In figures 7 and 8 we have plotted the (SDA) 
gas and liquid density profiles at capillary condensation for a radius Re* = 3 and a 
temperature T* = 1.044. The bulk concentration in figure 7 is y = 0.20, while that 
in figure 8 is y = 0.925. The corresponding adsorption isotherms are displayed 
in figures 9 (SDA) and 10 (LDA), where we have plotted the partial adsorption for 
both Ar and Kr. The first-order phase transition and the loops in the SDA move 
towards lower pressures. This is because the non-local approximation takes better 
account of  the fact that it is energetically favorable for the liquid to be in the pore. 
We stress that this trend goes in the opposite direction to what one would expect from 
the lower SDA value of the liquid-vapour surface tension compared with the LDA 
value. Thus macroscopic considerations based on the use of  the Kelvin equation 
predict 

In Sbh .u(SDA) (P~na /Put) / I v  

In rr>A = ~ > I, (Pio.d /P. , )  /',~ 
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Figure 8. Ar  (species 1) and Kr  (species 2) density profiles from the SDA in a cylindrical pore 
of  radius R = 3al~ at a temperature T[T~ f = 0"8 (P/P,, = 0-2388); the bulk-gas mole 
fraction of  Ar  is Ygas = 0.925 (for key to curves see caption to figure 2). 
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in clear contradiction with what is actually observed. We have plotted the results for 
y = 0.925 in figure 11, where the SDA and LDA results are compared with the Kelvin 
equation. 

One of the most immediate reasons why such considerations must fail is that the 
thickness of a free interface is comparable to the size of the whole system, and 
therefore it cannot be easily accommodated in small capillaries. However, in the limit 
of large radii, where the Kelvin equation becomes asymptotically correct, there should 
be a crossover, i.e. pcLDA < pSoDA " In figure 12 we plot the mole fraction of Ar for the 
two theories. In the low-pressure limit the two theories become identical, while at 
higher pressures the ratios agree only within 10%. The pore produces a larger extent 
of mixing (lower x) in the SDA than in the LDA. For comparison, the value of x in 
the liquid phase is x -- 0.7303. Finally, in figure 13 we display the equilibrium 
transitions obtained for the three radii that we have investigated and for a variety 
of compositions. We have plotted both SDA points and the Kelvin prediction 
using SDA values for the surface tension. Note that for a given value of the under- 
saturation, condensation in wider pores occurs for mixtures richer in Kr. This is due 
to the increase of the surface tension with decreasing values ofy.  We have also located 
the phase transitions for the pure fluids, which serve as a reference. According to the 
same macroscopic arguments presented above, the position of the phase transition on 
the PIP, at axis should be given by the simple mixing rule [xy~ + (1 - x)y2]/P~,. A 
large deviation from this 'rule' is seen for all radii that we studied. The implication 
is that the local structure near the wall is of dominating importance at these pore sizes, 
and negates the possibility of using standard surface thermodynamics (see e.g. [22]). 
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6.  C o n c l u s i o n s  

We have applied the so-called SDA to the study of a model mixture in a cylindrical 
pore. We find that for small capillaries the SDA and the LDA disagree quantitatively. 
What is completely missed by the latter approximation is the local structure at the 
wall, and this entails a large error in the estimate of  the fluid-solid contact angle. Also, 
we find that macroscopic equations based on standard surface thermodynamics 
commonly used to describe phase equilibria in narrow pores cannot be applied to such 
small systems. Further work is required to investigate the role of size differences such 
as those found in more realistic mixtures [23]--particularly in very small pores. It 
might also be worthwhile to model the fluid beyond the mean-field approximation 
for the attractive part of  the free energy. One might expect that this would lead to 
better agreement with the simulation results. A start has recently been made to test 
the SDA results against simulation [24]. Although the initial MD calculations have 
been performed for just two radii and one composition, the agreement found is 
encouraging. 
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