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We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dy-
namics of a symmetric binary electrolyte in channels whose section is nanometric and varies along
the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads
to a system of coupled equations for the partial densities which depends on the charge sitting at
the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the
spatial variation of charge distribution and those due to the shape variation of the pore and report
one- and three-dimensional solutions of the electrokinetic equations. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811516]

I. INTRODUCTION

The study of electric transport properties of ions in pores
of nanometric transverse section is a problem of capital
importance in many different areas of Biology, Chemistry,
Engineering, Physics, and has important technological appli-
cations. At the nanoscale, the Debye screening length be-
comes in the case of dilute electrolytic solutions larger than
the typical channel width so that any clear distinction between
surface-like and bulk-like region disappears and the properties
of the channel are mainly controlled by the surface charge.1

The theoretical study of electrokinetic phenomena at these
scales and in heterogeneous media poses a number of theo-
retical and computational challenges.2 If the channel width
is of the order of magnitude of the Debye length, the dou-
ble layers generated by the presence of surface charge at the
walls overlap and the solution inside is prevalently formed by
counter-ions. Thus, it is possible to use the surface charge,
or the channel geometry,3 to control the concentration of ions
inside the channel4–6 with applications to devices.

The time evolution of the concentrations and electric field
are reasonably well described by the Planck-Nernst-Poisson
(PNP) model, which represents the workhorse of studies in
this important field. It combines the Fick diffusion law with
the migration effect induced by the electric field produced by
the charges either fixed at the boundaries of the system or
moving through the solvent. One also assumes that the electric
field corresponds to the one produced by a continuous charge
distribution obtained by thermally averaging over the instan-
taneous charge configurations. Numerical solutions of the sta-
tionary three-dimensional (3D) PNP problem are discussed in
the vast literature on the subject, but it is often desirable to
have an even simpler description in terms of a reduced num-
ber of coordinates. There have already been a number of pre-
vious studies investigating how to treat the dynamics of elec-
trolyte solutions in heterogeneous media.7, 8 However, in these
cases the homogenization procedure considered scales larger
than the single pore and the resulting theory was then an ef-

fective medium approximation to describe electrodiffusion at
larger scales, in, e.g., porous tissues, membranes, and porous
rocks. Other authors, instead, have considered very specific
geometries9–11 to study the rectification of the ionic currents
restricted to conical pores by means of a one-dimensional
reduction.

In some cases, using the symmetry of the problem and
the fact that gradients are negligible in some specific direc-
tions it is possible to obtain a one-dimensional effective rep-
resentation thus reducing the computational effort. In fact, in
many systems of interest, such as long tiny channels, the mo-
tion basically occurs in a single direction and one may seek
a method to reduce the three-dimensional PNP equations to
a one-dimensional effective description.12, 13 In the case of a
channel of uniform section such a reduction is simpler than
in the case of channels of varying section, whereby the pro-
cedure requires a series of additional approximations. Such a
program was originally carried out by Jacobs14 and continued
by several authors15–18 in the case of standard diffusion prob-
lems. The methods used by these authors are basically ho-
mogenization techniques, by which one eliminates the depen-
dence of some observables on some coordinates, using their
slow variation in space. However, the purpose of the present
paper is somehow different from the one which motivated the
previous authors who were interested in investigating the tran-
sient diffusion process in non-uniform channels. Our scope is
to analyze how the steady state properties are influenced by
the geometry. A second important difference consists in the
fact that we apply the homogenization technique to the PNP
electrokinetic equations describing the flow of electrolyte so-
lutions in narrow channels of variable width. The derivation of
an effective, simplified, equation for the dynamics of charged
species along a channel with general geometry will provide
physical insight in electrodiffusion in complex geometries.

The present paper is organized as follows: in Sec. II
we derive the PNP equations from a free energy approach,
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and perform the reduction of the equations from three-
dimensional space to one-dimensional space for a axisymmet-
ric system. In Sec. III we solve the full set of one-dimensional
equations by numerical methods and compare these results
with those obtained by solving the three-dimensional Lattice
Boltzmann (LB) equation for a ternary charged mixture com-
posed of two ionic species and a solvent species. Finally, in
Sec. IV we discuss the results and present some conclusions.

II. A SIMPLE DERIVATION OF THE PNP SYSTEM
AND ONE-DIMENSIONAL REDUCTION

We first derive the PNP equations in the framework of
Dynamic Density Functional Theory (DDFT).19 We assume
the following free energy functional describing two oppo-
sitely charged species of charges ±ze in the presence of a
quiescent, structureless solvent of dielectric constant ε, and
of a fixed charge distribution eqe(r):

F[n+, n−, φ] =
∫

dr

[
(kBT

∑
α=±

n±(r)[ln(n±(r)�3
±) − 1]

+ e[z(n+(r) − n−(r)) + qe(r)]φ(r)

− ε

2
(∇φ(r))2

]
, (1)

where we have introduced the electric potential φ in order to
have a local formulation of the theory20 and �± represents the
thermal de Broglie wavelength of the two ionic species. The
free energy, F , contains only ideal gas entropic contributions
and the Coulomb interaction term. Within the DDFT one de-
scribes the relaxation of the ionic densities and the electric
potential by the following set of governing equations:

∂n±(r, t)
∂t

= 1

γ ± ∇ ·
(

n±(r, t)∇ δF[n+, n−]

δn±(r, t)

)
, (2)

which can be regarded as a continuity equation for the indi-
vidual species, with partial currents given by

J±(r, t) = − 1

γ ±

(
n±(r, t)∇ δF[n+, n−]

δn±(r, t)

)
. (3)

Here γ ± are coefficients characterizing the friction of the ions
with the solvent, so that the diffusion coefficients D± follow
from the Einstein relation D± = kBT

γ ± . Upon differentiating the
free energy (1) at fixed electric potential we obtain the explicit
expression

δF[n+, n−]

δn±(r, t)
= kBT ln n±(r, t) ± zeφ(r, t) (4)

and after substituting in Eq. (2) we arrive at the following
driven diffusion equation:

∂n±(r, t)
∂t

= D±∇ ·
(

∇n±(r, t) ∓ zen±(r, t)
kBT

E(r, t)
)

. (5)

For later reference we shall specify the Debye length

λD =
√

εkBT

2z2e2nb

,

where nb is the bulk value of the densities of the two
ionic species. The governing equation for the electric field
E = −∇φ is obtained by functionally differentiating (1) with
respect to φ at constant densities

∇ · E(r, t) = ze

ε
(n+(r, t) − n−(r, t). (6)

The Poisson equation (6) must be supplemented by the bound-
ary condition E · n(x) = 
(x)

ε
.

Equations (5) and (6) constitute the Poisson-Nernst-
Planck model. Here we are interested in those cases where
the dynamics occurs mainly along a single direction, say the
x-direction. Convenient observables depending only on x are
the sectionally averaged densities, for which one can derive
simple evolution equations. The reduction in dimensionality
from 3D to 1D is based on the assumption, reasonable for nar-
row channels, that all motions perpendicular to the axis reach
equilibrium more rapidly than those along it. The method
can be generalized to the case of non-uniform confining ge-
ometries where the resulting evolution equations contain ex-
tra terms, interpreted as entropic forces,15 due to tendency
of the particles to fill uniformly the space. In fact, narrower
sections contain a number of particles per unit length smaller
than wider ones.

Let us consider a 3D system with axial symmetry along
the x direction bounded by a surface described by the shape
function R = R(x) and assume that the particles can move only
in the inner space, so that n(x, r) = 0, if r > R(x). We define
the sectional average of a generic field a(x, r) as

〈a(x)〉 = 2

R2(x)

∫ R(x)

0
drra(x, r), (7)

where r is the distance from the x axis. By applying the aver-
aging operator 〈 · 〉, to the equation for the current J±(x), one
obtains the following expression for its x-component:

〈
J±

x (x)
〉 = −D±

(
d

dx
〈n±(x)〉+2R′(x)

R(x)
(〈n±(x)〉−n±(x,R))

)

±μ±〈Ex(x)〉〈n±(x)〉, (8)

where in the last term we have approximated the average of
the forcing term in Eq. (5) by the product of averages. If we
further assume that the density profile in the transverse direc-
tion varies slowly, so that its local value at the wall, r = R, can
be approximated by its sectional average, the coefficient of the
derivative of R(x) vanishes. Assuming the confining walls to
be impenetrable, the component of the current parallel to the
normal n, must vanish at the lateral boundaries J±(x, R) · n
= 0. Under stationary conditions the currents are subject to
the zero divergence conditions ∇ · J±(r) = 0, so that for a
channel of variable section the quantity I± = 〈J±

x (x)〉
D± πR2(x)

must be constant. In order to integrate Eq. (8) we define a
new concentration variable

c±(x) ≡ πR2(x)〈n±(x)〉 (9)

and write the 1D-PNP equation as

dc±(x)

dx
− 2

R′(x)

R(x)
c±(x) ∓ ze〈Ex(x)〉

kBT
c±(x) = −I± . (10)
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The r.h.s. of Eq. (10) has the simple interpretation of (minus)
the current generated by a gradient of concentration c(x), by
the entropic force associated with the area variation of each
section plus a force due to the electric field. If 〈Ex〉 = 0, the
current, I±, vanishes when c±(x)/πR2(x) = 〈n±(x)〉 = const.

By applying the averaging operation to the Poisson equa-
tion we obtain

2

R2(x)

∫ R(x)

0
drr

∂Ex

∂x
= ze

ε
〈(n+ − n−〉 − 2

R(x)
Er (x,R)

(11)

and using the identity

2

R2(x)

∫ R(x)

0
drr

∂Ex

∂x
=d〈Ex(x)〉

dx
+2R′(x)

R(x)
(〈Ex〉−Ex(x,R)),

(12)

we can write

d〈Ex(x)〉
dx

+ 2R′(x)

R(x)
〈Ex〉

= ze

ε
〈(n+ − n−〉 − 2

R(x)
(Er (x,R)

−R′(x)Ex(x,R)). (13)

Finally, we consider the relation between the radial, Er, and
the longitudinal components Ex, of the electric field at the
boundary and the surface charge:

E · n(x) = −[Er (x,R) − Ex(x,R)R′(x)]
1√

1 + (R′(x))2

= 
(x)

ε
. (14)

To conclude the sectional averaging of the Poisson equation
(6) yields the following result:

d〈Ex(x)〉
dx

+ 2
R′(x)

R(x)
〈Ex(x)〉

= 1

επR2(x)

(
ze(c+(x) − c−(x))

+ 2πR(x)
(x)
√

1 + (R′(x))2
)
, (15)

where the term 
(x)
√

1 + (R′(x))2 represents the product of
the surface area charge density with the line length of the
boundary. Such a correction due to the line length has usually
been neglected on account of the small effect in the case of
nearly flat interfaces. The presence of the second term on the
left hand side of Eq. (15) is due to the sectional averaging and
has the form predicted by Eisenberg and co-workers.21, 22 For-
mula (15) reflects the fact that in the absence of free charges
the quantity 〈Ex(x)〉πR2(x) is constant throughout the system.
Let us remark that the equation for the electric field is one-
dimensional and the surface charge appears now directly in
the 1D Poisson equation as a source term as a result of the
homogenization procedure.

Notice that we can also define a one-dimensional electric
potential ψ̄(x) such that 〈Ex(x)〉 = − dψ̄(x)

dx
which, however,

is not the sectional average 〈φ〉 of the true potential φ(x, r).

III. PERFORMANCE OF THE ONE-DIMENSIONAL
PNP REDUCED MODEL

The purpose of the present section is to assess the valid-
ity of the 1D-PNP equations (10) and (15) by comparing the
numerical solutions with those obtained by solving the full
three-dimensional problem. For the latter, the electrokinetic
equations will be solved numerically in the framework of the
LB method. The 3D system used in the LB comparison is
composed by a ternary mixture of positively and negatively
charged point particles immersed in a solvent of neutral parti-
cles. The three types of particles move in a continuum dielec-
tric medium of uniform permeability ε.

The system evolves according to the following ki-
netic equations for the one-particle phase space distributions
f α(r, v, t) of each species α:

∂

∂t
f α(r, v, t) + v · ∇rf

α(r, v, t) − ezα∇rψ(r, t)
mα

· ∂

∂v
f α(r, v, t) = −ω[f α(r, v, t) − nα(r, v, t)φM (r, v, t)],

(16)

where

φM (r, v, t) =
[

m

2πkBT

]3/2

exp

[
−m(v − u(r, t))2

2kBT

]
(17)

is the Maxwell-Boltzmann distribution peaked around the
common fluid velocity, u (see Ref. 23).

From the distribution functions f α , also called popula-
tions, we extract the local densities nα(r, t) = ∫

dvf α(r, v, t)
and the currents are obtained as J α(r, t) = ∫

dvvf α(r, v, t),
and thus the common velocity is given by u = ∑

αJα(r,
t)/

∑
αnα . We determine the electric field E by solving numeri-

cally the 3D Poisson equation (6) by means of a SOR (Succes-
sive over-relaxation) algorithm.24 In addition, we fix the diffu-
sion coefficients to be the same for each species and equal to
Dα = kBT/ωmα = 1, where ω is the relaxation frequency fea-
turing in Eq. (17). The discretized version of Eq. (16), which

FIG. 1. Geometries used in the numerical tests, with the set-ups denoted as
A (upper) and B (lower). The dashed lines indicate the location of the surface
charge. The potential tension is applied between the inlet and outlet regions.
Throughout the text, the labels D, d, A, a, and r are expressed in lattice units.
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is the essence of the LB method, is not reported here. The
interested reader can find the details of the complete numeri-
cal scheme in Refs. 25–28, where the more general situation
when the finite size of the ions is relevant is also discussed.
The model we will use is analogous to other LB approaches
to model electrokinetics.29, 30 In the following we use lat-
tice units to express the density and the electric potential.
Given the lattice spacing �x, the dimensionless Debye length
and number density are defined λD = λ̃D�x and n = ñ�x3,
where λ̃D and ñ are the dimensional counterparts. Similarly,

 = 
̃�x2/e, φ = eφ̃/kBT , and �V = e�̃V /kBT are the
dimensionless surface charge, electric potential, and applied
tension, respectively.

The studied systems are depicted in Fig. 1 and consist
of two reservoirs connected by a straight channel with the
three compartments having cylindrical symmetry with radius
R(x). System A contains a straight cylindrical channel with
a sharp discontinuity in the radius profile R(x) at the chan-
nel openings, it is therefore quite challenging to reproduce
the 3D charge distribution and currents within the 1D-PNP

framework. System B, instead, contains two ramps at the
channel openings that could ameliorate in principle the qual-
ity of the 1D-PNP solution, by reducing the discontinuities in
R(x). The inner surface of the channels has a surface charge
density 
(x) that is uniform for both systems inside the chan-
nel for both systems and equal to −2 × 10−4. For a lattice
spacing �x = 0.1 nm, this surface charge density is about one
order of magnitude smaller than the value typical of a SiN
channel.31

In the simulations, a potential difference is applied across
the system at the left and right extremes of the system, here-
after named inlet and outlet, respectively. At these extremes,
xI and xO, we fix the electrostatic potential, φI and φO, as

φ(xI , y, z) = φI φ(xO, y, z) = φO (18)

and we assume all species to have the density fixed by their
bulk values at the electrodes

n±(xI , y, z) = n±(xO, y, z) = n±
b . (19)

FIG. 2. Normalized density of counter-ions (left) and co-ions (right plot) for system A for wide (plots (a) and (b) with d = 40, D = 60, a = 20, and A = 40),
medium (plots (c) and (d) with d = 20, D = 60, a = 20, and A = 40), and small (plots (e) and (f) with d = 10, D = 60, a = 20, and A = 40) channels, with
�V = 10−2.
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FIG. 3. Comparison of 1D-PNP and 3D-LB longitudinal profiles of the density (upper panels) and the potential (lower panels). The geometries and parameters
are as in Fig. 2.

The 1D-PNP equations (10) and (15) are handled numerically
by using conventional methods, where Eqs. (10) and (15) are
solved by a SOR relaxation methods on a one-dimensional
mesh, with a resolution of 100 mesh points per Debye length.
In particular, Eq. (10) is considered by taking one more spatial
derivative so to avoid a shooting method for the currents I±.
In order to improve the accuracy of the solution, the equations
are rewritten via an exponential transform, so to alleviate any
rapidly varying function.

In terms of the 3D-LB numerical scheme, in order to im-
pose the densities at the electrodes, we choose appropriately
the populations such as to recover the corresponding zeroth
moments. At the same time, the first moments (the currents)
should be left untouched by the boundary method. At the ex-
tremal regions, this problem consists of completing the pop-

ulations with contributions stemming from the incoming (at
the inlet) and outgoing (at the outlet) missing information. To
this end, we apply the completion scheme of Ref. 32, which
imposes the non-equilibrium part of the populations for the
contributions directed along +x and −x to be equal.

The contour plots of the 3D-LB densities are reported
in Fig. 2 for pores of different diameters and undergoing
the action of an external tension. For the same systems, in
Fig. 3 we compare the sectionally averaged, longitudinal pro-
files of the densities and the electrostatic potential. From the
data, 3D-LB and 1D-PNP obey similar general trends, with
a build-up of counter-ions with a characteristic bell-shape
inside the channel, whereas concentration polarization devel-
ops in the reservoir regions. The latter is a manifestation of
the electrostatic attraction of counter-ions towards the charged

FIG. 4. Normalized density of electrolytes, electrostatic potential, and longitudinal profiles for system A (d = 20, D = 60, a = 40, and A = 40), with �V = 0.
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channel, contrasted by the external walls of the reservoir.
The most relevant difference between 3D-LB and 1D-PNP
is the amount of counter-ion build-up and co-ion depletion
in the channel region. In particular, the 3D-LB data show a
discontinuity of the charge profiles at the channel openings,
apparently due to the strong confining forces acting on the
electrolytes.

From Figs. 2 and 3 it is worth noting the increase of
counter-ion build-up and co-ion depletion as the channel di-
ameter is reduced. The narrower is the channel, the larger is
the difference in profiles between the PNP and LB solutions.
At the same time, the charge distribution in the reservoirs is
long ranged and has hemispherical shape. Such long-range
modulation is the effect of the strong confinement of the elec-
tric field lines as they squeeze in the channel region, usu-
ally referred to as entrance/exit effects since any particle ap-

proaching/exiting the channel will feel a substantial modula-
tion in the potential already at long distance from the channel
opening. The same type of distribution is observed in Fig. 4
where the channel is taken to be longer than the Debye length
(a = 40, λD = 20).

Due to the long-ranged effect of concentration polariza-
tion, we considered a system with more extended reservoirs
to avoid spurious finite size effects. The contour plots of
the 3D LB densities and the comparison of the longitudinal
profiles are reported in Fig. 5. Once more, 3D-LB and 1D-
PNP obey similar general trends, with a bell-shaped build-
up of counter-ion in the pore region. Now, concentration po-
larization has a minor effect nonetheless, the same type of
charge discontinuity is observed in the 3D simulation, ruling
out the possibility that the gap between 3D-LB and 1D-PNP
is induced by the reservoir regions. Accordingly, we keep

FIG. 5. Density of electrolytes normalized by the maximum value ((a) and (b)). (c) compares the 1D-PNP and 3D-LB longitudinal profiles of the density (plot
(c), upper) and the potential (plot (c), lower) for system A (d = 20, D = 60, a = 20, and A = 140), with �V = 10−1.
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the original reservoir size in the rest of the computational
studies.

The differences in the solution obtained with 1D-PNP
and 3D-LB at the pore mouths can have different causes and
further inspection is required. The neglect of charge polariza-
tion in the transverse direction at PNP level can be at the ori-
gin of such differences. However, another cause of the differ-
ences can be the sharp discontinuities in the entropic forces,
via the profile R(x), at the channel openings. It is possible that
the homogenized solution fails in capturing such strong ax-
ial modulation. To explore this possibility, in Fig. 6 we re-
port the profiles of the counter-ions density and electrostatic
potential obtained with system A and system B. The two ge-
ometries have the same extension of the reservoirs and pore
geometry, and the same surface charge. From the plot, it is
apparent that the differences between 1D-PNP and 3D-LB in
the electrostatic potential are still marked, however, the 1D-
PNP solution for system B shows a clear trend to increase the
charge build-up in the channel region. Therefore, the 1D-PNP

and 3D-LB solutions are more similar for system B than for
system A.

Quantitative predictions of the potential and density pro-
files induced by sharp changes of the wall profile R(x) is a
delicate matter since, as reported by different authors, ho-
mogenization procedures work well only for smooth vari-
ations of the wall profiles.16, 17 The one-dimensional PNP
predictions against exact three-dimensional LB solutions in
the case of free diffusion in channels of variable section
were found to work well for slow variations of the channel
profile.

Finally, the validation of the 1D-PNP effective equations
requires studying the attitude to ionic transport as compared
to the 3D-LB solution. A simplified theory that can quantita-
tively predict ionic conductance, G = I/�V , where I is the
electric current and �V is the potential difference between
the two extremes, is highly desirable. For this reason we have
computed both the charge distribution of electrolytes and the
ionic conductance at different values of the Debye length.

FIG. 6. Longitudinal profiles for system A (d = 20, D = 60, a = 20, and A = 40), system B with (d = 20, D = 60, a = 20, r = 10, and A = 40), and a smoother
version labelled B* (d = 20, D = 60, a = 20, r = 30, and A = 0). Data refer to �V = 0. Plot (a) reports the counter-ion density, plot (b) the electrostatic
potential, and plot (c) the relative difference between the 3D-LB and 1D-PNP profiles. The latter plot includes the case of a channel with homogeneous radius
(d = 20, D = 20, a = 20, and A = 40).
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FIG. 7. Normalized profile of counter-ions and conductance at different De-
bye lengths as obtained with the 1D-PNP and 3D-LB methods for system A
(d = 20, D = 60, a = 20, and A = 40) and �V = 10−2. The conductance is
normalized by the value Go = e2D/a2kBT.

The effectiveness of screening is a critical parameter in the
channel region as it modulates the amount and spatial exten-
sion of the double layer induced by the surface charge. Due to
the homogenization procedure, the radial charge polarization
is neglected by the PNP equation, therefore any contribution
stemming from electro-osmosis is absent at this level of the
theory.

Fig. 7 reports the counter-ion density profiles for the dif-
ferent systems and various Debye lengths and associated con-
ductances. As apparent, the quality of the PNP theory de-
grades with the increase of the Debye length, as expected.
This degradation is visible both inside the channel region and
in the reservoirs, where concentration polarization also de-
pends on the screening attitude. At λD = 10, the maximum
of counter-ions differs from the corresponding LB value by
�5%, and at λD = 30 the relative difference is �10%.

In terms of conductance, the PNP solution provides
fluxes larger by �30% as compared to the LB data, and for
10 ≤ λD ≤ 30, this relative difference does not depend on the
Debye length. The mechanism for charge transport at PNP
level can be ascribed to the Ohmic mechanism in this level
of description, that is, in bulk conditions the conductance
is linearly related to the number of (positive and negative)
free charge carriers. On the other hand, in the full three-
dimensional system the effect of the transverse charge po-
larization is to bind the charge carriers more strongly to the
walls and modulated by the geometrical inhomogeneities in
the longitudinal axis, thereby reducing effectively the passage
of charges across the device as compared to a simple Ohmic
mechanism. In principle, convection and the attendant electro-
osmosis phenomenon could increase the level of ionic con-
duction, thereby having a lower conductivity in the PNP so-
lution. Convection is taken into account in the LB description
but is missing in the PNP theory. From the numerical data,
it is apparent that at the chosen values of surface charge and
Debye length, convection is a minor actor. Overall, our find-
ing provides a simple scaling value of 30% to consider the
PNP prediction on a semi-quantitative basis. More involved
geometries, and different values of the surface charges and
Debye length, however, may require a more accurate compar-
ison between the 1D and the 3D solutions.

IV. CONCLUSIONS

The set of effective one-dimensional equations estab-
lished in this paper represents a convenient route to the solu-
tion of full three-dimensional problems, which often require
a demanding numerical effort. Entropic forces are not present
in a simplistic one-dimensional version PNP equations, but
they can be accounted for by a proper homogenization of the
three-dimensional equations. The end result is a non-trivial
dynamics where the modulation of surface charge and degree
of confinement can be considered in effective terms. The 1D-
PNP equation derived here is an extension of the Fick-Jacobs
dynamics for diffusive processes to charged fluids.15

The method of homogenization finds applications in the
analysis of charge transport in confined geometries and is a
viable and efficient substitute of more detailed descriptions.
It can be particularly useful in the study of transport of bio-
logical ion channels. In spite of the approximations involved,
the method turns out to be useful because it offers a valid op-
portunity to deduce the main physical characteristics of ion
transport in channels in a simple way.

The 1D-PNP description, however, can be used in a
semi-quantitative way because as compared to the 3D solu-
tion it provides smaller counter-ion accumulations and co-ion
depletion in the charged regions, by ∼10%. This mismatch in-
creases with the degree of confinement and the Debye length.
In terms of ionic conductance, the mismatch between 1D and
3D solutions can be as large as 30%, so that the PNP solution
can be used for qualitative purposes only.

Regarding the approximation employed throughout the
paper of neglecting electro-osmosis, as argued by Yossifon
for overlapping double layers, as it occurs in narrow pores
of nanometric size and not too concentrated solutions, the
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contribution of electro-osmosis to the ion flux is subdominant
with respect to the electrodiffusion contributions.33

In conclusion, the homogenization procedure works well
when the transversal density profile varies slowly, so that we
can balance a boundary term with the average of the function
over the section. The agreement between 3D-LB and 1D-PNP
solutions improves for a channel entrance varying smoothly
along the longitudinal direction. The reported phenomenol-
ogy is particularly sensitive to the geometry of the pore mouth
where the electric field generates an inhomogeneous charge
distribution and polarization along the pore which can be rel-
atively long ranged along the channel axis. Important conse-
quences can arise in different contexts, such as in the study of
supercapacitors as widely studied in recent years.34 Although
in super capacitors the porous electrodes operate at constant
potential,35 extending the proposed formalism to account for
different boundary conditions does not constitute any funda-
mental limitation.
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