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Phase transitions at fluid interfaces and in fluids confined in pores have
been investigated by means of a density functional approach that treats
attractive forces between fluid molecules in mean-field approximation and
models repulsive forces by hard-spheres. Two types of approximation were
employed for the hard-sphere free energy functional: (a) the well-known
local density approximation (LDA) that omits short-ranged correlations and
(b) a non-local smoothed density approximation (SDA) that includes such
correlations and therefore accounts for the oscillations of the density profile
near walls. Three different kinds of phase transition were considered:
(i) wetting transition. The transition from partial to complete wetting at a
single adsorbing wall is shifted to lower temperatures and tends to become
first-order when the more-realistic SDA is employed. Comparison of the
results suggests that the LDA overestimates the contact angle 8 in a partial
wetting situation. (ii) capillary evaporation of a fluid confined between two
parallel hard walls. This transition, from dense ‘liquid’ to dilute ‘gas’,
occurs in a supersaturated fluid (p > p,,). The lines of capillary coexistence
calculated in the LDA and SDA are rather close, suggesting that non-local
effects are not especially important in this case. (iii) capillary condensation of
fluids confined between two adsorbing walls or in a single cylindrical pore.
For a partial wetting situation the condensation pressures p(<p,,,) obtained
from the SDA are in remarkably good agreement with the macroscopic
Laplace (or Kelvin) prediction for wall separations H or pore radii R, 2 56;
o is a molecular diameter. While, because of different packing, the density
profiles of the fluid differ considerably between slits and cylinders this has
little effect on the coexistence line until H or R, ~ ¢. In contrast to the LDA
the SDA describes two-dimensional-like liquid-gas coexistence for very
narrow pores (H < ¢) and temperatures below the two-dimensional critical
temperature and this has ramifications for the existence of capillary critical

points.
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1. INTRODUCTION

Understanding the microscopic structure and the thermodynamic properties
of fluid interfaces has become an increasingly popular goal for physicists and
chemists. From a theorist’s viewpoint interfacial problems are intrinsically more
difficult than bulk problems because they necessarily involve spatially varying
(singlet) densities of atoms or molecules and anisotropic correlation functions.
Many interfaces of practical interest involve solids either in the form of a single
planar substrate which can adsorb molecules from a bulk fluid or, in the case of
porous material, as confining and adsorbing substrates. The solid substrate is
often modelled by a structureless wall that is assumed to exert an external poten-
tial on the fluid molecules. Wall-fluid interfaces raise particular difficulties for
theories of inhomogeneous fluids. It is well-known that the density profile of a
liquid near a wall usually exhibits oscillations that are on the scale of a molecular
diameter. Any attempt to describe such local ordering requires an adequate treat-
ment of short-ranged correlations between molecules. Although the widely used
closure approximations to the wall-particle Ornstein—Zernike equation (Percus-
Yevick, Mean-Spherical Approximation, Hyper-Netted-Chain etc.) provide a
rather good description of hard-sphere fluids near walls it has been shown that
these approximations often fail totally when the forces between molecules in the
fluid include attractive as well as repulsive contributions [1]. In particular they
cannot accommodate two coexisting (liquid and gas) phases near the substrate
[2]. This means that they cannot be employed as the basis for a theory of contact
angle and wetting phenomena at a single wall-fluid interface [2]. It also means
that such approximations are not appropriate for investigations of the phase equi-
libria of fluids confined in narrow pores. Given that much of the experimental
interest in fluid interfaces is linked to phase transitions or critical behaviour of
one type or another, a different class of theories which do accommodate
coexisting phases has been developed and applied successfully to adsorption,
wetting, and wetting transitions at both wall-fluid and fluid—fluid interfaces [3]
and to the phase equilibria of fluids in pores [4, 5]. These theories are based on
the density functional approach [6] in which one constructs a functional Q,[p] of
the average singlet density p(r) and minimizes this with respect to p(r) to obtain
the equilibrium density and thermodynamic properties. Correlation functions are
obtained by performing further functional differentiation,

Most work on wetting problems [3] and almost all [7] work on confined fluids
[4, 5] has employed a local approximation for the part of the Helmholtz free
energy that arises from repulsive forces between fluid molecules. Whilst not
doing any gross injustice to long-ranged correlations in the inhomogeneous fluid,
thereby allowing for the growth of wetting layers, phase transitions, criticality,
etc., a local density approximation makes a crude (delta function) approximation
to the short-ranged part of the direct correlation function of the inhomogeneous
fluid [8]. This ensures that local ordering at a wall-fluid interface cannot be
described by a local density approximation. In this paper we are concerned with
the effects of local ordering on the nature of the phase equilibria at a single
wall-fluid interface and in fluids confined in slit-like and cylindrical pores. We
enquire whether more sophisticated non-local density functionals, that incorpo-
rate a more realistic description of short-ranged correlations, predict phase tran-
sitions that are changed significantly from those obtained in local density
approximation.
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Three separate, but related, problems are investigated. The first concerns the
effect of non-locality on the order and location (in temperature) of the wetting
transition at a wall-gas interface. The second involves the phase equilibria of a
fluid confined between two parallel hard walls. A phase transition from a dense
‘liquid’ configuration with wetting films of gas at the walls to a dilute ‘gas’
configuration occurs as the wall-separation H is reduced at a fixed chemical
potential u > fig,,, its value at bulk coexistence. This phenomenon of capillary
evaporation is studied in both non-local and local approximations. The third topic
is the capillary condensation, at g < g, , of ‘gases’ to ‘liquids’ in narrow cylin-
drical and slit-like pores that exert attractive forces on the fluid molecules in
addition to confining them. Although this phenomenon is relevant to the adsorp-
tion of gases in mesoporous and microporous solids it has been studied in detail
only in the local density approximation [4, 5, 9, 10]. When the pore radius R_ or
the wall-separation H is a few molecular diameters one might expect local order-
ing effects to play a crucial role in determining the phase equilibria, i.e. packing
considerations should become very important. Since the earlier calculations did
not include such effects it is of considerable interest to examine the consequences
of incorporating non-locality for the location of the condensation lines and the
capillary critical points. Indeed several of these issues were raised in discussion
after papers [5, 10] at a recent Faraday Symposium. Our present results provide
further response to this discussion and shed new insight into capillary conden-
sation for fluids in very narrow pores and at low temperatures.

The density functional approach that is used in our calculations is based on a
smoothed density approximation to & [p], the free energy functional of a hard-
sphere fluid. While this is closely related to the fine-grained ‘generalized van der
Waals theory’ of Nordholm and co-workers [11, 7], the prescription for the
smoothed density p(r) is obtained by recognizing that %, [p] is the generating
functional for the hierarchy of hard-sphere direct correlation functions [12]. The
actual version employed here is due to Tarazona [13] who showed that it gives an
excellent account of the oscillatory profiles of hard-sphere fluids near hard walls.
Attractive forces between fluid molecules are treated in mean-field approx-
imation. Other procedures for constructing smoothed densities have been devel-
oped recently [14, 15]; these are probably of comparable accuracy but have not
yet been applied to the variety of problems that are investigated here.

Our paper is arranged as follows: in § 2 we describe the density functional and
its two dimensional limit. The latter is relevant for fluids confined in very narrow
slits where two-dimensional-like ordering can occur. §3 contains the results of
our calculations for the three different interfacial problems mentioned above. We
conclude in §4 with some final remarks.

2. THEORY

(@) Description of density functionals

We consider a one-component fluid in an external potential I(r) at a tem-
perature T and chemical potential u. The equilibrium density p(r) is given by
minimizing the grand potential functional [6]

Q[pl =F[p] + jd%p(r)(V(r) — ) (1)
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where the intrinsic Helmholtz free energy functional #[p] contains contributions
from fluid—fluid interactions as well as the ideal gas term. The minimum value of
Q, is Q, the grand potential of the system. Following earlier workers we divide,
somewhat arbitrarily, #[p] into two parts: F[p] = F  [p] + F,.[p]; the first
represents the free energy arising from repulsive forces between molecules while
the second represents the contribution from attractive forces. If the repulsive
forces are modelled by hard-spheres and the attractive forces are treated in mean-
field fashion we obtain the approximation

1
Fp] = Fnlpl + 3 U &*r &r'p(r)p(t) P (|t — 1']) (2)

where ¢,,(r) is the attractive part of the pairwise potential between two molecules
in the fluid. The hard-sphere free energy functional is not known exactly for the
three-dimensional fluid so further approximations must be made. The simplest,
and most often used is the local density approximation (LDA):

e97hs[p:| = J‘dsrfhs(p(r))) (3)

where f;(p) is the Helmholtz free energy density of a uniform hard-sphere fluid.
This approximation was employed by Sullivan [16] and by many subsequent
authors in studies of inhomogeneous fluids near walls or at fluid—fluid interfaces
[3]. It is well-known that such a local approximation cannot describe the oscil-
latory density profiles that usually occur for liquids near walls. These oscillations
are associated with short-ranged correlations in the fluid which are absent in a
local theory. The simplest ansatz for &, [p] that incorporates short-ranged cor-
relations is based on a smoothed or coarse-grained density p(r). This density,
which is a non-local functional of p(r), can be regarded as an average density
obtained by averaging the true density p(r) over an appropriate local volume. It
should be sufficiently smooth that the free energy can be calculated in local
density approximation, i.e. we write

Fuslp] = J Prfia(p(r) + strp(r)Al//hs(ﬁ(r)), *)

where we have separated the ideal gas contribution, which is given exactly by the
local density expression, and introduced Ay, (p), the configurational part of the
free energy per molecule

1
Ay (p) = ; (fus(P) — fia(P)) (5)
with
fia(p) = kg Tp(In (A%p) — 1). (6)

A = (h*/2nmkg T)''? is the thermal de Broglie wavelength of the molecule of
mass m.

Our prescription for p is that developed by Tarazona [13]. The smoothed
density is given by an average of p(r) weighted by a suitable function w, which is
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allowed to depend on p:
p(r) = f &r'p(d)w(r — r'|; p(r)). )

This is an implicit equation for p in terms of p. The weight function w is
specified by requiring the direct correlation function ¢,(7; p) of a uniform hard-
sphere fluid, obtained by functional differentiation of (4), be close to cfi(r; p),
obtained from the Percus—Yevick approximation, for a wide range of densities p.
More precisely, it is assumed that w has a power series expansion

w(r; p) = wo(r) + w,(r)p + wy(r)p? + -+~ (8)

and the first two cofficients w, and =, are calculated by comparison with the
virial expansion of ¢, (7; p), while the third, w,, is obtained from an empirical fit
to the Percus-Yevick results. Explicit expressions for w,, i = 0, 1, 2 were derived
in [13] and are listed in the Appendix of the present paper. In practice the
expansion is truncated at the third term and (7) reduces to a quadratic equation
for p(r):

P(T) = Po(r) + py(1)B(r) + p(r)(p(r))* 9

with coefficients
pix) = J Prp@wlr —r') i=0,1,2. (10)

depending on p(r). The physical root of (9) is easily determined [13]. When the
Carnahan and Starling expression [17]

n(4 — 3n)

Al//hs(p) = kB T (1 _ rl)z ’

(11)

with # = npc>/6, is used the direct correlation functions are in good agreement
with Percus—Yevick results even for reduced densities po® as high as 0-8 [13].
Unlike the Percus—Yevick result: ¢f¥(r; p) = 0, » > ¢, this approximation exhibits
a non-zero but rapidly decaying tail for » > ¢, the hard-sphere diameter.

This completes the specification of the smoothed density free energy func-
tional (SDA). Inserting (4) into (1) and differentiating w.r.t. p(r) yields an equa-
tion for the equilibrium density that can be solved by a suitable iteration
procedure [13]. The accuracy of the approximation was tested by comparing the
density profiles and interfacial tensions for hard spheres (¢,, = 0) near a single
hard wall with the corresponding results from computer simulation. There is
good agreement for the full range of fluid densities, i.e. up to bulk densities as
high as po® = 0-81 [13]. We note, moreover, that in the SDA the density at
contact, p,, , satisfies the exact rule kg Tp,, = p, the bulk pressure.

(b) Two-dimensional limit of the three-dimensional density functional

In treating the possible phase equilibria of a fluid confined between two
parallel walls we are led to consider the situation that occurs when the wall
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separation H becomes very small. Intuitively we might expect two dimensional
phase equilibria to ensue when H is about one molecular diameter (or less). It is
important then to enquire how well a theory designed to describe the thermody-
namic and structural properties of a three-dimensional fluid can account for the
same properties in a two-dimensional fluid. If the theory yields sensible results in
this limit it is reasonable to suppose that it will provide a realistic description of
fluids in very narrow slits.
Consider a three-dimensional density of the form

p(r) = p?Pé(z). (12)

Although this diverges at z = 0 it generates a finite two-dimensional uniform
density

1
p(ZD) = Z stfp(r),

where 4 = ” dxdy is the area in the x-y plane. The configurational part of the
hard-sphere free energy functional

A‘?hs[p] = J‘ dsrp(r)A'//hs(ﬁ(r))

is then
Aeghs = AP(ZD)Awhs(l_)(O))
with p(0) = p(z = 0). Thus the SDA yields an excess (over ideal gas) free-energy
per molecule
AYRP(p?) = A (P(0)). (13)

It is this quantity that is appropriate to the two-dimensional fluid. The smoothed
density p(0) is obtained from (9)

PO) = 280[1 = By + (1 = p)* — 452 50) 7] ! (14)

where

p: = pi0) = p*P H dxdyw((x* + y* + 2V, _,, (=0,1,2). (15)

Using the w; in the Appendix explicit formulae can be obtained for p;. The
approximation for the excess free-energy of the hard-sphere fluid in the two-
dimensional limit is, from (13) and (11),
(4 — 3n)
AYED(p) = ky 7 TZ=21 (16)
" P —-p)?
with # = 1p(0)a3/6. We have compared the results obtained from (16) with those
from scaled particle theory [18] for hard discs:

(2D)

AYEP(p?P) = ky 7{1f—,,(zm —In (1 - n‘“”)], (17)

with #@P = 1p?Pg2/4. Although the forms of these approximations appear com-
pletely different the numerical results agree to within 10% for reduced densities
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p'*Dg2 £ 0-6. For higher densities (16) overestimates the excess free energy.
Similar remarks apply to the pressure
l/,(ZD)

dAY2
p;§°)(p<2°’>=p<2">[p“”’ Zpao * o T:|. (18)

We conclude that our three-dimensional theory provides an adequate description
of the two-dimensional hard-disc fluid.

If we include the attractive tail of the pair-potential via (2) it is possible to
calculate the critical points for both three and two-dimensional bulk fluids. We
assume, for convenience, a Yukawa tail

aA3 exp (—4ir)
)= ——""""—"—" 19)
¢att( ) 47[2’7
where o is a measure of the strength of the attractive forces and 4~ ! is a measure
of their range. In three dimensions f d’rd,,(r) = —a and the free energy density
of the uniform fluid reduces to

F(p) = fusp) — ap?/2.

This result is valid for both the LDA(3) and the SDA(4). Note that
j d*rw(r; p) = 1. The equation of state is

2(p) = pus(p) — ap?/2

with pu(p) = pks T(1 + 1 + n? — 1)/(1 — )3, the Carnahan and Starling result
[17]. The critical density p, = p&P and temperature T, = T3P are then easily

obtained [16]:
p.0> =0249; 11-102kz T.0° = a. (20)
In two dimensions the attractive tails contribute a term
Aopt?D?

%p(zD)Z J‘dzr(ﬁm(r) == 4

to the free energy density and the pressure. The hard-sphere contribution to the
pressure follows from (18). Using the two-dimensional limit (16) we find

p®Pe? = 0-242; 19-77kg T?P6? = ad 21)
while the scaled particle result (17) gives
pP6? = 0-274; 18-35ky T?P6? = ad. (22)
The ratio of critical temperatures obtained from the SDA is
2D)
} = 0-561510. (23)

<

In our calculations for slits we set A~ ! = ¢. Then (23) implies that for T <

T@D® = 0-56T, it should be possible to find two-dimensional-like liquid—gas
coexistence in very narrow slits, H — 0. If T > T we should expect the line of
coexistence to terminate at a larger value of H. We shall see that these predictions
are confirmed by the results of our calculations. Note that in the LDA % [p] is
ill-defined for p(z) = p®P8(z) so the two-dimensional limit is not meaningful.
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3. APPLICATION TO THREE INTERFACIAL PROBLEMS

In this section we report the results of calculations of several properties of
fluids at different types of interface. The calculations are based on the SDA and
the results are compared with those from the simpler LDA. This allows us to
assess the importance of non-local contributions to the free-energy functional for
a variety of problems.

(a) Wetting behaviour at a single wall

We have calculated the density profiles p(z) and interfacial tensions y for a
fluid, described by the attractive pair potential (19), near a wall that exerts a
wall-fluid potential

00, 2 <0,

Vi) = {—sw exp (—42), z>0. (24)
For a given well-depth ¢,(>0), the fluid undergoes a wetting transition from
partial wetting, contact angle > 0, to complete wetting, § = 0, at a temperature
T, < T.. 8 is defined by Young’s equation y,, = Y41 + ¥); cos 0, where the wall-
gas tension 7,,, wall-liquid tension y,, and liquid-gas tension y,, all refer to bulk
coexistence. In the LDA the free-energy functional then corresponds to the
model introduced by Sullivan [16]. This model exhibits a second-order wetting
transition, i.e. the thickness of the adsorbed liquid film at the wall-gas interface
diverges and d(cos 0)/dT vanishes continuously as T — T, along the bulk
coexistence curve. Increasing g, lowers the wetting transition temperature T,
[16]. By making the range (4~!) of the wall potential larger than that of the
attractive fluid—fluid potential it is possible to drive the transition first-order
[19-21]. In this case the film thickness diverges and d(cos 8)/dT vanishes discon-
tinuously as T — T, [22]. The purpose of our present calculations was to examine
the effects of non-locality of the functional on the nature of the wetting transition.
To this end we varied the product of the hard sphere diameter and the (common)
inverse range 4 of the potentials. In the limit 64 — 0 the interfacial tensions are the
same as those obtained in the LDA of Sullivan [16]. For oA > 0 non-locality
manifests itself.

Results for T, as a function of oA for several values of ¢, are plotted in
figure 1. At 64 = 0 we recover the results of Sullivan [16]. As 64 is increased the
wetting temperature decreases slowly for weak wall potentials but more rapidly
for stronger potentials. The transition remains second order for small ¢4 but
becomes first ordert at large ol. The stronger the wall potential (larger ¢,) the
smaller is the value of ¢4 at which the cross-over occurs. Thus for ¢, = 3kg T, a
value appropriate to a fairly weak substrate, T, falls from 0.827, at ¢A =0 to
0-55T, at 64 = 0-9 and the transition is then first order. A similar reduction in
T,/T, was found in the work of Freasier and Nordholm [23] and Meister and
Kroll [14]. The effects of non-locality are clearly important in determining both
the location and the order of the wetting transition. In a non-local treatment the
fluid density near the wall is increased above that of the local density approx-
imation. This enhancement can be interpreted as arising from an increase in the

T The method of locating the transition and ascertaining its order is described in [19].
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Figure 1. The wetting transition temperatures T, calculated in the SDA for different
strengths, €, , of the wall-fluid potential. 64 determines the range of the potential
functions; 641 = 0 corresponds to the LDA of Sullivan. The crosses denote second
order and circles first order transitions.

effective strength of the attractive wall-fluid potential. Such a mechanism favours
complete wetting, i.e. T, is shifted to a lower temperature. The present theory is
capable of describing solid-liquid and solid—gas coexistence as well as liquid—gas
coexistence and the triple point temperature 7T,, obtained from a procedure
similar to that employed in earlier density functional calculations of freezing [24],
is $0:47T,. The results shown in figure 1 indicate that the wetting transition will
only occur above T, for a reasonably ranged potential function (64 ~ 1, say)
provided ¢, < 3kg T, . For a stronger attractive potentials we would expect to find
complete wetting for all T > T,.

Examples of the density profiles obtained from the SDA are shown in figure
2. These refer to a wall potential with ¢, = 2-114kg T,, a value appropriate to
argon at a carbon-dioxide substrate [25], and A = 1. The profiles correspond to
the wall-gas interface at different temperatures but, in each case, at bulk
coexistence. As T is increased one observes the growth of thicker liquid-like films
near the wall. At the highest temperature, T = 0-835T,, three distinct oscil-
lations, corresponding to three closely packed ‘liquid layers’, followed by a rela-
tively flat portion occur in p(z). The wetting transition, which is second order in
this system, takes place at a slightly higher temperature. We emphasize that the
LDA, whilst also predicting a second-order transition (at T, =~ 0-96T, for this
wall-potential), yields monotonically decreasing density profiles with no ordering
due to short-ranged correlations (packing) near the wall.
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Figure 2. Density profiles for a wall-gas interface at bulk coexistence (a) T =0-7T,, ()
T =08T, and (¢) T = 0-835T,. The fluid undergoes a second order wetting tran-
sition at a temperature slightly higher than in (¢). Reduced units 6 = A" ' =1 are
used.

(b) Capillary evaporation in a slit with hard walls

The second application is concerned with the phase equilibria of the Yukawa
fluid described by (19), confined by two parallel hard walls. These exert a total
potential

©, 2<0 and z2>H
Viz) = ’ 25
(=) {O, 0<z<H. (25)

It is well known that for a single hard-wall the wall-liquid interface exhibits the
phenomenon of complete drying (6 = #) or wetting by gas. When the pressure, p,
of the bulk liquid (far away from the wall) is reduced to its value at coexistence,
Dsa» the density profile loses the oscillations that characterize the wall-liquid
interface and in the limit p — p,, a wetting layer of low-density gas intrudes
between the wall and the liquid. Such behaviour has been found in computer
simulations of Lennard-Jones fluids [26] and, more recently, in detailed simula-
tions of a square-well fluid [27]. Earlier density functional calculations [13],
based on a simplified version of the SDA, gave a satisfactory account of the
erosion of oscillations and the growth of the gas layer—see also Meister and Kroll
[14]. The purpose of the present calculations was to investigate the effects of
confinement on a fluid that is in the complete drying regime.

It is assumed that the walls are unbounded in the x and y directions but the
fluid is in contact with a reservoir at fixed T and g. For a given wall separation H
the fluid between the walls will adopt that density profile which minimizes the
grand potential Q(u, T, H). If H is large we expect the profile to be a super-
position of the profiles at the individual walls. Thus for u = y,(p 2 b the
profile should have the form sketched in figure 3(a), with most of the volume of
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Figure 3. Density profiles (schematic) of a fluid confined in a slit with hard walls. (a) a
‘liquid’ configuration with wetting layers of gas of thickness ¢ (b) a ‘gas’ configu-
ration. These configurations coexist at a chemical potential u > y_,. The wall
separation H > ¢.

the slit occupied by a ‘liquid> whose density is similar to that of the bulk liquid at
chemical potential u. Thin layers of gas, with density p; corresponding to the
metastable bulk gas at the same value of p, can develop at the walls. For larger u
the profile exhibits oscillations and the gas layers disappear. As u — u,, , however,
the gas layers thicken and at a single wall the thickness ¢ increases as [8]

}‘t ~ —In (2(# - lusat)/apg)) (26)

where p, is the density of the gas at bulk coexistence. In the confined fluid the
formation of thick gas layers is in competition with capillary evaporation. As pu is
decreased for fixed H, or H is decreased at fixed p (T fixed), the fluid can
undergo a first-order phase transition to a ‘gas’ state with a density profile
similar to that sketched in figure 3(b). This transition corresponds to a shift of the
bulk first-order transition, i.e. evaporation of liquid at u > p,,. In the limits
H — «© and p— pug,, macroscopic arguments [4] show that capillary evaporation
occurs in a complete drying regime when

P —pg =29/H (27)

where p; is the pressure of the metastable gas at chemical potential u. For bulk
pressures p(y) greater than the value predicted by (27) the ‘liquid’ configuration
of figure 3(a) is stable, while for smaller pressures the ‘gas’ configuration of
figure 3(b) i1s stable. The two distinct configurations coexist when p(u) satisfies
(27). Evidently (27) has the form of the Laplace result for the pressure difference
across a convex cylindrical meniscus with mean radius of curvature H [4]. By
calculating the grand potential of the inhomogeneous fluid using the density
functional approach we were able to investigate the regime of validity of this
macroscopic approximation.

The results of our calculations for the coexistence line at a fixed temperature
T = 0-7T, are shown in figure 4. We set 0 = 4~ ! = 1. There is very little differ-
ence between the results from the two different approximations for H 2 10. In
this range the density profiles from the SDA for ‘liquid’ configurations near
capillary coexistence are quite similar to those obtained from the LDA. Since the
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Figure 4. Capillary coexistence line for a fluid confined in a slit with hard walls. The wall
separation H is measured in reduced units ¢ = A~ = 1. p is the pressure of the bulk
liquid at chemical potential g > p,,. The crosses joined by a solid line are the
results of the SDA, the circles are results of the LDA and the dashed line is the
Laplace result (27)—see text. T = 0-77T,.

reduced liquid-gas surface tensions y{ = y,,0%/ky T, differ only slightly (0-638 in
SDA and 0-646 in LDA) we have plotted only one curve for the Laplace result
(27). The latter is an adequate approximation for H 2 40 but underestimates the
evaporation pressure at smaller separationst. Moreover it fails to account for the
capillary critical point that is predicted by the density functional theories. For
H £ 2 in the SDA and H < 3 in the LDA there is no capillary evaporation.
Although wetting layers of gas do develop between the walls and the liquid
these are very thin even for separations as large as H = 40. The maximum thick-
ness that can be observed in a stable ‘liquid’ configuration is that which occurs at

1 Equation (27) is only meaningful when there is a bulk gas at the same y, i.e. in the
metastable region. For p/p,, = 33 there is no metastable gas.
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capillary coexistence. An estimate can be obtained by combining (26) and (27)
At ~ In (Hap(p; — pg)/4v1e) (28)

where we have expanded the pressures about p,, and used (dp/0u) = p. p, is the
density of the liquid at bulk coexistence. For H = 40 (28) predicts ¢t ~ 0.7. This
agrees to within a factor of two with the maximum thickness obtained from our
calculations. Our results suggest that in grand canonical simulations of liquids
confined by hard-walls capillary evaporation to a dilute ‘gas’ configuration will
occur before thick gas films can develop. (Simulations are presently restricted to
H < 40 molecular diameters.) Henderson and van Swol did observe rather thick
gas films with H = 326 but their simulations were for a fixed number of mol-
ecules [27]. Capillary evaporation does not occur in that ensemble and it is
inappropriate to compare our results directly with theirs. In the analysis of their
results Henderson and van Swol ignore the effects of finite H and assume their
results are, effectively, those that would pertain to a single wall. Further work is
required to assess the validity of their assumption.

(¢) Capillary condensation in slits and cylinders with attractive walls

We turn now to the phase equilibria of the same Yukawa fluid confined in (a)
a slit whose walls exert a total potential

V(iz)=V(2)+ V{(H — 2)

_{00, 2<0 and 2> H, 29)
—e lexp (—Az) +exp (—AH —2))], O0<z3<H
and (b) a cylinder of interior radius R, whose wall exerts a potential
v =1 R>R (30)
—2e, AR, K (AR )I((AR), R < R,

where R is the radial distance from the axis of the (infinitely long) cylinder and I,
and K, are modified Bessel functions. The potential (30) is that which is obtained
when a molecule in the fluid interacts with a molecule in the wall via a Yukawa
pairwise potential o — exp (—Ar)/r. In the limits R,—» o0 and R— w0l (R)—>
—g, exp (—Az), provided z=|R,— R| € R.. Equations (29) and (30) were
employed in our earlier calculations [5] based on the LDA. The aim of the
present work was to investigate whether or not the incorporation of non-local
effects would alter significantly the picture of phase-equilibria that emerged from
the earlier studies [4, 5]. We focused attention on narrow capillaries since it is for
these that we expect packing considerations to be most important. Moreover we
specialized to those (low) temperatures where two-dimensional-like behaviour
might occur for a realistic treatment of the confined fluid but would not occur in
the LDA.

Calculations were performed in the SDA with the strength parameter ¢, =
2:-114k5 T, and ¢ = A~ ! = 1. This particular model, in slit geometry, was studied
in detail in earlier papers [4, 28] using the LDA. It was found that for 7> T,
capillary condensation from a dilute ‘ gas’ configuration to a dense ‘liquid’ con-
figuration occurred as p increased towards g, . 7, is the temperature at which
cos § =0; for T < T cos 0 is negative. In the LDA T, = 0-57T,. The pressure,
p, at which the first order transition occurred was compared with that from the
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Laplace equation
p—p' = 2y,, cos O/H 31

where p|” is the pressure of the metastable liquid at the same value of y. Equation
(31) was reasonably accurate for H 2 10 and temperatures T < T, (x0-96T, in
LDA). For T > T, wetting films of liquid develop at the walls and produce
substantial corrections to (31). The lines of capillary coexistence, H versus p or p
at fixed T, were predicted to terminate at critical points for small values of H.
SDA results for T= 06T, and 0-5T, are presented below. Both temperatures lie
below T, ~ 0-835T, (see §3(a)); the first is above, while the second is below the
two-dimensional critical temperature T® = 0-56 T, derived in § 2(b).

In figure 5 we plot the capillary coexistence curves for slits and cylinders at
T =06T,. Note that the degree of undersaturation is given by the ratio Pu/Pyg>
where p, is the bulk gas density at chemical potential u( <p,,,) and pg 18 its density

at coexistence. For H or R_ 2= 2 the results for both slits and cylinders agree

H or RC

0 A | | | | -
0-2 04 06 08 10 b
e
Figure 5. Capillary coexistence lines for fluids confined in slits of width H and cylinders
of radius R, at T'= 0-6T,. The crosses joined by a solid line are the results for slits
and the triangles are the results for cylinders in the SDA. The dashed line is the

Laplace result (31). The circles joined by a solid line are the results for slits in the
LDA-—see text.
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remarkably well with the Laplace estimate (31). The latter yields the same esti-
mate in both cases—H being replaced by R, for cylinders. The condensation
pressure is only slightly larger in cylinders than in slits and this is consistent with
LDA results for T< T, [5]. Near H =1, H =2 and, to a lesser extent, H = 3
the capillary coexistence line calculated for slits exhibits oscillations. These are
associated with packing effects and are much more pronounced at the lower
temperature. We were unable to find coexistence for H < 1 and we conclude that
the coexistence line ends in a capillary critical point near H = 1.

Also shown in figure 5 are the results of calculations for slits based on the
LDA for the same temperature but a different value of ¢,. If we employed the
same value for g, the contact angle would be much larger in the LDA since the
wetting transition occurs at a higher temperature. Thus y,, cos 6 would be signifi-
cantly smaller in the LDA than in the SDA at the same temperature, forcing the
condensation pressure to higher values for a given separation. To avoid this
difficulty and effect a fairer comparison between the results of the two approx-
imations, we increased &, to 2:829kp T, the value for which y,, cos 8 = y,, — Y
is the same as in the SDA. Both approximations now yield the same asymptotic
(Laplace) result as H — o0. The LDA results are in close agreement with those of
the SDA for H 2 12 but for smaller separations the condensation pressure is
underestimated. Of course the coexistence line does not show oscillatory character
and it terminates in a capillary critical point at H > 2. Somewhat surprisingly, we
find that the LDA results are much further removed from the Lapace estimate
than the SDA results.

The results just described show no features that could be ascribed to two-
dimensional-like phase equilibria. As expected the situation is quite different for
T=05T, < T?P. Before presenting the numerical results it is instructive to
return to the problem, raised earlier, of very narrow slits. For H slightly greater
than 1 we expect the density profile of a ‘liquid’ configuration to take the form
sketched in figure 6(@). This corresponds to two highly localized layers and these
are drawn schematically in figure 6(b). If H is reduced below 1 the liquid can
develop only a single layer (figure 6(d)) and the density profile resembles that in
figure 6(c). As H is reduced even further the liquid becomes more two-
dimensional like; the two-dimensional limit corresponds to H—0. At T =
0-5T, = 0-83T3P the reduced densities of coexisting two dimensional liquid and
gas are 0-45 and 0-08, respectively, in the SDA. If we define an effective two-
dimensional density p3P = [§ dzp(z) for the three-dimensional fluid in the slit
we would expect to find for sufficiently small H, that condensation occurs
between ‘liquid’ and ‘gas’ configurations that have densities p3P similar to the
values quoted above. Our calculations showed that this was indeed the case for
H < 0-8. Moreover, for 0-1 < H <07, the effective densities were almost inde-
pendent of H; the ‘liquid’ always having a density greater than 0-45 and the
‘gas’ a density less than 0-08. For these small separations p(z) is almost constant
and varies as pl2P’/H. We believe that this is strong evidence for two-dimensional
like condensation. For very small H, i.e. H < 0-2, the capillary coexistence line
(see figure 7) bends towards larger pressures. This behaviour can be attributed to
the ideal gas term in the chemical potential. The chemical potential of the three-
dimensional fluid can be written as

wP) = pia(p) + Apns(p) — ap
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where p,4(p) = kg T In (A®p) and Ay, is the non-ideal (configurational) part of the
hard-sphere chemical potential. In the limit H — 0 we can approximate p by
p@P/H so that

tia(p) = kg T In (A*pGP)) + kg T In (A/H)
= uiP(0¢P) + ks T In (A/H).

Thus if coexistence occurs in the two-dimensional fluid for a given T < T@ at
some density p2P) (gas or liquid) the corresponding ideal gas chemical potential of
the three-dimensional fluid is shifted by an amount ky T In (A/H). Since the
latter quantity diverges as H — O this implies that the coexistence, referred to the
three-dimensional system, is driven towards p, = c©. Consequently for T < D
there is no capillary critical point and the coexistence line extends to H =0 as
Pp = 0.

The packing effects alluded to in figure 6 produce the oscillation of the
coexistence line near H = 1. Similar considerations apply near H = 2. The insets
to figure 7 show that oscillations are more pronounced in slits than in cylinders so
we concentrate on the former. As H is increased at fixed undersaturation, from
about 0-9 to 1-1, the density of the liquid at the walls, p(0) = p(H), increases

(a)

5(2)‘ C’(Z)}

{c)
\
0 H oz
)
9

0 H

-

o
I
N

(b)

NN
AN

Figure 6. Effects of packing on the density profile p(z) of a liquid confined in a narrow
slit. In (a) and (b) the wall separation H is slightly greater than the hard-sphere
diameter ¢ and two well-defined layers develop. In (¢) and (d) H < ¢ and a single
loosely-packed layer develops. As H — 0 the nuclei ® become restricted to a single
plane.
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Figure 7. As in figure 5 but now for T'=0-57,. Note that the coexistence line in the
LDA (circles) terminates in a capillary critical point near H = 1-9 whereas it con-
tinues to H =0 in the SDA (crosses). The triangles denote the SDA results for
cylinders.

significantly while the density at mid-point, p(H/2), decreases. The effect is espe-
cially pronounced for values of p,/p, ~ 0-25 (figure 8) where p(0) increases by a
factor of 3-5 and p(H/2) decreases by a factor of 25 between H = 0-95 and
H = 1-1. (Note that the ‘liquid’ is metastable w.r.t. ‘gas’ for H > 0-93 at this
undersaturation). It is tempting to speculate that a first-order phase transition
might occur between the one-layer and two-layer ‘liquid* configurations sketched
in figure 6. This would be characterized by discontinuities in p(0) and p(H/2),
plotted as a function of H. We did not observe such discontinuities in these
calculations—the metastable liquid branch terminates before loops can be gener-
ated in p(H/2), say.

The rapid change in the structure of the ‘liquid’ near H = 1 generates an
oscillation in the surface excess grand potential [4] y(H) = (/4 + pH)/2. y(H) is
plotted in figure 9 for both ‘liquid’ and ‘gas’ configurations at several under-
saturations. y,(H) varies monotonically with H and is rather insensitive to the
undersaturation. The genesis of the capillary coexistence line shown in figure 7 is
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now apparent. On increasing H at fixed p,/p, (i.e. bulk pressure or chemical
potential) the fluid can undergo a single transition from ‘liquid’ to ‘gas’, as in
figure 9(a) and 9(b) or three transitions from ‘liquid’ to ‘gas’ to ‘liquid’ to ‘gas’,
as in figure 9(c). Equivalent behaviour occurs for higher pressures near H = 2.
On reducing the temperature still further the oscillations in the capillary
coexistence lines become more pronounced and extend to larger H.

From figure 7 it can be seen that although on an unexpanded scale the
coexistence line calculated for cylinders lies very close to that for slits there are
quantitative differences at small H or R,, when packing considerations become
crucial. The SDA results for both cylinders and slits lie very close to the Laplace
result (31) for H or R, 2 6. The LDA results shown in figure 7 were obtained by
the same procedure that was employed at the higher temperature, i.e. g, was
increased (to 3:005kg T.) so that the Laplace result would be the same as that in
the SDA. As was the case at the lower temperature the LDA results predict
smaller condensation pressures than the SDA at small H. The LDA coexistence
line terminates in a capillary critical point at H ~ 1-9. This is in sharp contrast to
the SDA result described above. That the LDA should always predict a critical
point at some non-zero H is easily understood by reference to the slab approx-
imation employed in our earlier paper [4]. Assuming the profiles p(z) are con-
stant throughout the slit one finds [4] in the LDA that the capillary critical

1 —
12 H
2
1
0 ! | | -
09 1-0 11 1-2 H

Figure 8. (a) The density at mid-point for ‘liquid’ configurations at T =0-5T, (in
reduced units) for three values of the undersaturation ratio pb/pg. (b) The density at
the walls.
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Figure 9. 'The surface excess grand potential y for ‘liquid’ (y,) and ‘gas’ (y,) configu-
rations at T =0-57, as a function of wall separation H (in reduced units). (a)
Pv/Py = 0-24, (b) py/py = 0.25 and (c) py/p, = 0-26.

temperature is given by

cap
c

=1— (1 — exp (—AH))/AH.

c

This approximation is reasonably accurate for small H. In the limit
H - 0T - 0, 1.e. there is no capillary coexistence.

Finally in figures 10 and 11 we give some examples of the density profiles
calculated in the SDA. Figure 10 illustrates the pronounced layered structure that
develops for a confined liquid in a narrow slit (H = 4). Five well-defined layers
are present. We recall that in the LDA the density profile decreases monotoni-
cally [4] from the walls to the mid-point. In figure 11 we compare profiles for
slits with those for cylinders. For H = R, = 2-4 the profiles are very similar. The
cylinder contains a central ‘chain’ of molecules surrounded by two well-defined
concentric annuli. Packing in the cylinder produces a central density p(R = 0)
that is even higher than that at the wall, p(R,). For H = R_ = 2-0, however, the
situation changes completely. The slit contains three well-defined layers of mol-
ecules while the packing in the cylinder is much looser with a well-defined
annulus next to the wall and a smeared-out annulus located around R = 0-8.
Evidently packing effects are rather subtle.
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Figure 10. The density profile for a liquid confined in a slit with H =4 (T =0-5T;

Pu/pg=057;6=A""=1)

4. FINAL REMARKS

Our comparison of results from the SDA and the LDA indicates that the
incorporation of non-local contributions to the free energy functional can have
important qualitative as well as quantitative consequences for the phase equilibria
of non-uniform fluids.

In the case of a single attractive wall we have found that the inclusion of
non-locality drives the wetting transition temperature T, to lower values and
tends to make the transition first-order. It is likely that T, will depend sensitively
on the details of the potential functions and the theory that it used to calculate it
[29]. Moreover it is clear that in a partial wetting situation (7 < T,) the contact
angle 6(T) will depend strongly on the choice of theory; the LDA probably
underestimates cos 0 for a given temperature and potential.

For the problem of capillary evaporation of a fluid between hard walls the
LLDA results are rather close to those of the SDA. This might have been antici-
pated since for H 2 8 the density profiles of ‘liquid’ do not exhibit pronounced
oscillations for states close to capillary coexistence. Comparison with the results
of simulation, i.e. grand canonical Monte Carlo, should be most valuable for this
case. However, one should first ensure that the fluid has the same liquid-gas

(a) (b)

0
1 2 04 08 112 +6 20 24
Z{orR) Z(orR)

Figure 11. The density profiles for liquids confined in slits and cylinders (T = 0-5T;
po/py=05;6=A""=1)(a) H=R, = 2and (b)) H= R, = 24.
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surface tension yy,, at the given T/T,, in theory and simulation before comparing
the capillary coexistence lines.

Several features of our results for capillary condensation warrant further
comment. A striking feature is the close agreement between the SDA results for
slits and cylinders with the results of the macroscopic Laplace equation when H
or R, 2 5 molecular diameters. We do not have a convincing explanation of why
the macroscopic result should remain accurate for such small pores when T <
T, . The packing and hence the density profiles are certainly very different
between cylinders and slits for such sizes but this does not appear to have a
dramatic effect on the phase equilibria—see figures 5 and 7. It is only for H or
R, < 3 diameters that packing effects have a major influence on the shape of the
capillary coexistence curve. Although the LDA omits all aspects of packing it still
provides a reasonable zeroth-order description of the coexistence curve—provided
the relevant parameter of the wall-fluid potential is chosen in such a way that
7 €os 0 is the same as in the SDA. The need for making this identification
follows from our discussion of the single wall results; the local ordering at the
wall increases cos 6. In other words we find that the contact angle is still a
relevant parameter for narrow pores.

The LDA fails to account for two-dimensional-like phase equilibria. Thus it
predicts capillary critical points for T < T3P whereas the SDA predicts, cor-
rectly, that the coexistence line should continue to H = 0. In this context it is
instructive to note that the present SDA results have features in common with
those obtained from the mean-field treatment of a nearest-neighbour lattice gas
confined between two parallel walls {30]. The two-dimensional limit then corre-
sponds to a single layer of lattice sites (N = 1), and T.(N = 1) = T3®® = 0-5T, for
the h.c.p. lattice in mean-field-approximation. Thus for T < 0-5T, the capillary
coexistence line extends to N =1 whereas for T > 0-5T, it terminates at some
larger value of N. For T < T, the analogue of the Laplace equation (31) remains
accurate down to N & 8 but the shape of the coexistence line for small N depends
markedly on the form assumed for the wall-fluid potential [30].

The LDA also fails to describe the oscillations that develop in the SDA
coexistence line for H or R, < 3. As explained earlier these are associated with
oscillations in y,(H) which arise, in turn, from packing considerations in the
‘liquid’ configuration. It is important to recognize that y,(H) decreases from its
local maximum to its neighbouring local minimum in a distance of about 0-1
diameters in the neighbourhood of H = 1—see figure 9. This produces a solvation
force per unit area f (H) = —2(0y/0H), r that has zeroes near H = 1-05 and 1-15.
Now it is well-known [31] that in dense liquids (in the one-phase region) f (H)
usually oscillates with a period of 1 diameter for H 2 2. The SDA reproduces
such behaviour [7]. The effect we are observing on the liquid branch for p <€ pig,,
and H ~ 1 is somewhat different from that observed in dense liquids at larger H.
Further investigation of the solvation forces might well provide a better under-
standing of the effects of packing and layer formation on phase equilibria.

We have not addressed ourselves to the problem of capillary condensation
when T > T,,, so that the liquid wets the walls completely. Under these circum-
stances we do not expect the results of the SDA to be substantially different from
those of the LDA—provided y,,(7) is the same so that both approximations yield
the same Laplace limit. The capillary critical points might occur at smaller
separations H than those calculated in the LDA [4, 5].
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In conclusion we have demonstrated that the SDA is a versatile theory for
fluid interfaces which is especially well-suited to the determination of phase equi-
libria. Although the simpler LDA is inferior in several aspects it provides an
excellent starting point for understanding what possible phase transitions and
related phenomena might occur in interfacial problems.
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APPENDIX

The weight function (8) used in this paper has coefficients

3
’ < )
wo(r) = { 4na* r=e¢ (Ala)

2
, r<o

0, r > 0,

=

Q

0-475 — 0-648<5> n 0~113<
g
(A1b)

w,(r) = o r r\?
0-288{ — ] — 0924 + 0764 — )} — 0187\ -], o<r<2ec
r o G
0 r > 20,
and
Sno® r r\?
6—12( Z)+5(Z) ), ,
wy(r) = { 144 ( <a> + <o> > r=¢ (Alc)
0, r>o.

These satisfy _f dPrwg(r) =1 and | &rw(r)=0 for i=1,2 so that
f d*rw(r; p) = 1 for all p. Equation (A 15) is a simplified version of the fit to w,(r)
given earlier [13]. Note that in [13] and its erratum the formulae for w,(r) and
w,(r) are incorrect; factors of n/6 are missing. The correct formulae were
employed in the calculations described in [13].
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