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We examine the usefulness of the integral equations derived from the 
HNC and PY closures of the wall-particle Ornstein-Zernike equation for 
describing the density profile and pairwise distribution function of models 
of the solid-fluid interface. It is shown that these, and closely related 
closure approximations, cannot account for complete wetting of a solid-gas 
interface by liquid or complete wetting by gas of a purely repulsive substrate 
at a solid-liquid interface. The closure approximation to the first YBG 
equation which sets the total pairwise correlation function equal to that of 
the bulk fluid exhibits the same failings. Since none of these approaches 
can describe liquid-gas coexistence, they cannot be used as a basis for a 
self consistent theory of contact angle and wetting phenomena. Moreover, 
they cannot account for the growth of thick, liquid-like, adsorbed films 
which develop at solid-gas interfaces at temperatures T above the wetting 
transition temperature Tw. 

Such approaches also give an inadequate description of pairwise correla- 
tions in the interface. This is illustrated by the introduction of a ' surface ' 
compressibility sum rule which relates an integral over the interracial part of 
the pairwise distribution function to (SI'/~/~)T, the derivative with respect to 
chemical potential/~ of the coverage r.  For T> T,¢ r and, hence, (er/~,)T 
diverge as p~ approaches its value at saturation with exponents that reflect the 
asymptotic behaviour of the attractive part of the solid-gas potential. The 
sum rule shows that the range of transverse (parallel to the surface) pairwise 
correlations must diverge in an equivalent fashion. Divergences of this 
kind are not predicted by the integral equation approaches. The growth of 
long-ranged transverse correlations has important repercussions for com- 
puter simulations of thick adsorbed films. 

1. INTRODUCTION 

It iS the purpose of this paper to point out the limitations of several widely 
used theories of solid-fluid interfaces. In  particular we show that these theories 
cannot account for the phenomenon of complete wetting by liquid or by gas. 

There  are three main theoretical approaches employed in calculations of 
the microscopic structure of simple fluids near model solid substrates. The  
first of these makes use of closure approximations to the wall-particle Orns te in-  
Zernike equation. This approach was pioneered by Perram and White [I] 
and Henderson et al. [2] and has been applied to a variety of model sys t ems- -  
see, for example, [3, 4] and references therein. Two of the simplest and most 
commonly  used closures are the hypernet ted-chain ( H N C )  and Percus-Yevick 
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(PY) approximations. In the former the density profile of the fluid p(z) 
satisfies the non-linear integral equation 

p(z)=po exp (-~V(z)+ I dr' Co(Ir-r'l)(p(z')-po)), (I) 

where/3 = 1/kgT , Po is the density of the bulk fluid far away from the substrate 
and V(z) is the solid-fluid potential which is assumed to depend only on the 
direction z perpendicular to the substrate. Co(r ) is the direct correlation 
function of the homogeneous bulk fluid of density Po- The corresponding result 
for the PY closure is a linearized version of (1), i.e. 

P ( z ) = p o e x p ( - / 3 V ( z ) ) ( l +  I d r ' c o ( I r - r ' l ) ( P ( z ' ) - P o ) )  • (2) 

Given a model for V(z) and some prescription for calculating Co(r ) these equa- 
tions can be solved numerically for the density profile and are known to yield 
results in good agreement with computer simulations for certain cases [5, 6, 3, 4]. 

The second approach is based on the use of approximate density functional 
theories. This was introduced by Ebner et al. [7, 8]. It consists, in essence, 
of constructing an approximate free energy functional for the inhomogeneous 
fluid and minimizing this to determine the equilibrium density profile. Alter- 
natively it can be regarded as a procedure which approximates the direct corre- 
lation function of the inhomogeneous fluid [8, 9, 4]. Considerable controversy 
concerning the relative merits and failings of these two approaches has arisen 
since Saam and Ebner [8] published the results of their calculations for a Len- 
nard-Jones 12-6 fluid near an integrated Lennard-Jones 9-3 substrate. For a 
gas whose density was close to the saturated vapour density at the temperature 
T in question, the density profiles calculated from their density functional 
approach showed that thick, liquid-like, films were adsorbed at the substrate 
and that the thickness of the film increased as the bulk gas density approached 
its value at saturation. Such behaviour is associated with complete wetting by 
liquid and will occur if Tw< T< To. Here To is the bulk critical temperature 
and T,~ is the temperature of the wetting transition [10-14]. By contrast the 
results obtained from (2) with Co(r ) calculated in the (bulk) PY approximation, 
did not show any thick films. Saam and Ebner [8] concluded that the PY 
theory (2) was markedly inferior to the density functional approach because of 
the former's failure to predict the growth of thick liquid films above Tw. Their 
conclusion was challenged by Lane et al. [5] who performed Monte Carlo 
simulations for the same model. For the same temperature they found no 
thick liquid films even for the case when the bulk gas was very close to satura- 
tion. Lane et al. concluded that the density functional approach used by 
Saam and Ebner must be defective, and since their Monte Carlo profiles were 
rather close to those obtained [8] from the PY theory they argued that PY and 
related theories should be preferred. Subsequently other authors [14-16] 
have criticized Saam and Ebner's approach. 

Recently two of us [12] have suggested that the wetting transition for this 
model system may occur at a significantly higher temperature than that cal- 
culated by Ebner and Saam [10] so that the temperature at which the simulations 
were performed probably lies below Tw and that is why no thick liquid films 
were found in the Monte Carlo results. During the course of this study 
[12, 13] of wetting transitions at models of solid-fluid interfaces we also ex- 
amined the usefulness of the H N C  and PY theories as well as that of related 
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theories for describing wetting behaviour. Here we show that the PY equation 
(2) is incapable of describing complete wetting by liquid at a solid-gas interface 
and cannot, therefore, account for the growth of the thick, liquid-like, films 
above T w which are obtained from density functional calculations [8, 12, 13], 
and which are predicted on general grounds by Cahn [11] and Sullivan [14]. 
The HNC equation (1) is also shown to be inadequate in this respect. These 
theories also fail to account for the complete wetting by gas of a purely repulsive 
hard wall which must occur when the bulk liquid is close to coexistence. Several 
computer simulations [17-19] of Lennard-Jones liquids near infinitely repulsive 
walls have obtained structureless density profiles which resemble a part of the 
free liquid-gas interface. Such behaviour is characteristic of wetting by gas 
[14]. 

Whilst several authors, in particular [8, 17, 14, 19, 20], have anticipated the 
failings maintained above we were not aware of any explicit ' p r o o f '  that the 
PY, HNC and related integral equation theories could not account for complete 
wetting. (The important work of Sullivan et al. [19] certainly suggests that 
this is the case since the profiles which they calculate from integral equation 
theories are completely different from those obtained in their simulation of the 
same Lennard-Jones liquid near the hard wall and show no indication of wetting 
by gas.) The arguments we give here are, we believe, rather compelling and 
demonstrate quite clearly why integral equation theories of the PY or HNC 
type will often prove useless for studies of fluids in coexistence or near co- 
existence states. 

A third approach often used to describe solid-fluid interfaces consists of 
finding approximate solutions of the first YBG equation [3, 4]. We show that a 
commonly applied closure approximation to this equation yields an integral 
equation for the density profile which exhibits the same failings as those described 
above. Moreover, this equation exhibits other fundamental shortcomings 
which limit severely its applicability and, therefore, its usefulness. We conclude 
that all these theories, unlike the density functional theories, cannot describe 
liquid-gas coexistence and are, therefore, incapable of accounting for wetting 
phenomena--a fact which does not appear to be widely recognized. 

Our paper is arlanged as follows: in § 2 we examine the various integral 
equations for near complete wetting situations and show how these fail to 
describe the growth of thick liquid or gas films. The physical explanation for 
these failings is discussed in § 3 where we analyse the grand potential densities 
which correspond to HNC and P¥  theories and show that these do not exhibit 
the two minima which are required for coexistence. The approximate YBG 
equation is shown to be inconsistent with linear response theory and we discuss 
the consequences of this in § 4, where we analyse the pairwise correlation 
functions resulting from different theories. This permits us to examine the 
status of each theory in some detail. The approximate YBG equation also 
fails to satisfy an important test of self consistency--the surface compressibility 
sum rule. This rules, which relates an integral over the pairwise distribution 
function in the interface to the derivative with respect to chemical potential 
of the coverage, is particularly revealing in the limit of complete wetting where 
it links the divergence of the coverage to that of the transverse structure factor, 
i.e. to the growth of long ranged transverse correlations. We discuss the 
importance of fluctuations near complete wetting and, by making an analogy 



996 R. Evans et al. 

with bulk critical phenomena, suggest that such fluctuations must be taken into 
consideration in attempts to simulate thick liquid films. We conclude in § 5 
with a discussion of our results where we compare and contrast the density 
functional approach with the integral equation approaches. Implications for 
the theory of the liquid-gas interface are mentioned briefly. 

2. ANALYSIS OF THE PY, HNC AND RELATED INTEGRAL EQUATIONS FOR A 

COMPLETE WETTING SITUATION 

In figure 1 (a) we sketch the density profile p(z) of a simple (argon-like) 
fluid for a solid-gas interface corresponding to a temperature above the wetting 
transition temperature Tw. We assume that the solid-fluid potential V(z) is 
sufficiently attractive (for z > 0) that Tw lies well-below T c and that the bulk 
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Figure 1. (a) T h e  density profile O(z) (schematic)  at a solid-gas interface for T >  Tw. 
A thick l iquid-l ike f i lm of nearly constant density pt develops at the substrate. T h e  
oscillations in the profile extend over two or three molecular diameters only. T h e  
bulk gas density p0 is slightly below its value at saturation. (b) T h e  density profile 
(schematic)  at a sol id- l iquid  interface for which  the substrate is purely repulsive. 
A thick f i lm of gas of nearly constant density p* develops at the substrate. T h e  
bulk l iquid density P0 is slightly above its value at saturation. 
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gas is slightly undersaturated so that po<pg, the saturated vapour density. 
Under these circumstances a thick, liquid-like, film is adsorbed at the sub- 
strate and the density is constant with a value pt~p] ,  the density of the co- 
existing liquid at the temperature in question, over a distance corresponding to 
several molecular diameters. In the limit po-->pg the film becomes macro- 
scopically thick and the substrate is wet completely by liquid. 

We now ask whether (1) and (2) can describe such a situation. The in- 
tegral in both equations can be written as 

0 0  r t 

I (z)=2rr  I dr' r'co(r' ) I dz ' (P(z+z ' ) -Po)"  (3) 
0 --r" 

Assuming that co(r ) is short ranged t we Taylor expand p(z+z ' )  and integrate 
with respect to z' to obtain 

I(z)  = a(po)(p(z ) -- Po) + b(po) d2 P(z)/dz2 +. . ' ,  (4) 
where 

a(p0)= I drco(r), 

(5) 

0 

are quantities which refer to the bulk fluid, in this case, gas. Substituting (4) 
into the HNC equation (1) we have 

In (p ( z )~  = _t~V(z)+a(po)(p(z)_po)+b(po)d2 p(z)/dz2 + ..., (6) 
\ P o }  

whereas the corresponding expansion of the PY equation (2) is 

In (p(z)~ = _ [3V(z) + In (1 + a(po)(p(z ) - Po) + b(p0) d2 P(z)/dz2 +.. .  ). (7) 
\ Po }  

These expansions should provide a realistic description of the ' t a i l '  of the 
density profile where p(z)-->po (see e.g. [9]). They should also be applicable to 
the region of constant density in figure 1 (a)--provided the ' p la teau '  exists 
and its extent is larger than the range of Co(r ). Setting p = p t  and assuming 
that V(z),~ 0 in the plateau it is clear that (6) and (7) imply, respectively, 

In (pt/po),,~a(po)(p t - p o )  (HNC)  (8) 
and 

poa(po) ,,, 1 (PY). (9) 

The last equation, which must become an equality in the limit of complete 
wetting, is then equivalent to requiring that the isothermal compressibility 
,r r of the bulk fluid be infinite since from the definition (5) it follows that 

1 - poa(p0) = (Krpok B T) -1. (10) 

Thus (9) is only valid if the fluid is at its critical point. This argument indi- 
cates that the PY theory is incapable of describing wetting by liquid at the solid- 
gas interface. The H N C  theory, on the other hand, implies a relationship 

~- The expansion described here is not strictly applicable to fluids for which co(r) ex- 
hibits inverse power law decay (for example, [21]) but this is not important in the present 
argument. 
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between the densities of coexisting liquid and gas since taking the limit of 
complete wetting in (8) requires 

In (Pl/Pg) = a(pg)(p,- pg). (11 ) 

This result was obtained previously by Rowlinson and Widom "[22] from an 
approximate analysis of the exact integrodifferential equation for the density 
profile of a free liquid-gas interface. At first sight (11) appears to be quite 
realistic. It has the solution pea(pc)= 1 at the critical point, which is, of course, 
exact. Moreover for certain gaseous states it is possible to have 0 < pga(pg) < 1 
so it seems that (11) might predict sensible values of Pl given pg. What is 
not clear is whether the relation (11) has any fundamental significance as regards 
liquid-gas coexistence. We shall argue later that it does not and that having 
solutions to this equation does not guarantee the existence of the stable wetting 
film. 

We turn now to wetting by gas (figure 1 (b)). The bulk fluid is a liquid 
with density P0 > Pl and the substrate is purely repulsive so that a film of gas 
of nearly constant density p* ~ pg develops near the wall. This film will become 
macroscopically thick in the limit P0-+Pl- The analysis goes through as above. 
It is evident from (9) that the PY theory cannot describe wetting by gas. The 
HNC theory now requires 

In (Pg/Pl) = ~/(Pl)(Pg -- Pl) (12) 

in the limit of complete wetting. For this equation to have sensible solutions 
(pl> pg) we require pla(pl)> O. However, dense liquids at temperatures well 
below the critical temperature are highly incompressible and we expect therefore 
that 1-pla(pl)>~l , i.e. pla(p~)~O. This is completely inconsistent with (12) 
and we conclude that the HNC cannot account for complete wetting by gas at a 
solid-liquid interface. 

Other integral equations, obtained from other closures of the wall-particle 
Ornstein-Zernike equation, have been applied to models of solid-fluid inter- 
faces--see, for example, [19, 20, 3, 4]. The analysis of these (EXP, RHNC, 
MF-PY, MF-EXP)  for complete wetting situations is more complicated than 
that given above because of the extra complexity introduced by the reference 
system. If the latter is chosen to be a hard sphere fluid, as is frequently the 
case, it is possible to demonstrate that these more sophisticated approximate 
theories suffer from the same type of difficulty as HNC and PY and are, there- 
fore, also incapable of describing complete wetting by gas. The calculations 
of Sullivan et al. [19] substantiate this conclusion. 

There is another class of approximate integral equations which have been 
used in studies of fluid interfaces. These are based on closure approximations 
to the first YBG equation. The simplest closure that has been employed sets 
the pairwise distribution function p(2)(r, r') =p(z)p(z ')g0([r-  r ' l)  where go(r) 
is the radial distribution function of the bulk fluid. The YBG equation can 
then be written, see, for example, [23], as 

p(z)=Cexp [-f lV(z)-f3 ~ dr' s(Ir-r'l)p(z')] (13) 
where 

S ( r ) -  - ~ dR go(R) dq~(R)/dR. 
r 
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~(r) is the pairwise potential between molecules in the fluid. Evidently (13) 
has a structure which is similar to that of the HNC equation (1). (For large 
I t -  r' I, go( I r -  r ' l)  is close to unity so that - f lS ( I r -  r ' l)  ~ - f l~ ( I r -  r ' l)  which 
is the same as the asymptotic behaviour of co( I r -  r' I ).) The constant C is deter- 
mined by requiring p(z)~po as z-+oo. It follows that 

In (po/C) = - flPo S de S(r) = OoK(po), (14) 

where 

K(po) = ~ fl S dr r3 go(r) ddp(r)/dr. 
0 

Thus C=po exp ( -  p0K(p0) ). It is instructive to apply (13) to complete wetting 
situations. Following the same procedure as that described above we find 
that (13) can only describe a ' plateau ' of nearly constant density p*, different 
from the bulk density Po, if 

In (pt/p0) --~ K(po)(p t - Po). (15) 

As expected this result has the same form as (8) obtained from the HNC theory. 
It implies another relationship between the densities of coexisting liquid and 
gas. If the bulk fluid is gas, (15) requires in the limit of complete wetting of 
substrate by liquid, 

In (Pl/Pg) = K(pg)(Pl-  Pg)- (16) 

We must now consider the sign and magnitude of K(po). The pressure p of 
a bulk fluid is given by the virial equation 

_ Po K ( p o ) )  (17) /~P=po (1 ~- 
from which it emerges that K can be positive or negative. At the critical 
point (16) has the solution peK(pc)= 1 which implies pc/kBTep~= ~ [24]. The 
experimental values for this ratio are ~0.29. For dilute gases at temperatures 
well below T c we expect 0 < pgK(p~)~ 1 and (16) to predict sensible values for 
Pl. (The argument is analogous to that discussed in connection with (11).) 

When the bulk fluid is liquid complete wetting by gas requires 

In (Pg/Pl) = K(P i ) (Pg  -- Ol)- (18) 

This equation was derived earlier by Berry and Reznek [24] and used by them 
as a basis for a theory of coexistence. For dense liquids, however, plK(pl) 
can be of the order of unity and it is straightforward to show that (18) cannot 
then predict physically realistic values for pg. Alternatively the pressure 
obtained by substituting (18) into (17) is negative when Dl/lag >exp (2) [24]. 

Finally, if we linearize the exponentials in (13) so that we have an equation 
which has the same form as the PY equation (2) it follows that complete wetting 
can only occur if 

poK(po) = 1 

or Pfl/Po=½. This linearized theory exhibits the same kind of failing as the 
PY theory. 
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The arguments given in this section indicate that the PY, HNC and related 
theories cannot give a proper account of liquid-gas coexistence and that this is the 
reason they cannot describe complete wetting situations. That  the HNC and PY 
theories should fail to describe two coexisting fluid phases is not immediately 
apparent from the original presentation of the theory [2] in terms of the wall- 
particle Ornstein-Zernike equation. The failing becomes almost self-evident, 
however, when we view these theories as approximate density functional theories. 

3. THE H N C  AND P Y  THEORIES AS DENSITY FUNCTIONAL THEORIES 

The equilibrium density p(r) of an inhomogeneous fluid in an external 
potential V(r) is given [25] by minimizing the grand potential functional 

~[P] = ~[Po] + f a,- V(r)(p(r)- Po) + ~ f a,- p(,-) In (P(r)/po) 

_1 1 
# I a,'(o(r)-po)-? oi as 0 ~ a~'I I a r a r '  c(r,," ; ~') 

x (p(r) -- po)(p(r ' )-  P0), (19) 

where c(r, r ' ;  c~) is the direct correlation function of an inhomogeneous fluid 
with density p(r ;  oO=po+~(p(r)-po ). The parameter c~ characterizes the 
path in the space of density functions ; Po is the density of a uniform reference 
state having grand potential ~[Po]. Equation (19) is exact. If one knew 
c(r, r' ; ~) exactly then the minimum of ~[p] would be the exact grand potential 
of the fluid. As pointed out by Grimson and Rickayzen [16], one can derive 
the HNC integral equation (1) by neglecting the dependence of c(r, r ' ;  c() on 
the parameter ~ and setting this function equal to the direct correlation function 
of the uniform (bulk) fluid of density Po, i.e. 

cf¢, r'; ~)--4r, r'; o)-=~o(Ir-r'l). 
The grand potential functional (19) then simplifies to 

f2t~N(:[P] = ~[P0] + I dr V(r) (p( r ) -  Po) + ~ ~ dr p(r) In (p(r)/po) 

- ?  I ar(o(r)-o . ) -  I I erdr'co(Ir-r't) 

× (P(") - O0)(O("') - O0). (20) 

The equation which results from setting 8f~Nc[p] /3p(r)=0 is identical to (1) 
when V(r) - V(z) so that p ( r ) -  p(z). 

Equation (20) can also be derived by making a functional Taylor expansion 
of the non-ideal gas part of the intrinsic Helmholtz free energy functional about 
the bulk reference fluid. By making a further expansion in (20) it is possible 
to derive another grand potential functional which upon minimization yields 
the PY integral equation (2) [16]. 

From (20) we extract the grand potential density ¢OttNc(p ) for a uniform 
fluid of density p : 

°JnNc(P)=co(Po)+l-fi (pln(p/Po)-P+ Po)-~ (P-Po)Za(po), (21) 
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where we have ignored any contr ibut ion from an external potential and used 
(5). It  is straightforward to prove that (21) corresponds to expanding the non- 
ideal gas contr ibut ion to [(p), the Helmhol tz  free energy density, about P0 in a 
Taylor  expansion t runcated at the quadratic term and treating the ideal gas 
contr ibut ion exactly. Note that co (p )=f (p ) - / zp ,  where l~=(d[/dp)po is the 
chemical potential of the bulk fluid. 

We now enquire whether  or not (21) can describe l iquid-gas coexistence. 
T h e  conventional t reatment  of the latter requires ~o(p) to exhibit two minima 
separated by a maximum. T h e  min imum with the lower value is at O = P0 and 
-co(p0) = p ,  the pressure. When  the chemical potential is that appropriate to 
coexistence at the temperature  in question the second minimum, at p=pt, is 
lowered and its value is then equal to eo(po). If co(p) does not have this shape 
there is no van der Waals loop in the local chemical potential and, therefore,  no 
coexistence, conN o as given by (21), does not have the required shape. Ele- 
mentary analysis shows that (21) has only one min imum at P=Po. Sketches 
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Figure 2. The grand potential density obtained from the HNC equation, o~H~c, plotted 
as a function of density p (schematic). p=--conNC(po) is the pressure. (a) The 
density po of the bulk phase corresponds to a gas. The solid line is the result for 
poa(p0)<0 and the dashed line for O<poa(po)<l. (b) The density P0 now refers 
to a bulk liquid for which poa(po)40. 
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of this function are given in figure 2 (a) for bulk gas and in figure 2 (b) for bulk 
liquid. When Po corresponds to a dilute gas OJnN c will exhibit a maximum at 
some value of p > Po provided 1 > poa(po) > 0. For larger values of p, however, 
~OnNC decreases monotonically and there is no second minimum. This is 
obviously an unphysical situation since it favours an infinitely dense liquid. 
Note the requirement that 1 > poa(po) > 0 implies (see (10)) that the bulk gas is 
more compressible than an ideal gas at the same density and temperature. If 
poa(po) < 0, which is expected for most bulk gases and all dense bulk liquids, 
eonN c exhibits only the minimum at p = Po and no maximum. 

The same exercise can be carried out for the PY grand potential functional 
given in [16]. The grand potential density now has parabolic form 

+_1 
=  (Po) 2 p J  (P-"°)8(I - poa(Po)) (22) 

with the minimum at p = P0- 
We conclude from these analyses that neither of these theories yields a grand 

potential density of the form which is required to describe liquid-gas coexistence. 
It follows that relations (11) and (12), which were derived by assuming the 
integral equations could describe complete wetting, are spurious. Similar 
remarks apply to (16) and (18) obtained from the approximate YBG equation. 
The integral equations do not have stable solutions corresponding to a free 
liquid-gas interface. 

4. PAIRWISE CORRELATIONS AND THE SURFACE COMPRESSIBILITY SUM RULE 

Further insight into the limitations of the integral equation theories is pro- 
vided by an examination of the pairwise correlation functions predicted by these 
theories. If we regard the latter as density functional theories the direct 
correlation function of the inhomogeneous fluid c(r, r ') can be calculated by 
functional differentiation since [9] : 

c(r,  r ' ) =  ~ ( r -  r ' )  ~g ~2[p] (23) 
p(,.) 

It follows from (20) and the corresponding equation [16] for the PY case that, 
for both theories 

c(r, r ') -- c0(Ir-  r 'l). (24) 

Obviously this result is exact in the limit of the uniform bulk fluid and is con- 
sistent with the arguments used in the derivation of the approximate grand 
potential functionals. It is, moreover, consistent with linear response theory. 
Indeed, in the limit of an infinitesimal potential 3 V(r) producing an infinitesimal 
change in density ~p(r)= p ( r ) -oo ,  it is straightforward to prove that (1) and (2) 
reduce to the linear response result 

/ dr' (25) 

Here Go(r ) = po2(go(r) - 1) + pog(r) is the density-density correlation function of 
the uniform fluid and is related to co(r ) via the O:'nstein-Zernike equation. 
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Given some prescription for calculating c(r, r') the total pairwise correlation 
function h(r, r ') can be obtained from the Ornstein-Zernike equation for the 
inhomogeneous fluid : 

h(r, r ' )=c( r ,  r ' ) +  I dr" h(r, r")p(r")c(r", r'). (26) 

It is related to the usual pairwise distribution function via 

p(2)(r, r ' )  = p(r)p(r')(h(r, r ' )  + 1 ). (27) 

Using (24) in (26) it is clear that in the inhomogeneous fluid h(r, r ' ) ~  
h0(Jr-  r']), the total correlation function of the bulk fluid. In order to proceed 
it is convenient to introduce [26] the transverse structure factor 

H(z, Q)=_ 1 + j dz" p(z') j dR exp ( i l l .  R)h(z, z', R), (28) 

where we have specialized to the fluid in a potential V(z) so that p ( r )_  p(z) and 
h(r, r')=-h(z,z', R) with R 2 = ( x ' - x ) Z + ( y ' - y )  z. II is a wavevector parallel 
to the surface. It follows from Fourier transforming (26) that H(z, Q) satisfies 
the integral equation 

H(z, Q)= 1 + S dz' H(z', Q)p(z')c(z', z, Q) (29) 

which can be regarded as an interracial analogue of the bulk Ornstein-Zernike 
equation. When the direct correlation function is given by (24) 

c(z, z', Q ) -  ~ d R e x p ( i l l .  R)c(z,z ' ,R)=co(IZ-Z'l ,  Q) 
oo 

= 2rr j dR RJo(OR)co((R 2 + (z' - z)*)xtz), (30) 
0 

where J0 is the Bessel function of order zero, and the transverse structure factor 
satisfies 

j dz' H(z', Q)[~(z-z')-p(Z3Co(Iz-z'l, Q)] = 1. (31) 

In earlier papers [26, 13] we showed that the behaviour of H(z, Q) afforded 
a signature of the approach to complete wetting. For a solid-gas interface at 
temperatures above the wetting transition temperature T w this function exhibits 
Ornstein-Zernike behaviour at small Q when a thick, liquid-like, film develops 
at the interface and z is located in the edge of this film [26, 13]. This behaviour 
is associated with the growth of long ranged transverse correlations, i.e. 
h(z, z', R) decreases slowly with R, in the edge of the film. As the pressure of 
the gas approaches the saturated vapour pressure and the liquid film becomes 
macroscopically thick, H(z, 0) and hence the correlation length of the transverse 
fluctuations, diverges. The long ranged transverse correlations can be attri- 
buted to damped capillary-wave-like fluctuations occurring in that part of the 
density profile which resembles the profile of a liquid-gas interface; as the 
liquid film thickens the damping due to the solid substrate decreases so that the 
capillary-wave-like fluctuations become more pronounced [26]. Analogous 
fluctuations develop at the edge of the gas film which occurs in the approach to 
complete wetting at a solid-liquid interface. 

A necessary requirement for any theory of complete wetting is that it should 
predict the divergence of H(z, 0). From the definition (28), it is clear that 
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H(z, 0) is a measure of the ' local ' compressibility. (In a bulk fluid H(z, O)= 
S(0), the long wavelength limit of the bulk structure factor, which is pokBT•T .) 
This interpretation also follows from the relation [27, 26] 

-:-=--:..1 (~p(z)~, (32) H(z, 

where the derivative is performed at fixed T and fixed potential V(z). The 
proof of (32) follows straightforwardly from the well-known result for the 
pairwise distribution function as a functional derivative of the density--see, 
e.g. [9]. A divergence of H(z, 0) implies a divergence in ~p(z)/31~. Unlike 
the divergence of KT, which occurs only at the critical point of the bulk fluid, 
this divergence occurs at all temperatures for which there is complete wetting. 
In other words there is a line of critical points lying on the liquid-gas coexistence 
curve above T w associated with the divergence of an interfacial quantity. In 
order to emphasize that we are dealing with interfacial properties and not bulk 
quantities, and to make contact with the thermodynamics of adsorption, it is 
useful to consider an integrated form of (32). 

Defining the adsorption (or coverage) F, at the substrate, which is assumed 
to be impenetrable for z < 0, by 

oo 

F =  f dz(P(z)-Po) (33) 
0 

it follows from (32) and the relation (Opo/~l~)f = po 2 K f that 

~o dZ(p(z)H(z,O)-P-~°fi~:r)=~(~)T . (34) 

The left and right hand sides of (34) now refer explicitly to interracial quantities, 
i.e. surface excess functions. We refer to this result as the surface compressibility 
sum rule because of its analogy with the bulk compressibility sum rule. It 
relates an integral over the pairwise distribution function in the interface to a 
surface thermodynamic function. The analogy becomes stronger when we 
recall that the coverage is itself a derivative with respect to chemical potential, 
i.e. P = -(~y/~I~)T where y is the solid-fluid interfacial tension. 

We believe (34) to be an exact result. It can be generalized immediately 
to impenetrable substrates with less restrictive potential functions. We find 

v 
$ d r d r ' p ( r ) p ( r ' ) h ( r , r ' ) + ( N ) - - f i \ - ~ j T = - f i \ - - ~ - ]  T (35) 

where ( N ) -  ~ dr p(r) is the mean number of molecules in the fluid, N ex -  
dr (p( r ) -p0)  and V is the volume of the fluid. This equation is identical to 

(3.110 b) of [3], where it was derived using fluctuation theory arguments. Its 
physical significance was not discussed in [3]. 

The sum rule (34) should provide a useful, and possibly stringent, test for 
theories of inhomogeneous fluids. A properly self consistent theory will 
satisfy this sum rule. Density functional theories do this automatically since 
they construct the pairwise distribution function from the free energy functional 
by the procedure outlined above. Theories which attempt to approximate 
p~)(r, r ') directly will almost certainly fail to satisfy (34). 
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For our present purposes we are concerned primarily with (34) in the limit 
of complete wetting. If Tw < T< T c the bulk quantity ,q. remains finite in 
this limit and (34) implies that (~F/~/L)T must diverge in the same fashion as 
H(z, 0). The nature of this divergence reflects the form of the attractive 
part of the solid-fluid potential V(z). When the latter decays exponentially 
with distance z the coverage F diverges as - I n  [~-~s , t l ,  where #~t  is the 
chemical potential of the coexisting fluid at the given temperature [13, 26]. 
It follows from (34) that H(z, O) must diverge as I /~ - /~ t l  -~. Explicit cal- 
culations and analysis [26] for Sullivan's [14] model confirm this last result. 
When V(z) exhibits inverse power law decay for large z, i.e. V (z )~ - z  -m, 
where m is an integer > 1, F diverges as [/x-/~tl-~/m [13], and (34) predicts 
that H(z, O) should diverge as I/x-/x~t[ -u+l/m). For simple fluids at simple 
substrates the dominant forces for large distances are attractive van der Waals 
forces so we expect m=3  to be the relevant exponent. Thus we predict that 
H(z, O) should diverge as I#-/~sat1-413 for real solid-fluid interfaces in the 
approach to complete wetting, i.e. much faster than the coverage itself. 

The last result would appear to have important repercussions for computer 
simulations of the thick liquid films which occur in near complete wetting 
situations. We digress a little to explain this. The left hand side of (34) or 
(35) can be re-expressed in terms of the mean square fluctuation of the coverage 
using standard manipulations. The equations can then be rewritten as 

1 (~<1~> 
(36) 

where f ' =  S dr (~(r)-p0)  and equilibrium quantities are given by grand 
eanonical configuration averages, i.e. F=<f '> ,  p(r)=<~(r)> etc. A is the 
surface area. Note the analogy between (36) and the well known result for 
the mean square fluctuation in the number of particles, or particle density, in a 
bulk fluid. If F varies as I/x-/x~t1-1/m then (36) implies that the root mean 
square fluctuation A P = ( ( I  TM) --<~>2)1/2 should vary a s  A-112ltx-lXsatl-(l+l/m)/2. 
The growth of AF as ix-+lxsat is, of course, limited by the factor A -1/2. In a 
computer simulation, where A is finite, it would be necessary to increase the 
area as/~ increases in order that AF remain less than F, which is itself diverging. 
This requires A ~  [/x-/x~t[1/m-1. In order to make some estimate of the 
magnitude of the fluctuations we have analysed the results of Ebner and Saam's 
[10, 8] density functional calculations. Their density profiles (plotted in 
figure 2 of [10]) for a reduced temperature T*-kBT/E=I'I lying above the 
surface critical temperature, show the growth of thick liquid films. By esti- 
mating the area under these profiles we find that for the highest coverages 
(largest bulk densities) Fa2~l' lSg -1/3 where ~g--(Pg--Po)/Pg is the relative 
undersaturation of the bulk gas and a is the molecular diameter characterizing 
the Lennard-Jones fluid. (We obtain a similar approximation from the results 
of our calculations [12].) If we assume that the bulk gas is sufficiently dilute 
that it obeys the ideal gas law then ~g = f l ( / ~ s a t  - -  / x ) .  Combining these relations 
we have, from (36), 

(37) 
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In the Monte Carlo simulations of Lane et al. [5] the dimensions of their 
box in the x and y directions were both 40 A. Taking a =  3"405 A the area of 
their surface is A =  138.0o 2. Inserting this value into (37) we find A F / F ~  
0.0473g -1/a. Thus, for a relative undersaturation 3g=0.02 we expect that 
AF/F~0.17 ,  while for ~g=0.01 this ratio is ~0.22. Fluctuations clearly 
become very important at these small undersaturations but they are also sig- 
nificant for slightly higher values of 3g. It is clear that any attempt at simula- 
tion of thick wetting films must employ large surface areas. (Note that the film 
thickness for ~g~ 0.02 is about 6 or 7 molecular diameters [10].) 

The problem is essentially the same as that encountered in computations of 
bulk properties near the critical point. Indeed, as remarked earlier, the bulk 
coexistence curve, for T w < T< To, can be regarded as a line of critical points 
for interracial quantities. 

We return now to our discussion of the integral equation theories. It is 
evident that since these cannot account for the growth of thick wetting films 
they cannot predict divergent coverages and, therefore, cannot describe the 
divergence of the transverse structure factor. The reason for this failing be- 
comes clear when we examine (31). The square bracket contains information 
about a single (bulk) phase only ; Co refers explicitly to a single phase and we 
have already demonstrated that the profile p(z) cannot describe a coexisting 
fluid interface in these theories. Consequently the transverse structure factor 
H(z, Q) calculated from (31) contains no information about a second phase. 
This equation should be contrasted with the corresponding equation obtained 
from Sullivan's model--see (34) or (36) of [26]. The direct correlation function 
c(r, r ') depends explicitly on the local density in Sullivan's model--see § 5. 

The integral equation (13) based o n a  closure approximation to the YBG 
equation also fails to describe the divergence of the transverse structure factor. 
The approximation 

pt2)(r, r ') = p(r)p(r')go(lr- r']) (38) 

obviously implies that the total pairwise correlation function of the inhomo- 
geneous fluid, h(r, r'), is h0(]r -  r']), the corresponding function for the bulk 
fluid. Whilst this approximation is similar in spirit to that used in derivations 
of the H N C  and PY theories, (13) differs from these theories in several im- 
portant respects. First, as mentioned earlier, we cannot expect the approxima- 
tion (38), to satisfy the surface compressibility sum rule (34) when the density 
profile is calculated from (13). Secondly, unlike the H N C  or PY theories, 
(13) is not consistent with linear response theory. For an infinitesimal potential, 
3V(r), (13) does not reduce to (25). This is equivalent to the statement that 
- f lS(r)#co(r  ). Although the equality holds asymptotically (see § 2) it is not 
valid for small r. There are other significant consequences of the differences 
between (13)and  the other theories. We can illustrate these by reference to 
(6) or (7) for the ' tail '  of the density profile. Neglecting the external potential 
V(z) these predict (see also [9] and references therein) that the density profile 
of the fluid should decay exponentially to its bulk value with a decay length 

pob(po ) ~1]2 (39) (1-%0a p0)] 
(This result should be valid for a real system provided ~ exceeds the decay 
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length of V(z).) From the definitions (5) of a and b it is easy to show that ~: 
is the Ornstein-Zernike correlation length of the bulk fluid. This assumes 
b > 0;  Evans and Sluckin [28] have argued that b should be positive for all, 
except the very highest density, states of a Lennard-Jones fluid. Analysis of 
(13), however, predicts [9] exponential decay with a different length 

where 

poOL 2 ~ 112 

A ~, 1 - poK(po)] 

271" 
a~=-~ ~ S dr rS go(r) d~(r)/dr. 

0 

(40) 

This result assumes that poK(po) < 1 and that a 2 > 0. For many fluid states the 
pressure is such that 1 < poK(po)< 2 (see (12)). In these circumstances (13) 
does not predict exponential decay but would, presumably, predict oscillatory 
behaviour for the ' tail ' of the density profile--a result completely at odds with 
the result of the other theories. Note also that A, as given by (40), does not 
diverge at the critical point since, in general, K(pc)~ 1~pc. Even if we supposed 
that K(pc)= 1/p c A would not diverge in the same way as the Ornstein-Zernike 
correlation length ~: of (39). This follows since az#b. a2 remains finite 
whilst b diverges in a non-classical theory of the critical point. 

The differences between the predictions of (13) and the other theories are 
not quite so dramatic for hard-sphere fluids, which are the systems which have 
been studied in most detail. In this case b is negative for all thermodynamic 
states so that ¢, as defined by (39) is imaginary. The quantity K is negative 
for hard-sphere fluids but ~ is also negative so that A in (40) is imaginary. 
Nevertheless, we have no reason to suppose that A = ¢ in this case either. 

We conclude that (13) has some undesirable features in addition to its failure 
to describe liquid-gas coexistence. In the next section we comment briefly 
on published attempts at solving (13) and mention closure approximations 
which improve upon (38). 

5. DiscussioN 

The main conclusion which emerges from our study is that  the various 
approximate integral equation theories cannot describe coexisting liquid and 
gas phases. As mentioned in the introduction this failing had been anticipated, 
but not explained, previously. Our analysis of the grand potential density 
makes the failing explicit. It is evident from the discussion in § 3 that the 
HNC and PY approximations do not incorporate proper ' loca l '  thermo- 
dynamics. Since these theories expand around a single bulk phase they are 
unable to describe a grand potential density with the two minima necessary to 
account for coexistence. Density functional theories, on the other hand, 
incorporate, from the outset, two-phase coexistence by introducing a realistic 
grand potential density. This is apparent in the theory of Ebner and Saam 
[7, 8] and in that of Sullivan [14] whose approach can also be regarded as an 
approximate density functional theory [26, 13]. What is required is that the 
part of the free energy density arising from repulsive forces in the fluid exhibit 
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the variation with p that is characteristic of hard spheres. Sullivan has made 
this point in several articles, for example, [14, 19]. An equivalent requirement 
is that, in contrast to what is indicated by (24), the direct correlation of the 
fluid should depend on the local density. Using Sullivan's model grand 
potential functional in (23) we find [26] : 

(1 ) 
c(,-, r ' ) =  , (41) 

where ["h(p) is the second derivative of the Helmholtz free energy density of a 
uniform hard sphere fluid and w~(r) is the attractive part of the pairwise potential 
between fluid molecules. When (41) is employed for a uniform fluid it gives 
rise to a realistic grand potential density [26]. In Ebner and Saam's approach 
c(r, r ') is a rather complicated function of the local density and depends on 
c ( ] r - r ' [ ;  /5), the direct correlation function of a uniform fluid at some mean 
density /5. Problems arise in practical calculations because of the necessity of 
specifying this function when/5 corresponds to a two phase region of the phase 
diagram. This difficulty is avoided in Sullivan's approach but the latter is 
unable to describe any oscillatory behaviour of the density profile in the neigh- 
bourhood of the substrate. A purely ' loca l '  approximation to the repulsive 
force part of the grand potential functional cannot account for oscillations of 
this kind which arise from the short range correlations in the fluid. Integral 
equation theories of the HNC or PY type are quite successful at describing this 
particular aspect of the interfacial structure. Generalizations of and improve- 
ments on the functionals of Sullivan and of Ebner and Saam are required before 
a reliable and realistic theory, capable of describing complete wetting and short 
range intermolecular correlations, becomes available. We are currently de- 
veloping such density functional theories in this laboratory. 

Could more sophisticated versions of the HNC or PY closure approximations 
of the wall-particle Ornstein-Zernike account for complete wetting ? As 
argued in § 2, we believe that existing closures cannot. The difficulty lies in 
finding approximations for the wall-particle direct correlation function which 
retain the necessary information about two phase coexistence. It is not at all 
obvious how to construct suitable approximations. Experience with closures 
for bulk fluids is not particularly useful for this purpose. 

For completeness we should refer to the papers of Thompson et al. [29] 
and Henderson et al. [30]. These authors discuss the results of calculations of 
the density profiles of a Yukawa fluid, i.e. a fluid in which the particles interact 
through hard sphere potentials with attractive Yukawa tails, near a hard wall. 
Their calculations are based on the mean-spherical approximation (MSA) 
closure of the wall-particle Ornstein-Zernike equation. This closure, with 
V(z) = 0, is identical to the PY closure except that Co(r ) is now obtained from 
the MSA. The grand potential density has the same parabolic form as that 
given by (22) and cannot, therefore, describe liquid-gas coexistence. As 
expected, no indication of wetting by gas is found in the calculations corre- 
sponding to a bulk liquid near coexistence; the density profiles exhibit 
oscillatory behaviour near the wall--see figures 1 and 4 of [29]. They are 
similar to those obtained from the EXP and MF-EXP approximations applied 
to a Lennard-Jones fluid near a hard wall for which Monte Carlo calculations 
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[19] find a wetting film of gas. Henderson et al. [30] remark that they find a 
singularity in the coverage ' which may be interpreted as indicative of wetting ', 
when the compressibility r r is infinite. Their remark is consistent with the 
argument of § 2. Real wetting, which occurs when K~. is finite, is not described 
by the MSA closure. 

Finally we return to the defects and deficiencies of the approximate YBG 
equation (13). There are two distinct problems associated with this. The 
first concerns the inability of the approximation to describe liquid-gas co- 
existence--a point noted by Croxton [31], while the second concerns the failure 
of the approximation to reproduce the results of linear response theory. We 
first address ourselves to the second problem. A theory which fails in the linear 
response regime might still be quite accurate for calculations of the density 
profile arising from the large, ultimately infinite, perturbation introduced by 
the presence of a wall. Nevertheless we should not be too surprised if, given 
the 'arguments of §4, (13) did not yield realistic density profiles for dense 
single phase fluids, especially those satisfying the condition 1 <poK(po)<2. 
There is some discussion in the literature which might be relevant. Bor~tnik 
and A~man [32] used (13) for a Lennard-Jones fluid near a hard wall. They 
found diverging solutions for liquids below the critical temperature. The 
same group later reported divergent solutions for high density liquids [33]. 
Navascu6s [34] was unable to find convergent solutions of (13) below the 
critical point for a Lennard-Jones liquid near a hard wall with an attractive 
tail. The question of the existence of stable solutions to (13) and the possible 
connection with linear response requirements warrant further investigation. 

The inability of the theory to describe coexistence means that (13) cannot 
form the basis of a self-consistent theory of wetting, contact angles etc. (The 
work of Berry [23], which is based on (13), makes further approximations in 
order to obtain a theory of the contact angle O. We are not convinced that 0 
calculated from this approach is consistent with its thermodynamic definition 
in terms of the three interracial tensions, i.e. Young's equation.) In particular 
(13) cannot be used for self-consistent calculations of the density profile at a 
free liquid-gas interface. The only relevant result of which we are aware 
is that due to Toxvaerd [35] who solved (13) for the planar liquid-gas interface 
of the square well fluid taking go(r) to be the radial distribution function of the 
bulk liquid calculated in a certain approximation. By construction the profile 
satisfied the boundary condition p ( - o r ) = P l  but it did not approach the co- 
existing gas density pg (as calculated from an equation of state) at large z. 

It is more usual, in studies of the liquid-gas interface based on the YBG 
equation, to employ more sophisticated closure approximations for pm)(r, r'). 
These are reviewed in [31, 22]. 

If the distribution function g is defined via the equation 

pm>(r,, r2)= pm}(z,, z~, z,2 ) = p(z, )p(zz)g(z, ,  zz, r,s) (42) 

then g is often approximated by a linear combination, weighted with the local 
density, of bulk liquid and bulk gas radial distribution functions. Alter- 
natively g is set equal to g(rl~ ; /5), the radial distribution function of a hypo- 
thetical uniform fluid of density /5 and some prescription relating /5 to p(zl) 
and p(z~) is assumed. It seems likely that many of these more sophisticated 
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approximations are consistent with a grand potential density exhibiting two 
minima. The work of Toxvaerd [36] is an example which illustrates how an 
improved closure produces a realistic equation of state. Moreover the ' s um 
rules '  derived by Lekner and Henderson [37], which relate the coexisting 
densities to the pressure, appear to be quite realistic. Although these can be 
regarded as generalizations of (18), they do not exhibit the inconsistencies of the 
latter. We also note that the density profiles calculated from such closures are 
monotonic and agree reasonably well with those obtained from other theories or 
simulations [22] of the liquid-gas interface. The work of Fischer and Methfessel 
[38] is especially relevant in this context. These authors devised a closure 
approximation which gave realistic profiles for the liquid-gas interface of a 

Lennard-Jones fluid at various temperatures and then used the same approxi- 
mation in calculations of the density profile of the same fluid near a Lennard- 
Jones 9-3 wall. For a bulk gas at a density very slightly below the coexisting 
gas density they obtained a thick liquid-like film adsorbed at the interface. 
This suggests that their theory is capable of describing complete wetting, 
although the authors do not commit themselves on this issue! What our 
present work indicates is that it is possible that some of the closure approxima- 
tions which have been employed for the liquid-gas interface might not corre- 
spond to a grand potential with two minima. Given the long saga [22, 31] 
concerning the existence of stable oscillatory profiles at such interfaces it might 
be worthwhile, in the light of this remark and the discussion in § 4, to re-examine 
those closures which appear to give rise to oscillations. 

Indeed it is instructive at this juncture to enquire how the incorporation of 
density dependence into g alters the previous results for the ' tail ' of the density 
profile. Analysis of the YBG equation using a closure which sets ~ = p(~(z I + z~)) 
yields a decay length proportional to [1-po(K(po) +lpo dK(po)/dpo)] -112 rather 
than the result given by (40)t. From the virial equation (17) it follows that this 
decay length is now proportional t o  KT 112 or (1--poa(po)) -112, which is more 
consistent with the results of the other theories described in § 4. In particular 
the decay length diverges at the critical point and there is no longer any special 
concern for states satisfying 1 <poK(po)<2.  The incorporation of density 
dependence obviously has very significant consequences. 

Although more refined closure approximations are able to account for 
coexistence and, hence, complete wetting, they will not give a realistic des- 
cription of pairwise correlations in either the liquid-gas interface or in thick 
adsorbed films at solid substrates. By making any ' local ' approximation to g 
in (42) we throw away the possibility of the long-ranged transverse correlations 
discussed in § 4. Since these correlations afford an important signature of the 
approach to complete wetting, theories which cannot incorporate them are of 
limited value in large coverage situations. We emphasize once more that 
closure approximations made for g directly will not, in general, satisfy the surface 
compressibility sum rule (34). 

This research was supported by the S.E.R.C. and by the MEC-SEUI ,  
Spain. We have benefited from discussions with M. V. Berry and D. A. 
Greenwood. 

t We are grateful to J. R. Henderson for pointing this out. 
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