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Phase transitions at fluid interfaces and in fluids confined in pores have 
been investigated by means of a density functional approach that treats 
attractive forces between fluid molecules in mean-field approximation and 
models repulsive forces by hard-spheres. Two types of approximation were 
employed for the hard-sphere free energy functional: (a)ti le well-known 
local density approximation (LDA) that omits short-ranged correlations and 
(b) a non-local smoothed density approximation (SDA) that includes such 
correlations and therefore accounts for the oscillations of the density profile 
near walls. Three different kinds of phase transition were considered: 
(i) wetting transition. The transition from partial to complete wetting at a 
single adsorbing wall is shifted to lower temperatures and tends to become 
first-order when the more-realistic SDA is employed. Comparison of the 
results suggests that the LDA overestimates the contact angle 0 in a partial 
wetting situation. (ii) capillary evaporation of a fluid confined between two 
parallel hard walls. This transition, from dense ' l i qu id '  to dilute 'gas ' ,  
occurs in a supersaturated fluid (p > Psat)" The lines of capillary coexistence 
calculated in the LDA and SDA are rather close, suggesting that non-local 
effects are not especially important in this case. (iii) capillary condensation of 
fluids confined between two adsorbing walls or in a single cylindrical pore. 
For a partial wetting situation the condensation pressures p(<Psat) obtained 
from the SDA are in remarkably good agreement with the macroscopic 
Laplace (or Kelvin) prediction for wall separations H or pore radii R c ~ 5a; 
a is a molecular diameter. While, because of different packing, the density 
profiles of the fluid differ considerably between slits and cylinders this has 
little effect on the coexistence line until H or R, ~ or. In contrast to the LDA 
the SDA describes two-dimensional-like liquid-gas coexistence for very 
narrow pores (H < a) and temperatures below the two-dimensional critical 
temperature and this has ramifications for the existence of capillary critical 
points. 
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1. INTRODUCTION 

Understanding the microscopic structure and the thermodynamic  properties 
of fluid interfaces has become an increasingly popular  goal for physicists and 
chemists. F rom a theorist 's  viewpoint interracial problems are intrinsically more 
difficult than bulk problems because they necessarily involve spatially varying 
(singlet) densities of atoms or molecules and anisotropic correlation functions. 
Many  interfaces of practical interest involve solids either in the form of a single 
planar substrate which can adsorb molecules f rom a bulk fluid or, in the case of 
porous material, as confining and adsorbing substrates. The  solid substrate is 
often modelled by a structureless wall that is assumed to exert an external poten- 
tial on the fluid molecules. Wall-fluid interfaces raise particular difficulties for 
theories of inhomogeneous fluids. I t  is well-known that the density profile of a 
liquid near a wall usually exhibits oscillations that are on the scale of a molecular 
diameter. Any at tempt  to describe such local ordering requires an adequate treat- 
ment  of short-ranged correlations between molecules. Although the widely used 
closure approximations to the wall-particle Orns te in-Zernike  equation (Percus-  
Yevick, Mean-Spherical  Approximation,  Hyper -Ne t t ed -Cha in  etc.) provide a 
rather good description of hard-sphere fluids near walls it has been shown that 
these approximations often fail totally when the forces between molecules in the 
fluid include attractive as well as repulsive contributions [1]. In particular they 
cannot accommodate  two coexisting (liquid and gas) phases near the substrate 
[2]. This  means that they cannot be employed as the basis for a theory of contact 
angle and wetting phenomena at a single wall-fluid interface [2]. I t  also means 
that such approximations are not appropriate  for investigations of the phase equi- 
libria of fluids confined in narrow pores. Given that much  of the experimental  
interest in fluid interfaces is linked to phase transitions or critical behaviour of 
one type or another, a different class of theories which do accommodate  
coexisting phases has been developed and applied successfully to adsorption, 
wetting, and wetting transitions at both wall-fluid and fluid-fluid interfaces [3] 
and to the phase equilibria of fluids in pores [4, 5]. These  theories are based on 
the density functional approach [6] in which one constructs a functional ~v[P] of 
the average singlet density p(r) and minimizes this with respect to p(r) to obtain 
the equil ibrium density and thermodynamic  properties. Correlation functions are 
obtained by performing further functional differentiation. 

Most  work on wetting problems [3] and almost all [7-] work on confined fluids 
[4, 5-] has employed a local approximation for the part  of the Helmhol tz  free 
energy that arises f rom repulsive forces between fluid molecules. Whilst  not 
doing any gross injustice to long-ranged correlations in the inhomogeneous fluid, 
thereby allowing for the growth of wetting layers, phase transitions, criticality, 
etc., a local density approximation makes a crude (delta function) approximation 
to the short-ranged part  of the direct correlation function of the inhomogeneous 
fluid [8]. This  ensures that local ordering at a wall-fluid interface cannot be 
described by a local density approximation.  In this paper  we are concerned with 
the effects of local ordering on the nature of the phase equilibria at a single 
wall-fluid interface and in fluids confined in slit-like and cylindrical pores. We 
enquire whether  more sophisticated non-local density functionals, that incorpo- 
rate a more  realistic description of short-ranged correlations, predict  phase tran- 
sitions that are changed significantly f rom those obtained in local density 
approximation.  
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Three separate, but related, problems are investigated. The first concerns the 
effect of non-locality on the order and location (in temperature) of the wetting 
transition at a wall-gas interface. The second involves the phase equilibria of a 
fluid confined between two parallel hard walls. A phase transition from a dense 
' l i qu id '  configuration with wetting films of gas at the walls to a dilute ' g a s '  
configuration occurs as the wall-separation H is reduced at a fixed chemical 
potential p > #sat, its value at bulk coexistence. This phenomenon of capillary 
evaporation is studied in both non-local and local approximations. The third topic 
is the capillary condensation, at/~ < #sat, of ' gases'  to ' l iquids '  in narrow cylin- 
drical and slit-like pores that exert attractive forces on the fluid molecules in 
addition to confining them. Although this phenomenon is relevant to the adsorp- 
tion of gases in mesoporous and microporous solids it has been studied in detail 
only in the local density approximation [4, 5, 9, 10]. When the pore radius R c or 
the wall-separation H is a few molecular diameters one might expect local order- 
ing effects to play a crucial role in determining the phase equilibria, i.e. packing 
considerations should become very important. Since the earlier calculations did 
not include such effects it is of considerable interest to examine the consequences 
of incorporating non-locality for the location of the condensation lines and the 
capillary critical points. Indeed several of these issues were raised in discussion 
after papers [5, 10] at a recent Faraday Symposium. Our present results provide 
further response to this discussion and shed new insight into capillary conden- 
sation for fluids in very narrow pores and at low temperatures. 

The density functional approach that is used in our calculations is based on a 
smoothed density approximation to O~hs[p], the free energy functional of a hard- 
sphere fluid. While this is closely related to the fine-grained 'generalized van der 
Waals theory '  of Nordholm and co-workers [11, 7], the prescription for the 
smoothed density ~(r) is obtained by recognizing that O~hs[p ] is the generating 
functional for the hierarchy of hard-sphere direct correlation functions [12]. The 
actual version employed here is due to Tarazona [13] who showed that it gives an 
excellent account of the oscillatory profiles of hard-sphere fluids near hard walls. 
Attractive forces between fluid molecules are treated in mean-field approx- 
imation. Other procedures for constructing smoothed densities have been devel- 
oped recently [14, 15] ; these are probably of comparable accuracy but have not 
yet been applied to the variety of problems that are investigated here. 

Our paper is arranged as follows: in w 2 we describe the density functional and 
its two dimensional limit. The latter is relevant for fluids confined in very narrow 
slits where two-dimensional-like ordering can occur. w contains the results of 
our calculations for the three different interracial problems mentioned above. We 
conclude in w 4 with some final remarks. 

2. THEORY 

(a) Description of density functionals 

We consider a one-component  fluid in an external potential V(r) at a tem- 
perature T and chemical potential /~. The equilibrium density p(r) is given by 
minimizing the grand potential functional [6] 

fly[P] = o~[p] + ~ d3rp(r)(V(r) - I~) (1) 
J 
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where the intrinsic Helmholtz free energy functional i f [ p ]  contains contributions 
from fluid-fluid interactions as well as the ideal gas term. The minimum value of 
fly is ~, the grand potential of the system. Following earlier workers we divide, 
somewhat arbitrarily, i f [ p ]  into two parts: i f [ p ]  = o~rcp[p] + ~-att[P]; the first 
represents the free energy arising from repulsive forces between molecules while 
the second represents the contribution from attractive forces. If  the repulsive 
forces are modelled by hard-spheres and the attractive forces are treated in mean- 
field fashion we obtain the approximation 

~ [ P ]  = ~ . s [ P ]  + ~ d3r d3r'p(r)p(r')dPatt(I r - r '  I) (2) 

where ~att(r) is the attractive part of the pairwise potential between two molecules 
in the fluid. The hard-sphere free energy functional is not known exactly for the 
three-dimensional fluid so further approximations must be made. The  simplest, 
and most often used is the local density approximation (LDA):  

'-~hs[P] = f d3rfhs(p(r)), (3) 

where fhs(P) is the Helmholtz free energy density of a uniform hard-sphere fluid. 
This approximation was employed by Sullivan [16] and by many subsequent 
authors in studies of inhomogeneous fluids near walls or at fluid-fluid interfaces 
[3]. It is well-known that such a local approximation cannot describe the oscil- 
latory density profiles that usually occur for liquids near walls. These oscillations 
are associated with short-ranged correlations in the fluid which are absent in a 
local theory. The simplest ansatz for fibs[P] that incorporates short-ranged cor- 
relations is based on a smoothed or coarse-grained density j3(r). This density, 
which is a non-local functional of p(r), can be regarded as an average density 
obtained by averaging the true density p(r) over an appropriate local volume. It 
should be sufficiently smooth that the free energy can be calculated in local 
density approximation, i.e. we write 

~hs[p]= f d3rfid(p(r)) + f d3rp(r)A$hs(~(r)), (4) 

where we have separated the ideal gas contribution, which is given exactly by the 
local density expression, and introduced A~bhs(p), the configurational part of the 
free energy per molecule 

with 

1 
ar = -- (f~(p) --fio(P)) (5) 

P 

fid(P) = k. Tp(ln (A3p) -- 1). (6) 

A = (h2/2nmka T) 1/2 is the thermal de Broglie wavelength of the molecule of 
mass m. 

Our prescription for ~3 is that developed by Tarazona [13]. The smoothed 
density is given by an average of p(r) weighted by a suitable function w, which is 
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allowed to depend on fi: 

~(r) = f d3r'p(r')w(l r -- r ' l ; /3( r ) ) .  (7) 

This  is an implicit  equat ion for fi in terms of  p. T h e  weight  funct ion w is 
specified by  requir ing the direct  correlat ion funct ion Ch~(r; p) of  a un i fo rm hard-  
sphere fluid, obta ined by  funct ional  differentiation of (4), be close to PY �9 char, p), 
obtained f rom the Percus -Yevick  approximat ion ,  for a wide range of  densities p. 
More  precisely, it is assumed that  w has a power  series expansion 

w(r; p) = wo(r ) + wl(r)p + w2(r)p 2 + ""  (8) 

and the first two cofficients w 0 and w 1 are calculated by compar i son  with the 
virial expansion of  Chs(r; p), while the third,  w2, is obta ined f rom an empir ical  fit 
to the Percus -Yevick  results. Explicit  expressions for we, i = 0, | ,  2 were derived 
in [13] and are listed in the Append ix  of  the present  paper.  In  practice the 
expansion is t runcated  at the third  term and (7) reduces to a quadrat ic  equat ion 
for ~(r):  

f3(r) = do(r) + f31(r)~(r ) + ~2(r)(~(r)) 2 (9) 

with coefficients 

= fa3r'p(r')w,Or - r'l)  i = 0, 1, 2. (10)  

depending  on p(r). T h e  physical  root  of  (9) is easily de te rmined  [13].  W h e n  the 
Carnahan  and Starl ing expression [17] 

7(4 -- 3~/) 
A@hs(p) = k B T (1 -- r/) 2 ' (11) 

with t / =  np63/6, is used the direct  correlat ion funct ions  are in good agreement  
with Percus -Yevick  results even for reduced densities pa 3 as high as 0"8 [13].  
Unlike the Percus -Yevick  result :  cPYt'r �9 hst , P) = 0, r > a, this approximat ion  exhibits 
a non-zero  bu t  rapidly decaying tail for r > a, the hard-sphere  diameter .  

Th i s  completes  the specification of  the smoo thed  densi ty  free energy  func-  
tional (SDA).  Inser t ing  (4) into (1) and differentiat ing w.r.t,  p(r) yields an equa-  
tion for the equi l ibr ium densi ty that  can be solved by a suitable iteration 
procedure  [13].  T h e  accuracy of  the approximat ion  was tested by compar ing  the 
densi ty profiles and interfacial tensions for hard spheres (~bat t = 0) near a single 
hard wall with the cor responding  results f rom compu te r  simulation.  T h e r e  is 
good agreement  for the full range of  fluid densities, i.e. up to bulk densities as 
high as pa3= 0"81 [13].  We note, moreover ,  that  in the S D A  the densi ty  at 
contact ,  Pw, satisfies the exact rule k B T p ,  = p, the bulk pressure.  

(b) Two-dimensional limit of the three-dimensional density functional 

In  t reat ing the possible phase equil ibria of  a fluid confined between two 
parallel walls we are led to consider  the si tuation that  occurs  when the wall 
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separation H becomes very small. Intuitively we might  expect two dimensional 
phase equilibria to ensue when H is about one molecular diameter  (or less). I t  is 
important  then to enquire how well a theory designed to describe the thermody-  
namic and structural properties of a three-dimensional  fluid can account for the 
same properties in a two-dimensional  fluid. I f  the theory yields sensible results in 
this limit it is reasonable to suppose that it will provide a realistic description of 
fluids in very narrow slits. 

Consider a three-dimensional  density of the form 

0(r) = p(2D)6(Z). (12) 

Although this diverges at z = 0 it generates a finite two-dimensional  uniform 
density 

p(2D) =--1 f darp(r),  
A 3 

where A = ~ dxdy is the area in the x-y  plane. The  configurational part  of the 
hard-sphere free energy functional 

is then 

A~hsEP ] = f darp(r)A~bhs(p(r)) 

A~hs = Ap(2D)A@hs(p(0)) 

with ~(0) -- ~(z = 0). Thus  the SDA yields an excess (over ideal gas) free-energy 
per molecule 

Aa'(2D)r~(2Dh = A~bh~(~(0)). (13) 
~ h s  KF" / 

It  is this quantity that is appropriate  to the two-dimensional  fluid. T h e  smoothed 
density ~(0) is obtained f rom (9) 

fi(0) = 2fio[1 - fil + ((1 - - / 9 1 )  2 - -  4/92 f i0)1/2]  - 1  (14) 

where 

f (  
Pi = Pi(0) = p(2D) ~ dxdywi((x 2 + y2 + z2)1/2)~=0 ' (i = 0, 1, 2). (15) 

Using the w i in the Appendix explicit formulae can be obtained for ~/. The  
approximation for the excess free-energy of the hard-sphere fluid in the two- 
dimensional limit is, f rom (13) and (11), 

A '/I(2D)/~(2D)~ k B T ~(4 -- 3~) (16) 
~'hs ,~" ' =  ( 1 - 0 )  2 '  

with ~/= 7cp(0)ff3/6. We have compared the results obtained f rom (16) with those 
f rom scaled particle theory [18] for hard discs: 

T~ r/(2D) In (1 -- t/(2O))J (17) A@(h2D)(p2D)) = kB 1 - -  ~(2D) 

with t/t2D) = Xp(2D)0"2/4. Although the forms of these approximations appear com- 
pletely different the numerical results agree to within 10% for reduced densities 
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p(ZO)a2~ 0"6. F o r  h ighe r  dens i t ies  (16) ove res t ima tes  the  excess free energy.  
S imi l a r  r emarks  a p p l y  to the  p re s su re  

[ AA'/'(2D) 1 ~(2D)/',~(2D)~ ~ W h s  -Phs ~,Y ] : p(2D) p(2D) dP (2D) + kB T . ( 1 8 )  

W e  conc lude  tha t  our  t h r e e - d i m e n s i o n a l  t heo ry  p rov ides  an adequa te  de sc r ip t i on  
of  the  t w o - d i m e n s i o n a l  h a r d - d i s c  fluid.  

I f  we inc lude  the  a t t rac t ive  tai l  of  the  p a i r - p o t e n t i a l  v ia  (2) it  is poss ib le  to 
ca lcula te  the  cr i t ica l  po in t s  for  b o t h  th ree  and  t w o - d i m e n s i o n a l  bu lk  fluids.  W e  
assume,  for convenience ,  a Yukawa  tai l  

0~ 3 exp (--)~r) 
~att(r) = -- (19) 

4 n).r 

where  r is a measu re  of  the  s t r eng th  of  the  a t t rac t ive  forces  and  2 -1  is a me a su re  
of  the i r  range.  In  th ree  d i m e n s i o n s  S d3r~batt (r) = - ~ and  the  free ene rgy  dens i ty  
of  the  u n i f o r m  fluid reduces  to 

f (P) = fhs(P) -- c~P2/2. 

T h i s  resu l t  is val id  for both the  L D A ( 3 )  and  the  SDA(4) .  No te  tha t  
darw(r; p) = 1. T h e  equa t ion  of  s ta te  is 

P(P) = Phs(P) -- ctP2/2 

with  Phi(P) = PkB T(1 + t/ + r/2 -- / /3)/(1 -- r/) 3, the  C a r n a h a n  and  S ta r l ing  resul t  
~(aD) and  t e m p e r a t u r e  T r  T (30) are then  easi ly [17].  T h e  cr i t ical  dens i ty  p c - / , r  

o b t a i n e d  [16] : 

pctr 3 = 0"249; l l ' 1 0 2 k B  Tea 3 = ct. (20) 

In  two d i m e n s i o n s  the  a t t rac t ive  tai ls  c o n t r i b u t e  a t e rm  

f d2r~batt(r) = 
/~(xp ( 20)2 �89 

.1 4 

to the  free ene rgy  dens i ty  and  the p ressure .  T h e  h a r d - s p h e r e  c o n t r i b u t i o n  to the  
p re s su re  fol lows f rom (18). U s i n g  the  t w o - d i m e n s i o n a l  l imi t  (16) we find 

/9(20)0"2 = 0"242; 19"77hn T(?O)t72 = Gt~ (21) 

whi le  the  scaled par t ic le  resul t  (17) gives 

p(e2D)0 "2 = 0"274; 18-35k a T(?O)o "2 = CX,~.. (22) 

T h e  ra t io  of  cr i t ica l  t e m p e r a t u r e s  ob t a ined  f rom the  S D A  is 

T(2D) -- 0.56152a.  (23) 
To 

In  ou r  ca lcu la t ions  for  slits we set A - t =  a. T h e n  (23) impl i e s  tha t  for T < 
T(2D)= 0"56T c it shou ld  be poss ib le  to f ind t w o - d i m e n s i o n a l - l i k e  l i q u i d - g a s  
coexis tence  in ve ry  n a r r o w  slits, H --* 0. I f  T > 7 ~2D) we shou ld  expec t  the  l ine of  
coexis tence  to t e rmina t e  at a la rger  va lue  of  H.  W e  shall  see tha t  these  p r ed i c t i ons  
are con f i rmed  by  the  resul ts  of  our  ca lcula t ions .  No te  tha t  in the  L D A  ~hsl-P] is 
i l l -def ined  for  p(z) = p(2mf(z) so the  t w o - d i m e n s i o n a l  l imi t  is not  mean ingfu l .  
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3. APPLICATION TO THREE INTERFACIAL PROBLEMS 

In  this section we report  the results of  calculations of  several propert ies  of  
fluids at different types of  interface. T h e  calculations are based on the S D A  and 
the results are compared  with those f rom the s impler  L D A .  Th i s  allows us to 
assess the impor tance  of  non-local  contr ibut ions  to the f ree-energy funct ional  for 
a variety of  problems.  

(a) Wetting behaviour at a single wall 

We have calculated the densi ty  profiles p(z) and interfacial tensions 7 for a 
fluid, descr ibed by  the attractive pair potential  (19), near a wall that  exerts a 
wall-f luid potential  

Vs(z) = ( ~ '  z < 0, (24) 
- e  w e x p ( - ) ~ z ) ,  z > 0 .  

For  a given wel l -depth  ew(>0),  the fluid undergoes  a wett ing transit ion f rom 
partial wett ing,  contact  angle 0 > 0, to complete  wetting,  0 = 0, at a t empera ture  
T w < T c . 0 is defined by  Young ' s  equat ion Ywg - Ywl + Ylg cos 0, where the wal l -  
gas tension Ywg, wal l - l iquid tension Y,~t and l iquid-gas  tension Ylw all refer to bulk 
coexistence. In  the L D A  the f ree-energy funct ional  then cor responds  to the 
model  in t roduced  by  Sullivan [16].  Th i s  model  exhibits  a second-order  wett ing 
transit ion,  i.e. the thickness of  the adsorbed l iquid film at the wall-gas interface 
diverges and d(cos O)/dT vanishes cont inuous ly  as T ~  T w along the bulk 
coexistence curve.  Increas ing e w lowers the wett ing transi t ion tempera ture  T w 
[16].  By making  the range (2 -1 ) of  the wall potential  larger than that  of  the 
attractive fluid-fluid potential  it is possible to drive the transi t ion f irst-order 
[19-21] .  I n  this case the film thickness diverges and d(cos O)/dT vanishes discon- 
t inuously  as T--* T w [22].  T h e  purpose  of  our  present  calculations was to examine 
the effects of  non- local i ty  of  the functional  on the nature  of  the wet t ing transition. 
T o  this end we varied the p roduc t  of  the hard  sphere d iameter  and the ( common)  
inverse range ). of  the potentials.  In  the limit a~. ~ 0 the interfacial tensions are the 
same as those obtained in the L D A  of Sull ivan [16].  For  r > 0 non-local i ty  
manifests  itself. 

Results  for T w as a funct ion of oJ. for  several values of  e w are plot ted in 
figure 1. At  a2 = 0 we recover the results of  Sull ivan [16].  As a2 is increased the 
wett ing tempera ture  decreases slowly for weak wall potentials  hu t  more  rapidly 
for s t ronger  potentials.  T h e  transi t ion remains  second order  for small a2 bu t  
becomes  first o r d e r t  at large a)~. T h e  s t ronger  the wall potential  (larger ew) the 
smaller is the value of  a). at which  the cross-over  occurs.  T h u s  for ew = 3kB Tr a 
value appropr ia te  to a fairly weak substrate,  T w falls f rom 0.82T~ at a)~ = 0 to 
0"55T~ at a2 = 0"9 and the transit ion is then first order.  A similar reduct ion  in 
TwIT r was found  in the work  of  Freasier  and N o r d h o l m  [23] and Meis ter  and 
Kroll  [14].  T h e  effects of non-local i ty  are clearly impor tan t  in de termining  both  
the location and the order  of  the wett ing transition. In  a non-local  t rea tment  the 
fluid densi ty  near the wall is increased above that  of  the local densi ty  approx-  
imation.  Th i s  enhancement  can be in terpreted as arising f rom an increase in the 

The method of locating the transition and ascertaining its order is described in [19]. 
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L D A  

T h e  wet t ing  t ransi t ion temperatures T w calculated in the S D A  for  d i f ferent  
strengths, ew, of the wall-fluid potential, crY. determines the range of the potential 
functions; 6J. = 0 corresponds to the LDA of Sullivan. The crosses denote second 
order and circles first order transitions. 

effective s t rength  of  the attractive wall-f luid potential.  Such  a mechan i sm favours 
complete  wetting,  i.e. T w is shifted to a lower temperature .  T h e  present  theory  is 
capable of  descr ibing sol id- l iquid and sol id-gas coexistence as well as l iquid-gas  
coexistence and the triple point  t empera ture  Tt, obta ined f rom a procedure  
similar to that  employed  in earlier densi ty funct ional  calculations of  freezing [24],  
is <~0"47T c . T h e  results shown in figure 1 indicate that  the wet t ing transi t ion will 
only occur  above T t for a reasonably ranged potential  funct ion (a2 ~ 1, say) 
provided  e w <~ 3k B To. For  a s t ronger  attractive potentials we would  expect  to find 
complete  wett ing for all T > T t . 

Examples  of  the densi ty  profiles obtained f rom the S D A  are shown in figure 
2. These  refer to a wall potential  with ew = 2"l14kB Tr a value appropr ia te  to 
argon at a carbon-dioxide  substrate [-25], and 6~. = 1. T h e  profiles cor respond  to 
the wal l -gas  interface at different tempera tures  but ,  in each case, at bulk 
coexistence. As T is increased one observes the g rowth  of  thicker l iquid-like films 
near the wall. At  the highest  temperature ,  T =  0"835T~, three dist inct  oscil- 
lations, co r responding  to three closely packed ' l i qu id  layers ', fol lowed by  a rela- 
tively flat por t ion  occur  in p(z). T h e  wett ing transition, which  is second order  in 
this system, takes place at a slightly higher  tempera ture .  We  emphasize  that  the 
L D A ,  whilst  also predic t ing a second-order  t ransi t ion (at T w ~ 0-96T~ for this 
wall-potential) ,  yields monoton ica l ly  decreasing densi ty  profiles with no order ing  
due to shor t - ranged  correlat ions (packing) near the wall. 
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Figure 2. Density profiles for a wall-gas interface at bulk coexistence (a) T = 0'7T c, (b) 
T--0-ST c and (c) T = 0.835Tr The fluid undergoes a second order wetting tran- 
sition at a temperature slightly higher than in (c). Reduced units ~ = 2-1 = 1 are 
used. 

(b) Capillary evaporation in a slit with hard walls 

The second application is concerned with the phase equilibria of the Yukawa 
fluid described by (19), confined by two parallel hard walls. These exert a total 
potential 

{ 0% z < 0  and z > H  
V ( z ) =  O, O < z < H .  (25) 

It is well known that for a single hard-wall the wall-liquid interface exhibits the 
phenomenon of complete drying (0 = z0 or wetting by gas. When the pressure, p, 
of the bulk liquid (far away from the wall) is reduced to its value at coexistence, 
Ps~t, the density profile loses the oscillations that characterize the wall-liquid 
interface and in the limit p ~ P ~ t  a wetting layer of low-density gas intrudes 
between the wall and the liquid. Such behaviour has been found in computer 
simulations of Lennard-Jones fluids [26] and, more recently, in detailed simula- 
tions of a square-well fluid [27]. Earlier density functional calculations [13], 
based on a simplified version of the SDA, gave a satisfactory account of the 
erosion of oscillations and the growth of the gas layer--see also Meister and Kroll 
[14]. The  purpose of the present calculations was to investigate the effects of 
confinement on a fluid that is in the complete drying regime. 

It is assumed that the walls are unbounded in the x and y directions but the 
fluid is in contact with a reservoir at fixed T and #. For a given wall separation H 
the fluid between the walls will adopt that density profile which minimizes the 
grand potential fl(#, T, /4) .  I f  H is large we expect the profile to be a super- 
position of the profiles at the individual walls. Thus  for # > #s,t(P > Ps,t) the 
profile should have the form sketched in figure 3(a), with most of the volume of 
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(a) {b) 

'Liquid' ~(z)~ 'gos' 

0 H Z 0 H 'Z 
Figure 3. Density profiles (schematic) of a fluid confined in a slit with hard walls. (a) a 

' l iquid '  configuration with wetting layers of gas of thickness t (b) a ' gas '  configu- 
ration. These configurations coexist at a chemical potential kt > #sat- The wall 
separation H ~> a. 

the  slit  o c c u p i e d  by  a ' l i q u i d '  whose  dens i ty  is s imi lar  to tha t  of  the  bu lk  l iqu id  at 
chemica l  po ten t i a l  #. T h i n  layers  of  gas, wi th  dens i ty  p+ c o r r e s p o n d i n g  to the  
me tas t ab le  bu lk  gas at the  same value  of  #, can deve lop  at the  walls.  F o r  la rger  # 
the  prof i le  exhib i t s  osc i l la t ions  and  the  gas layers  d i sappea r .  As  # ~ #sat, however ,  
the  gas layers  th icken  and  at a s ingle  wall  the  th ickness  t increases  as [8]  

2t ~ - In (2(# - #sat)/~pg), (26) 

where  pg is the  dens i ty  of  the  gas at bu lk  coexis tence .  In  the  conf ined  f luid the  
fo rma t ion  of  th ick  gas layers  is in c o m p e t i t i o n  wi th  cap i l l a ry  evapora t ion .  As # is 
dec reased  for  fixed H,  or  H is dec reased  at f ixed # ( T  fixed), the  f luid can 
u n d e r g o  a f i r s t -o rde r  phase  t r ans i t ion  to a ' g a s '  s tate wi th  a dens i ty  profi le  
s imi la r  to tha t  ske tched  in f igure 3(b). T h i s  t r ans i t ion  c o r r e s p o n d s  to a shif t  of  the  
bu lk  f i r s t -o rde r  t r ans i t ion ,  i.e. evapora t ion  of  l iqu id  at # > #s~t. In  the  l imi ts  
H ~ ~ and  # ~ #sat m a c r o s c o p i c  a r g u m e n t s  [4]  show tha t  cap i l l a ry  evapora t ion  
occurs  in a comple t e  d r y i n g  reg ime when  

P --  P+ = 271,/H (27) 

where  p+ is the  p re s su re  of  the  me ta s t ab l e  gas at chemica l  po ten t i a l  #. F o r  bu lk  
p res su res  p(#)  g rea te r  than  the  value  p r e d i c t e d  b y  (27) the  ' l i q u i d '  conf igura t ion  
of  f igure 3(a) is s table ,  whi le  for smal le r  p re s su res  the  ' g a s '  conf igura t ion  of  
f igure 3(b) is s table.  T h e  two d i s t inc t  conf igura t ions  coexis t  when  p(#)  satisfies 
(27). E v i d e n t l y  (27) has the  fo rm of  the  Lap lace  resul t  for the  p re s su re  d i f ference  
across a convex  cy l indr ica l  men i scus  wi th  mean  rad ius  of  cu rva tu re  H [4] .  By 
ca lcu la t ing  the  g rand  po ten t i a l  of  the  i n h o m o g e n e o u s  f luid us ing  the dens i ty  
func t iona l  a p p r o a c h  we were  able  to inves t iga te  the  r eg ime  of  va l id i ty  of  this  
mac roscop i c  a p p r o x i m a t i o n .  

T h e  resul ts  of  our  ca lcula t ions  for  the  coexis tence  l ine at a f ixed t e m p e r a t u r e  
T = 0"7T c are shown in f igure 4. W e  set a = 2 -1 = 1. T h e r e  is ve ry  l i t t le  differ-  
ence be tween  the resul ts  f rom the two d i f ferent  a p p r o x i m a t i o n s  for H ~> 10. In  
this  range  the dens i ty  profi les  f rom the S D A  for ' l i q u i d '  conf igura t ions  near  
cap i l l a ry  coexis tence  are qu i te  s imi la r  to those  o b t a i n e d  f rom the L D A .  Since  the  
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Capillary coexistence line for a fluid confined in a slit with hard walls. The wall 
separation H is measured in reduced units a = 2-1 = 1. p is the pressure of the bulk 
liquid at chemical potential y > #sat. The crosses joined by a solid line are the 
results of the SDA, the circles are results of the LDA and the dashed line is the 
Laplace result (27)--see text. T = 0'7 T c . 

reduced l iqu id-gas  surface tens ions  7~g - 71gt72/kB Tr differ only  sl ightly (0"638 in 
S D A  and  0"646 in L D A )  we have plot ted only  one curve for the Laplace result  
(27). T h e  latter is an adequate  approx imat ion  for H ~> 40 bu t  underes t imates  the 
evaporat ion pressure  at smaller  separa t ions t .  Moreover  it fails to account  for the 
capil lary critical po in t  that  is predic ted  by the dens i ty  func t iona l  theories.  For  
H < 2 in the S D A  and H < 3 in the L D A  there is no capil lary evaporat ion.  

A l though  wet t ing layers of gas do develop be tween  the walls and the l iquid  
these are very th in  even for separat ions as large as H = 40. T h e  m a x i m u m  thick- 
ness that  can be observed in a stable ' l i q u i d '  conf igura t ion is that  which  occurs at 

t Equation (27) is only meaningful when there is a bulk gas at the same/z, i.e. in the 
metastable region. For P/Psat ~ 33 there is no metastable gas. 
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cap i l l a ry  coexis tence .  A n  es t imate  can be o b t a i n e d  b y  c o m b i n i n g  (26) and  (27) 

2t ~ In (H~tpg(pl -- pg)/4ylg) (28) 

whe re  we have e x p a n d e d  the  p res su res  abou t  P~,t and  used  (Op/O#) = p. Pl is the  
dens i ty  of  the  l iqu id  at bu lk  coexis tence .  F o r  H = 40 (28) p red ic t s  t ~ 0.7. T h i s  
agrees  to wi th in  a fac tor  of  two wi th  the  m a x i m u m  th ickness  o b t a i n e d  f rom our  
ca lcula t ions .  O u r  resul t s  sugges t  tha t  in g r a n d  canonica l  s imula t ions  of  l iqu ids  
conf ined  b y  ha rd -wa l l s  cap i l l a ry  evapora t ion  to a d i lu te  ' g a s '  conf igura t ion  will  
occur  before  th ick  gas fi lms can develop .  (S imu la t i ons  are p r e sen t l y  r e s t r i c t ed  to 
H ~ 40 mo lecu l a r  d iamete r s . )  H e n d e r s o n  and  van  Swol  d id  observe  r a the r  th ick  
gas f i lms wi th  H = 32tr bu t  the i r  s imu la t ions  were  for  a f ixed n u m b e r  of  mo l -  
ecules  [27].  Cap i l l a ry  evapora t ion  does  no t  occur  in tha t  e n s e m b l e  and  it is 
i n a p p r o p r i a t e  to c o m p a r e  our  resul t s  d i r ec t ly  wi th  theirs .  In  the  analysis  of  the i r  
resul ts  H e n d e r s o n  and  van  Swol  ignore  the  effects of  f inite H and assume the i r  
resul ts  are, effect ively,  those  tha t  w o u l d  pe r t a in  to a s ingle  wall.  F u r t h e r  work  is 
r equ i r ed  to assess the  va l id i ty  of  the i r  a s sumpt ion .  

(c) Capillary condensation in slits and cylinders with attractive walls 

W e  tu rn  now to the  phase  equ i l i b r i a  of  the  same Yukawa  fluid conf ined  in (a) 
a slit  whose  walls  exer t  a total  po ten t i a l  

V(z) = Vs(z ) + Vs(H - z) 

_ J ' o o ,  z < 0  and  z > H ,  
(29) 

-ew[eX p ( - 2 z ) + e x p ( - 2 ( H - z ) ) ] ,  0 < z < H  

and (b) a cy l inde r  of  in te r io r  r ad ius  Re whose  wall  exer ts  a po ten t i a l  

{ ~ ,  R > Re 
V(R) = _2ew2Rr162 R < R~' 

(30) 

where  R is the  radia l  d i s tance  f rom the  axis of  the  ( inf ini te ly  long)  c y l i n d e r  and  I 0 
and K 1 are  mod i f i ed  Bessel  func t ions .  T h e  po ten t i a l  (30) is tha t  which  is o b t a i n e d  
when  a mo lecu l e  in the  fluid in te rac ts  wi th  a mo lecu l e  in the  wall  v ia  a Yukawa  
pa i rwise  po ten t i a l  ~ - - e x p  (--2r)/r. In  the  l imi ts  R ~  and  R ~ o o V ( R ) ~  
- e  w exp ( - - 2 z ) ,  p r o v i d e d  z =  I R r  ~ R c .  Equa t ions  (29) and  (30) were  
e m p l o y e d  in our  ear l ie r  ca lcu la t ions  [5]  based  on the  L D A .  T h e  a im of  the  
p re sen t  work  was to inves t iga te  whe the r  or  no t  the  i nc o rpo ra t i on  of  n o n - l o c a l  
effects w o u l d  a l ter  s igni f icant ly  the  p i c tu re  of p h a s e - e q u i l i b r i a  tha t  e m e r g e d  f rom 
the ear l ie r  s tud ies  [4, 5]. W e  focused  a t t en t ion  on n a r r o w  capi l la r ies  s ince it is for 
these  tha t  we expec t  pack ing  cons ide ra t ions  to be mos t  i m p o r t a n t .  M o r e o v e r  we 
spec ia l ized  to those  (low) t e m p e r a t u r e s  where  t w o - d i m e n s i o n a l - l i k e  b e h a v i o u r  
m i g h t  occur  for a real is t ic  t r e a t m e n t  of  the  conf ined  f luid b u t  w o u l d  no t  occur  in 
the  L D A .  

Ca lcu la t ions  were  p e r f o r m e d  in the  S D A  wi th  the  s t r eng th  p a r a m e t e r  ew = 
2.114k B T~ and tr = 2 -1  = 1. T h i s  pa r t i cu l a r  mode l ,  in sli t  geome t ry ,  was s t ud i e d  
in de ta i l  in ear l ie r  pape r s  [-4, 28] us ing  the  L D A .  I t  was f o u n d  tha t  for  T > T s 
cap i l l a ry  condensa t i on  f rom a d i lu te  ' g a s '  conf igura t ion  to a dense  ' l i q u i d '  con-  
f igura t ion  o c c u r r e d  as /~ inc reased  t owards  #sat. T~ is the  t e m p e r a t u r e  at wh ich  
cos 0 = 0; for T < T~ cos 0 is negat ive .  In  the  L D A  Ts ~ 0"57T~. T h e  pressure ,  
p,  at wh ich  the first o r d e r  t r ans i t ion  o c c u r r e d  was c o m p a r e d  wi th  tha t  f rom the 
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Laplace equa t ion  

p - p +  = 271g cos O/H (31) 

where pl + is the pressure  of the metas table  l iquid  at the same value of #. Equa t ion  
(31) was reasonably  accurate for H > 10 and tempera tures  T < T w ( ~ 0 ' 9 6 T  r in 
LDA) .  For  T > T w wet t ing  films of l iquid  develop at the walls and produce  
subs tant ia l  correct ions to (31). T h e  lines of capil lary coexistence,  H versus  # or p 

at fixed T, were predic ted  to t e rmina te  at critical points  for small  values of H. 
S D A  results  for T = 0"6T c and  0"5To are presen ted  below. Both t empera tu res  lie 
below T w ~ 0-835T~ (see w the first is above, while the second is below the 
two-d imens iona l  critical t empera tu re  T(~ 2D) = 0"56 Tr der ived in w 2(b). 

In  figure 5 we plot  the capil lary coexistence curves for slits and cyl inders  at 
T = 0"6Tr Note  that  the degree of unde r sa tu ra t ion  is given by the ratio Pb/Pg, 
where Pb is the bu lk  gas dens i ty  at chemical  potent ia l  #( < Psat) and pg is its dens i ty  
at coexistence. For  H or R~ > 2 the results for bo th  slits and cyl inders  agree 
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Figure 5. Capillary coexistence lines for fluids confined in slits of width H and cylinders 
of radius Re at T = 0-6T c . The crosses joined by a solid line are the results for slits 
and the triangles are the results for cylinders in the SDA. The dashed line is the 
Laplace result (31). The circles joined by a solid line are the results for slits in the 
LDA--see text. 
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r e m a r k a b l y  well  wi th  the  Lap lace  es t ima te  (31). T h e  la t te r  y ie lds  the  same est i -  
mate  in bo th  c a s e s - - H  be ing  rep laced  b y  R c for cy l inders .  T h e  condensa t ion  
p re s su re  is only  s l igh t ly  larger  in cy l inde r s  than  in slits and  this  is cons i s t en t  wi th  
L D A  resul ts  for  T < T w [5].  N e a r  H = 1, H = 2 and,  to a lesser extent ,  H = 3 
the  cap i l l a ry  coexis tence  line ca lcu la ted  for slits exh ib i t s  osci l la t ions .  T h e s e  are 
associa ted  wi th  pack ing  effects and  are m u c h  m o r e  p r o n o u n c e d  at the  lower  
t e m p e r a t u r e .  W e  were  unab le  to f ind coexis tence  for H < 1 and  we conc lude  tha t  
the  coexis tence  l ine ends  in a cap i l l a ry  cr i t ica l  po in t  near  H = 1. 

Also  shown in f igure 5 are the  resul ts  of  ca lcu la t ions  for  slits based  on the 
L D A  for the  same t e m p e r a t u r e  b u t  a d i f ferent  value  of  ~w. I f  we e m p l o y e d  the 
same value  for  ~w the contac t  angle  wou ld  be m u c h  larger  in the  L D A  since the  
we t t ing  t r ans i t ion  occurs  at a h ighe r  t e m p e r a t u r e .  T h u s  Ylg cos 0 w o u l d  be  signif i-  
can t ly  smal le r  in the  L D A  than  in the  S D A  at the  same t e m p e r a t u r e ,  fo rc ing  the  
condensa t ion  p re s su re  to h ighe r  values  for  a g iven separa t ion .  T o  avoid  this  
d i f f i cu l ty  and  effect a fa i rer  c o m p a r i s o n  be tw e e n  the resul t s  of  the  two a p p r o x -  
imat ions ,  we increased  ew to 2"829k B To, the  value  for wh ich  ~lg cos 0 = 7wg --  7wl 
is the  same as in the  S D A .  Both  a p p r o x i m a t i o n s  now y ie ld  the  same a sympto t i c  
(Lap lace)  resul t  as H ~ ~ .  T h e  L D A  resul ts  are in close a g r e e m e n t  wi th  those  of  
the  S D A  for H ~> 12 b u t  for smal le r  sepa ra t ions  the  c onde nsa t i on  p re s su re  is 
u n d e r e s t i m a t e d .  Of  course  the  coexis tence  l ine does  not  show osc i l l a to ry  charac te r  
and  it t e rmina t e s  in a cap i l l a ry  cr i t ica l  po in t  at H > 2. S o m e w h a t  su rp r i s ing ly ,  we 
find tha t  the  L D A  resul ts  are m u c h  fu r the r  r e m o v e d  f rom the  L a p a c e  es t imate  
than  the  S D A  resul ts .  

T h e  resul ts  j u s t  de sc r ibed  show no fea tures  tha t  cou ld  be  a sc r ibed  to two-  
d imens iona l - l i ke  phase  equi l ib r ia .  As  expec ted  the  s i tua t ion  is qui te  d i f ferent  for 
T =  0-5To < T ~2D). Before  p r e sen t i ng  the n u m e r i c a l  resu l t s  it  is ins t ruc t ive  to 
r e tu rn  to the  p r o b l e m ,  ra ised ear l ier ,  of  ve ry  n a r r o w  slits. F o r  H s l igh t ly  grea te r  
than  1 we expec t  the  dens i ty  prof i le  of  a ' l i q u i d '  conf igura t ion  to take the  fo rm 
ske tched  in f igure 6(a). T h i s  c o r r e s p o n d s  to two h igh ly  local ized layers  and  these  
are d r a w n  schemat ica l ly  in f igure  6(b). I f  H is r e d u c e d  b e l o w  1 the l iqu id  can 
deve lop  on ly  a s ingle layer  (f igure 6(d)) and  the  dens i ty  prof i le  r e sembles  tha t  in 
f igure 6(c). As /-/ is r e d u c e d  even fu r the r  the  l iqu id  be c ome s  m o r e  two-  
d i m e n s i o n a l  l ike;  the  t w o - d i m e n s i o n a l  l imi t  c o r r e s p o n d s  to H ~  0. A t  T = 
0"5 Tr = 0"83T(~ D) the  r e d u c e d  dens i t ies  of  coexis t ing  two dimensional l iqu id  and 
gas are  0-45 and 0"08, respec t ive ly ,  in the  S D A .  I f  we define an effective two-  
d i m e n s i o n a l  dens i ty  ~'etf~2D~ = ~g dzp(z) for the  t h r e e - d i m e n s i o n a l  f luid in the  slit  
we w o u l d  expec t  to f ind for suf f ic ien t ly  smal l  H ,  tha t  c onde nsa t i on  occurs  
be tween  ' l i q u i d '  and  ' g a s '  conf igura t ions  tha t  have dens i t ies  ~t2D) s imi la r  to the  P e f f  

values  quo t ed  above.  O u r  ca lcula t ions  showed  tha t  this  was i ndeed  the  case for 
H < 0-8. M o r e o v e r ,  for  0"1 ~< H ~< 0"7, the  effective dens i t ies  were  a lmos t  inde -  
p e n d e n t  of  H ;  the  ' l i q u i d '  a lways  hav ing  a dens i ty  grea te r  than  0"45 and  the  
' g a s '  a dens i ty  less than  0"08. F o r  these  smal l  sepa ra t ions  p(z) is a lmos t  cons tan t  

,,(2I))/~r W e  bel ieve  tha t  this  is s t rong  ev idence  for  t w o - d i m e n s i o n a l  and  var ies  as Peff /~t~t. 
like condensa t ion .  F o r  ve ry  smal l  H,  i.e. H ~< 0"2, the  cap i l l a ry  coexis tence  line 
(see f igure 7) bends  t owards  la rger  p ressures .  T h i s  b e h a v i o u r  can be a t t r i b u t e d  to 
the  ideal  gas t e r m  in the  chemica l  po ten t ia l .  T h e  chemica l  po ten t i a l  of  the  th ree -  
d imens iona l  f luid can be  wr i t t en  as 

#(P) = #id(P) + A#h,(p) -- ~p 
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where #id(P) = ka T I n  (Aap) and A#h s is the non- idea l  (configurat ional)  par t  of the 
ha rd-sphere  chemical  potential .  I n  the l imit  H - - ,  0 we can approximate  p by  

(2D) 
Peff /H so  t h a t  

/Zid(P ) ~ k B T In [A2~(2D)~ k' ~ . e f t  ) "{- kB T In (A/H) 

"(2D)[~(2D)'t -~- k B T In  ( A / / ~ .  /-rid ~,Yeff ] 

T h u s  if coexistence occurs in the two-d imens iona l  fluid for a given T < T (2D) at 

some dens i ty  ~(2D) (gas or l iquid)  the co r respond ing  ideal gas chemical  potent ia l  of k'eff 
the t h ree -d imens iona l  fluid is shif ted by  an a m o u n t  k B T In (A/H). Since the 
latter quan t i t y  diverges as H ~ 0 this implies  that  the coexistence, referred to the 
th ree -d imens iona l  system, is d r iven  towards Pb = o0. Consequen t ly  for T < T(r 2D) 
there is no capil lary critical po in t  and  the coexistence l ine extends  to H = 0 as 

pb --~ o0. 
T h e  packing effects al luded to in figure 6 produce  the oscil lat ion of the 

coexistence l ine near  H = 1. Similar  considera t ions  apply near  H = 2. T h e  insets 
to figure 7 show that  oscil lations are more  p r o n o u n c e d  in slits than  in cyl inders  so 
we concent ra te  on the former.  As H is increased at fixed under sa tu ra t ion ,  f rom 
about  0"9 to 1"1, the densi ty  of the l iquid  at the walls, p(0) = p(H),  increases 

C{z) ~'lz) 
(a) (c) 

0 H Z 0 H Z 

(b) 

0 

(dl 

H 0 H 

Figure 6. Effects of packing on the density profile p(z) of a liquid confined in a narrow 
slit. In (a) and (b) the wall separation H is slightly greater than the hard-sphere 
diameter a and two well-defined layers develop. In (c) and (d) H < cr and a single 
loosely-packed layer develops. As H ~ 0 the nuclei �9 become restricted to a single 
plane. 
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Figure 7. As in figure 5 but now for T = 0-5Tr Note that the coexistence line in the 

L D A  (circles) terminates in a capillary critical point near H = 1"9 whereas it con- 
tinues to H = 0 in the SDA (crosses). The triangles denote the SDA results for 
cylinders. 

s igni f icant ly  whi le  the  dens i ty  at m i d - p o i n t ,  p(H/2), decreases .  T h e  effect is espe-  
cial ly p r o n o u n c e d  for  values  of  Pb/Pg "~ 0"25 (figure 8) whe re  p(0) increases  b y  a 
factor  of  3"5 and p(H/2) decreases  b y  a fac tor  of  2"5 be tween  H =  0"95 and  
H = 1"1. (Note  tha t  the  ' l i q u i d '  is me ta s t ab l e  w.r . t .  ' g a s '  for  H > 0"93 at this  
unde r sa tu ra t i on ) .  I t  is t e m p t i n g  to specu la te  tha t  a f i r s t -o rde r  phase  t r ans i t ion  
m i g h t  occur  be tween  the one - l aye r  and  t w o - l a y e r  ' l i q u i d '  conf igura t ions  ske tched  
in f igure  6. T h i s  w o u l d  be  cha rac t e r i zed  b y  d i scon t inu i t i e s  in p(0) and  p(H/2), 
p lo t t ed  as a func t ion  of  H.  W e  d id  not  obse rve  such d i scon t inu i t i e s  in these  
c a l c u l a t i o n s - - t h e  me ta s t ab l e  l iqu id  b r a n c h  t e rmina t e s  before  loops  can be  gene r -  
a ted in p(H/2), say. 

T h e  r ap id  change  in the  s t ruc tu re  of  the  ' l i q u i d '  near  H = 1 genera tes  an 
osc i l la t ion  in the  surface  excess g rand  po ten t i a l  [4]  7(H) = (~/A + pH)/2.7(H) is 
p lo t t ed  in f igure 9 for  bo th  ' l i q u i d '  and  ' g a s '  conf igura t ions  at severa l  u n d e r -  
sa tura t ions .  7g(H) var ies  m o n o t o n i c a l l y  wi th  H and  is r a the r  insens i t ive  to the  
unde r sa tu r a t i on .  T h e  genesis  of  the  cap i l l a ry  coex is tence  l ine shown in f igure 7 is 
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now apparen t .  On  inc reas ing  H at f ixed Pb/Pg (i.e. bu lk  p re s su re  or  chemica l  
po ten t ia l )  the  fluid can u n d e r g o  a s ingle  t r ans i t ion  f rom ' l i q u i d '  to ' g a s ' ,  as in 
f igure 9(a) and  9(b) or  th ree  t r ans i t ions  f rom ' l i q u i d '  to ' g a s '  to ' l i q u i d '  to ' gas ', 
as in f igure 9(c). Equ iva l en t  b e h a v i o u r  occurs  for  h ighe r  p re s su re s  near  H - - 2 .  
On  r educ ing  the t e m p e r a t u r e  stil l  f u r the r  the  osc i l la t ions  in the  cap i l l a ry  
coexis tence  l ines b e c o m e  more  p r o n o u n c e d  and ex tend  to la rger  H .  

F r o m  figure 7 it can be  seen tha t  a l t hough  on an u n e x p a n d e d  scale the  
coexis tence  l ine ca lcu la ted  for  cy l inde r s  lies ve ry  close to tha t  for  slits there  are 
quan t i t a t ive  d i f ferences  at smal l  H or  Re ,  when  pack ing  cons ide ra t ions  b e c o m e  
crucia l .  T h e  S D A  resul t s  for  bo th  cy l inde r s  and  slits lie ve ry  close to the  Lap lace  
resul t  (31) for H or  Re >~ 6. T h e  L D A  resul t s  shown in f igure 7 were  o b t a i n e d  by  
the same p r o c e d u r e  tha t  was e m p l o y e d  at the  h ighe r  t e m p e r a t u r e ,  i.e. e w was 
inc reased  (to 3-005ka To) so tha t  the  Lap lace  resul t  w o u l d  be  the  same as tha t  in 
the  S D A .  As was the  case at the  lower  t e m p e r a t u r e  the  L D A  resul t s  p r e d i c t  
smal le r  condensa t i on  p ressures  than  the S D A  at smal l  H .  T h e  L D A  coexis tence  
l ine t e rmina t e s  in a cap i l l a ry  cr i t ical  po in t  at H ,,~ 1"9. T h i s  is in sha rp  con t ras t  to 
the  S D A  resul t  de sc r ibed  above.  T h a t  the  L D A  shou ld  a lways  p r e d i c t  a cr i t ica l  
po in t  at some n o n - z e r o  H is easi ly  u n d e r s t o o d  b y  re ference  to the  slab a p p r o x -  
ima t ion  e m p l o y e d  in our  ear l ie r  p a p e r  [4] .  A s s u m i n g  the  profi les  p(z) are con-  
s tant  t h r o u g h o u t  the  sli t  one f inds [4] in the  L D A  tha t  the  cap i l l a ry  cr i t ical  

0.5 ~ C . ~  (o) 

1-0 1-1 
I 

1.2 H 

7 

6 

( b l  

5 

2 

1 

0 I l I 
0.9 1.0 1-1 1-2 H 

Figure 8. (a) The density at mid-point  for ' l i q u i d '  configurations at T = 0"5Tr (in 
reduced units) for three values of the undersaturation ratio Pb/P~. (b) The density at 
the walls. 
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Figure 9. The surface excess grand potential ? for ' l i qu id '  (71) and 'gas '  (?g) configu- 
rations at T =  0"5Tr as a function of wall separation H (in reduced units). (a) 
Pb/Pg = 0-24, (b) Pb/Pg = 0.25 and (c) Pb/Pg = 0'26. 

t empera tu re  is given by 

T r a p  
c 

Tc 
-- 1 -- (1 -- exp ( - - ) .H)) /2H.  

T h i s  approx ima t ion  is reasonably  accurate for small  H. In  the l imit  
H ~ 0To cap ~ 0, i.e. there is no capil lary coexistence. 

F ina l ly  in figures 10 and  11 we give some examples  of the dens i ty  profiles 
calculated in the SDA.  F igure  10 i l lustrates the p r o n o u n c e d  layered s t ruc ture  that  
develops for a confined l iquid  in a na r row slit (H  = 4). F ive  wel l -def ined layers 

are present .  We recall that  in the L D A  the dens i ty  profile decreases m o n o t o n i -  
cally [4] f rom the walls to the mid -po in t .  In  figure 11 we compare  profiles for 
slits wi th  those for cyl inders .  For  H = R c = 2"4 the profiles are very similar.  T h e  
cyl inder  conta ins  a central  ' c h a i n '  of molecules  s u r r o u n d e d  by  two wel l -def ined 
concent r ic  annul i .  Packing in the cyl inder  produces  a central  dens i ty  p(R = O) 
that  is even higher  than  that  at the wall, p(Rr For  H = R e = 2"0, however ,  the 
s i tuat ion changes completely.  T h e  slit conta ins  three wel l -def ined layers of mol -  
ecules while the packing in the cy l inder  is m u c h  looser with a wel l -def ined 
a n n u l u s  next  to the wall and a smeared-ou t  a n n u l u s  located a round  R = 0"8. 
Ev iden t ly  packing effects are rather  subtle.  
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Figure 10. 

5 _ 

C(z)  

1 2 Z 4- 

The density profile for a liquid confined in a slit with H =  4 ( T =  0.5To; 
Pb/P~ ----" 0"57; tr = 2 -1 = 1.) 

4. FINAL REMARKS 

O u r  c o m p a r i s o n  of  resul ts  f r om the  S D A  and  the  L D A  indica tes  tha t  the  
i nco rpo ra t i on  of  non- loca l  c o n t r i b u t i o n s  to the  free ene rgy  func t iona l  can have 
i m p o r t a n t  qua l i ta t ive  as well  as quan t i t a t ive  consequences  for  the  phase  equ i l i b r i a  
of  n o n - u n i f o r m  fluids.  

In  the  case of  a s ingle a t t rac t ive  wal l  we have  f o u n d  tha t  the  inc lus ion  of  
non - loca l i t y  d r ives  the  we t t ing  t r ans i t ion  t e m p e r a t u r e  T w to lower  values  and  
t ends  to make  the t r ans i t ion  f i r s t -o rder .  I t  is l ikely tha t  T w wil l  d e p e n d  sens i t ive ly  
on the  de ta i l s  of  the  po ten t i a l  func t ions  and the  t heo ry  tha t  it  used  to ca lcula te  it  
[29] .  M o r e o v e r  it  is clear  tha t  in a par t ia l  we t t ing  s i tua t ion  ( T  < Tw) the  con tac t  
angle  0(T) will  d e p e n d  s t rong ly  on the  choice  of  t he o ry ;  the  L D A  p r o b a b l y  
u n d e r e s t i m a t e s  cos 0 for a g iven t e m p e r a t u r e  and  po ten t ia l .  

F o r  the  p r o b l e m  of  cap i l l a ry  evapora t ion  of  a f luid be tw e e n  h a r d  walls  the  
L D A  resul ts  are  r a the r  close to those  of  the  S D A .  T h i s  m i g h t  have been  ant ic i -  
pa t ed  since for  H >~ 8 the  dens i ty  profi les  of  ' l i q u i d '  do no t  exh ib i t  p r o n o u n c e d  
osc i l la t ions  for s tates  close to cap i l l a ry  coexis tence .  C o m p a r i s o n  wi th  the  resul t s  
of  s imula t ion ,  i.e. g r a n d  canonica l  M o n t e  Car lo ,  shou ld  be  mos t  va luab le  for  th is  
case. H o w e v e r ,  one shou ld  first ensure  tha t  the  f luid has the  same l iqu id -gas  

Figure 11. 
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The density profiles for liquids confined in slits and cylinders ( T =  0-5Tr 
p~pg = 0"5; ~ = 2 -1 = 1) (a) H = Re = 2 and (b) H = R e = 2'4. 
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surface tension 71g, at the given T/Tc, in theory and simulation before comparing 
the capillary coexistence lines. 

Several features of our results for capillary condensation warrant further 
comment. A striking feature is the close agreement between the SDA results for 
slits and cylinders with the results of the macroscopic Laplace equation when H 
or Rc ~> 5 molecular diameters. We do not have a convincing explanation of why 
the macroscopic result should remain accurate for such small pores when T < 
T w. The packing and hence the density profiles are certainly very different 
between cylinders and slits for such sizes but this does not appear to have a 
dramatic effect on the phase equilibria--see figures 5 and 7. It is only for H or 
R c ~ 3 diameters that packing effects have a major influence on the shape of the 
capillary coexistence curve. Although the L D A  omits all aspects of packing it still 
provides a reasonable zeroth-order description of the coexistence curve--provided 
the relevant parameter of the wall-fluid potential is chosen in such a way that 
~lg COS 0 is the same as in the SDA. The need for making this identification 
follows from our discussion of the single wall results; the local ordering at the 
wall increases cos 0. In other words we find that the contact angle is still a 
relevant parameter for narrow pores. 

The L D A  fails to account for two-dimensional-like phase equilibria. Thus  it 
predicts capillary critical points for T < T rE~ whereas the SDA predicts, cor- 
rectly, that the coexistence line should continue to H = 0. In this context it is 
instructive to note that the present SDA results have features in common with 
those obtained from the mean-field treatment of a nearest-neighbour lattice gas 
confined between two parallel walls [30]. The two-dimensional limit then corre- 
sponds to a single layer of lattice sites (N = 1), and T~(N = 1) = T t2D) = 0"5T~ for 
the h.c.p, lattice in mean-field-approximation. Thus  for T < 0"5T~ the capillary 
coexistence line extends to N = 1 whereas for T > 0"STc it terminates at some 
larger value of N. For T < T w the analogue of the Laplace equation (31) remains 
accurate down to N ~ 8 but the shape of the coexistence line for small N depends 
markedly on the form assumed for the wall-fluid potential [30]. 

The  L D A  also fails to describe the oscillations that develop in the SDA 
coexistence line for H or R~ ~< 3. As explained earlier these are associated with 
oscillations in 71(/-/) which arise, in turn, from packing considerations in the 
' l i qu id '  configuration. It is important to recognize that yI(H) decreases from its 
local maximum to its neighbouring local minimum in a distance of about 0"1 
diameters in the neighbourhood of H = 1--see figure 9. This produces a solvation 
force per unit area f ( H )  = -2(~7/~H)~ ' r that has zeroes near H = 1"05 and 1"15. 
Now it is well-known [31] that in dense liquids (in the one-phase r e g i o n ) f ( H )  
usually oscillates with a period of 1 diameter for H >~ 2. The SDA reproduces 
such behaviour [7]. The effect we are observing on the liquid branch for p @ Psat 
and H ,-~ 1 is somewhat different from that observed in dense liquids at larger H. 
Further investigation of the solvation forces might well provide a better under- 
standing of the effects of packing and layer formation on phase equilibria. 

We have not addressed ourselves to the problem of capillary condensation 
when T > Tw, so that the liquid wets the walls completely. Under  these circum- 
stances we do not expect the results of the SDA to be substantially different from 
those of the L D A - - p r o v i d e d  rig(T) is the same so that both approximations yield 
the same Laplace limit. The capillary critical points might occur at smaller 
separations H than those calculated in the L D A  [4, 5]. 
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In conclusion we have demonstrated that the SDA is a versatile theory for 
fluid interfaces which is especially well-suited to the determination of phase equi- 
libria. Although the simpler L D A  is inferior in several aspects it provides an 
excellent starting point for understanding what possible phase transitions and 
related phenomena might occur in interfacial problems. 
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APPENDIX 

The  weight function (8) used in this paper has coefficients 

t 3 Wo(r) = 4~0.3, r < 0", 

| 0 ,  r > a ,  

0 . 4 7 5 - 0 - 6 4 8 ( ~ )  + 0 -113 ( r )  2, 

w~(r) = 0"288(~) - -0 -924  + 0 . 7 6 4 ( ~ ) - - 0 - 1 8 7 ( r )  2, 

0 

and 

(A 1 a) 

r < a  

(A 1 b) 
a < r < 2 a  

r > 2a, 

I naa 6 - - 1 2  + 5  r < a ,  
w2(r) = I 144 ' (A 1 c) 

/ 
O, r > a .  

These satisfy S darwo(r) = 1 and [. d3rwi(r) = 0 for i = 1, 2 so that 
d3rw(r; p) = 1 for all p. Equation (A 1 b) is a simplified version of the fit to wx(r ) 

given earlier [13]. Note that in [13] and its erratum the formulae for wl(r ) and 
w2(r ) are incorrect; factors of x/6 are missing. The  correct formulae were 
employed in the calculations described in [13]. 
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