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Fluid Mixtures in Narrow Cylindrical Pores: 
Computer Simulation and Theory 

G. S. Heffelfinger, 2 Z. Tan, 2 K. E. Gubbins, 2 U.  Marini Bettolo Marconi ,  2'3 
and F. van Swol 2'4 

We discuss the simulation results of phase separation of a binary Lennard- 
Jones mixture in a cylindrical pore induced by a temperature quench. The 
liquid-vapor phase separation proceeds in two stages involving different time 
scales. First, following the growth of density fluctuations, mechanical 
equilibrium is rapidly established when the system splits into a dense and a 
dilute phase. Material equilibrium, however, is reached via the mutual diffusion 
of the two components and this proceeds on an appreciably longer time scale. 
We briefly address the rounding of a first-order phase transition in a cylinder. In 
particular, we explore the possibility of multiple domains of gas and liquid when 
the aspect ratio is very large. Finally, we introduce an extension of Tarazona's 
nonlocal density function to binary mixtures of arbitrary size. The new theory is 
successfully tested against simulations of an additive hard-sphere mixture 
against a hard wall. 
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1. I N T R O D U C T I O N  

In  recen t  years  a n u m b e r  of  pape r s  h a v e  a p p e a r e d  tha t  discuss  fluid 

b e h a v i o r  in n a r r o w  pores .  These  s tudies  are  of  g rea t  p rac t i ca l  in te res t  for  

e n h a n c e d  oil  r ecovery ,  catalysis ,  and  gas s e p a r a t i o n  and  gas s torage.  
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A variety of specific topics has been addressed, including transport 
phenomena (e.g., Refs. 1 and 2), capillary condensation (e.g., Refs. 3 and 
4), layering transitions [-5], and hysteresis [6]. Mean field density 
functional theory (DFT) combined with simulation has arguably been the 
most successful approach in elucidating the complex phase behavior of 
fluids in pores. Naturally, the initial emphasis has been on providing a 
microscopic picture for the pure fluids, and as a result we now have a 
successful nonlocal DFT that gives a realistic description of both phase 
diagrams and fluid structure and is also in close agreement with the 
simulations [-4]. More recently, we have reported results for an example of 
a simple binary mixture [7]. In particular, we compared simulation results 
for capillary condensation with the predictions of local DFT, focusing on 
phase diagrams and density profiles. The latter mixture simulations simply 
located the liquid-vapor transition by setting up two-phase coexistence 
inside the pore. A nonlocal DFT for the special case of an equal-sized 
binary mixture has also been presented by two of us [-8]. A comparision of 
some preliminary results of this version with a direct simulation of the 
same model appeared in Ref. 7. In this paper we describe how a two-phase 
system for a binary mixture can be produced spontaneously by performing 
a temperature quench during a molecular dynamics (MD) simulation. We 
pay special attention to the development of mechanical and material 
equilibrium during the quench process and we discuss the consequences of 
cylindrical geometry on phase separation. In addition, we introduce a 
generalization of Tarazona's [9] nonlocal DFT to mixtures of arbitrary 
size ratio and present some preliminary results for a mixture of hard 
spheres [10]. The theoretical predictions are tested against Monte Carlo 
(MC) simulations for a binary hard-sphere mixture of size ratio 1.5 against 
a hard wall. 

2. SIMULATION METHODS 

The MD method used in this paper is well documented in a number of 
previous publications dealing with fluid behavior in narrow pores 
[4, 7, 11]. Briefly, our method employs periodic boundary conditions in 
the z direction (along the pore axis) and temperature scaling with the 
equations of motion solved via a modification of Verlet's leap frog 
algorithm [12]. The fluid-fluid interactions between a particle of species i 
and a particle of species j are defined via the cut and shifted Lennard- 
Jones (L J) potential, 

L J  L J  r c c ~'~,~. (r)  - ~,j (~ ) ,  ~ < ~ (1) 
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where ~LJ is the full LJ potential, 

7 )  - (2) 

with r the interparticle distance, 0.ij the point at which the potential is zero, 
and e o the well depth. The cutoff distance used is r} = 2.50.a; i, j = 1, 2. The 
cross parameters for the mixture are calculated according to the Lorentz- 
Berthelot mixing rules, 

0.ij=(0.i+0.j)/2, gij=X~i~; i , j =  1,2, 3 (3) 

These LJ parameters were taken to represent an argon (1)-krypton (2) 
mixture in a carbon dioxide (3) pore [7, 13], 

0.2/0.2 = 1.066, 0"3/0" 1 = 1.1880 
(4) 

e:/el = 1.3614, e3/~1 = 1.6307 

The fluid in the pore interacts with the solid via a one-body external field, 
which was taken as an average over the uniformly distributed molecules in 
the solid of density p3 a3 = 0.7546. Details of this calculation can be found 
elsewhere [7, 13]. No cutoff was applied to the wall-fluid interactions. 

By dividing the pore into bins, both radially and axially, of size 0.1al 
(radial) and 0.120.1 (axial) and averaging the number of particles of com- 
ponent i in each bin, the full density profile pt(r, z) was obtained. By 
radially averaging p~(r, z) one obtains the axial density profile [7], p~(z), 
which allows the detection of a phase separation during the quench 
process. In a similar fashion, the chemical potential #i(r, z) was determined 
by inserting test particles of species i uniformly and randomly in the cylin- 
der and calculating /~, in the bins via the potential distribution theorem 
[8, 9]. The temperature quech was performed by instantaneously dropping 
the temperature from a supercritical value of kT/el = 1.35 to a subcritical 
value of kT/el = 0.70, where k denotes Boltzmann's constant. 

To test the density functional method for arbitrary binary mixtures, 
which we describe in the next section, we have performed NVT-MC 
simulations for a binary mixture of additive hard spheres against a hard 
wall. A starting configuration for these simulations was obtained by 
arranging the spheres of both components on FCC lattice sites and choos- 
ing the density sufficiently low such that no overlaps occurred. To arrive at 
a dense fluid state we simply specified a high pressure p and ran a 
NpT-MC simulation for a box with periodic boundary conditions in all 
directions [ 16 ]. The periodic boundary conditions in the z direction were sub- 
sequently replaced by two hard walls and the system was then equilibrated 



1054 Heffelfinger, Tan, Gubbins, Marini Bettolo Marconi, and van Swol 

for at least 400,000 moves. To visualize the way in which the hard wall 
interacts with each type of sphere, one could imagine the wall to act on the 
edge of a sphere rather than on the center. Thus, if the wall is located at 
z = 0, then the center of a sphere is not allowed to have a z coordinate less 
than d#2. Averages for the density profiles were accumulated over 2.0 x 10 6 

configurations using a bin width of 0.02d~, where d~ denotes the diameter 
of the smaller sphere. 

3. NONLOCAL DENSITY FUNCTIONAL THEORY 

In this section we briefly outline a generalization of Tarazona's non- 
local density functional theory to a binary mixture of spheres with an 
arbitrary size ratio. The special binary mixture of equal-sized spherical 
molecules, for which the free energy functional of the reference fluid is just 
that of a pure hard-sphere fluid, is discussed in two other publications 
[7, 8]. For clarity, we restrict outselves to that part of the free energy 
functional that is relevant to a binary mixture of different-sized spherical 
molecules and hence we do not include the attractive contributions to the 
grand potential functional. The latter contributions can be found elsewhere 
(e.g., Refs. 7 and 13). The grand potential functional is given by 

2 
~Q[-Pl, P2] = F [ p l ,  P2] - S f drpi(r)[-#i-  Vi(r)] (5) 

i=l 

where pi = p~(r) and #i are the number density at r and chemical potential 
of species i, respectively. V~(r) is a one-body external field acting on a par- 
ticle of species i located at r. F[pl, P2] is the free energy functional of a 
nonuniform hard-sphere mixture, which we calculate in the smoothed den- 
sity approximation (SDA) [9, 10]. Thus, we split F[pl, P2] into an ideal 
gas and a configurational contribution. The ideal-gas contribution is given 
exactly in terms of the local densities and the configurational (or excess) 
contribution is written as a function of the smoothed densities #i. The 
latter is approximated by the free energy of a uniform hard-sphere mixture 
at the smoothed densities tSi. Thus we have 

2 
Fia[pl, /92] =kT Y' f drpi(r)[ln(piA~)- 1] (6) 

i=1 

r~x[P,, P=] = L f drpi(r) #;7~(#,, #=; r) (7) 
i = I  

~?X(#a,f:)=#=_kTln(p,A3 ) P(#,,'#2) FkT, i = 1 , 2  (8) 
#1 + #2 
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Here Ai and ~b~ x denote the de Broglie wavelength and the configurational 
free energy per particle of species i, respectively. The smoothed density, t~i, 
is calculated as a weighted average over the density profile, 

f ! t ,  - t r = dr Wi(r, r ,  Pl, P2) pi(r ), i =  1, 2 (9) 

The density-dependent normalized weighting functions W~ for species i are 
expanded in the smoothed densities Pl and fi2. For the pure fluid Tarazona 
has taken this expansion to second order in the density. However, for 
convenience we truncate the equivalent expansion for the mixture at first 
order, 

2 

w e ( I r - r ' l ) : w m ( l r - r ' l ) +  ~ tSj(r) w~( l r - r ' l ) ,  i : 1 , 2  (10) 
j = l  

The coefficients w~ satisfy the normalization conditions 

fd r w ~ ( I r - r ' l ) = 6 j o ,  for i = 1 , 2  and j=O,  1, 2 (11) 

These coefficients were determined essentially by comparing the second 
functional derivative of F ex with respect to the density Pi term by term with 
the density expansion of the direct correlation function for the uniform 
hard-sphere mixture, as obtained from the Percus-Yevick (PY) 
approximation. The PY-compressibility equation of state was used to 
calculate the excess free energies. A full discussion of the details of this 
calculation will be published elsewhere [10]. Finally, we note that if we 
choose Wi(r)=6(r) ,  we recover the familiar local density approximation 
(see, e.g., Ref. 13). 

4. RESULTS AND DISCUSSION 

4.1. Temperature Quench 

Previously, we have presented a temperature quench for a pure fluid 
[ 11 ]. In particular, we have described the spontaneous phase separation of 
a fluid initially at a supercritieal temperature when quenched into the con- 
fined fluid's two-phase region. This phase separation is manifested by gas- 
like and liquid-like regions separated by a hemispherical meniscus. Here we 
discuss the results of a temperature quench for a binary mixture. This fluid 
mixture was composed of N = 780 molecules, half of which were argon, and 

840/9/6-11 
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the other half krypton. Initially the system was equilibrated for well over 
50,000 time steps EAt = 0.005 (ma~/el) ~/2] at a supercritical temperature of 
kT/el = 1.35. Subsequently we instantaneously fixed the temperature at 
kT/e~ = 0.70, following the system in time for 80,000 time steps. A movie of 
this process was produced by storing every 15th configuration and 
graphically reproducing it on a Silicon Graphics IRIS work station. We 
discuss these results aided primarily by axial density profiles. In Fig. 1 we 
show axial density profiles at different times during the quench process. 
Figure la contains the profile for the supercritical fluid, at reduced time, 
t* =- t(e~/ma~)m =O, indicating uniform density and mole fraction along 
the pore axis. In Fig. lb we show the axial density profile for the quenched 
fluid, at a temperature kT/el =0.70 and time t * =  100. One can see from 
this figure that the density is now clearly no longer uniform. Rather, a 
liquid phase and a gas phase which are in mechanical equilibrium coexist 
in the pore. Up to this point, the fluid mixture behavior is similar to that of 
the pure fluid. Note that the density profiles of the two components are 
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Fig. 1. Axial density profiles, pi(z), for a Lennard-Jones binary mixture 
modeled on argon (1)-krypton (2) in a cylindrical pore of carbon dioxide (3) of 
radius R = 5cq. The supercritical system, kT/e~ = 1.35 (a) was quenched at t* = 
t(eJma~) m = 0 to a temperature kT/el = 0.70, producing the profile shown in b. 
This profile is an average over t* = 50 to t* = 100. The final equilibrium profile 
(c) is an average from t* = 250 to t* = 550. Argon is represented by a solid line, 
while krypton is represented by a dotted line. 
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similar and thus the mole fraction profile remains similar to that at t * =  0, 
i.e., it is essentially uniform along the pore axis. With further equilibration, 
material equilibrium is established as shown in Fig. lc. During the tem- 
perature quench mechanical equilibrium is rapidly established. Immediately 
after the change in temperature the system finds itself in a mechanically 
unstable state. Therefore small density fluctuations will grow unbounded 
driving the initial stages of phase separation. In contrast, material 
equilibrium occurs on a much slower time scale. Its relaxation time is 
governed by the mutual diffusion process. That is, both components must 
diffuse through the fluid to establish a gas phase which is richer in the more 
volatile component, argon. One can also see from this axial density profile 
that argon is positively adsorbed on the liquid-vapor interface, as expected 
for the more volatile component. We find argon mole fractions of Yl = 0.87 
and xl =0.46 in the gas and liquid regions, respectively. The chemical 
potentials /~i can be used in an additional grand canonical Monte Carlo 
simulation to determine the composition and pressure of the reservoir with 
which the pore is in equilibrium. Thus, for the composition of the gas 
mixture in the resevoir we find for the mole fraction of argon xl = 0.77. We 
refer the reader to an earlier publication E7] for phase diagrams and a 
detailed comparison with both the local and the nonlocal mean field DFT 
calculations. 

It can be argued that, strictly speaking, there is no truly sharp phase 
transition in cylindrical geometry. Rather, as Privman and Fisher [-18] 
have pointed out, the phase transition is expected to be rounded on a scale 
that is set by the cross-sectional area of the cylinder. Since the interfacial 
contribution is finite in cylindrical geometry, Privman and Fisher [18] 
argued that in a canonical ensemble multiple domains of liquid and vapor 
will coexist rather than single domains of each phase. In the temperature 
quench discussed above (see Fig. 1) we do not observe multiple domains 
due to the relatively low length-to-diameter ratio. However, one might 
expect to see multiple domains for much larger ratios. To investigate this 
possibility, we have performed a quench from a supercritical temperature 
kT/el = 1.35 to kT/~ = 0.60 for a pure fluid confined in a pore of radius 
R/a~ = 2.5 and length L/a~ = 720. The axial density profile for this quench 
is shown in Fig. 2. After an equilibration of 100,000 At and accumulating 
averages for another 10,000 dt, we find that the system shows I0 different 
regions of coexisting liquid and vapor. Note that the smallest region of 
liquid, which is centered around z/a~ = 145, still has a thickness of ~8a l .  
Similarly, the smallest region of gas (centered around z/a~ = 704), is ~ 18~1 
thick. Both these thicknesses are significantly larger than the interracial 
thickness itself, which is ~ 3a~. We stress, however, that one should still be 
cautious in interpreting these results, due to the very long equilibration 
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Fig. 2. Axial density profiles p(z) for a pure Lennard-Jones fluid in 
a cylindrical pore of radius R = 2.5~i and length L/al = 720. After a 
temperature quench from a supercritical temperature, kT/~l = 1.35, to 
a temperature of kT/e~ = 0.60, the fluid phase separated, establishing 
multiple regions of liquid gas coexistence. 

times that might be necessary to reach a state with possibly a smaller num- 
ber of domains. One way to explore this question might be to approach the 
problem from the opposite direction, using an initial configuration of a 
very long pore with only two single domains present. In addition, it would 
be interesting to repeat the study for a slit-like pore for which one expects 
only single domains due to the quasi two-dimensional geometry. Coexisting 
phases will also be produced when a pore is compressed, starting from a 
single gas-phase state. Phase separation will then be delayed, i.e., showing 
absorption hysteresis, and separation eventually takes place at the end of 
the pore-filling branch when the adsorbed fluid layer becomes unstable 
with respect to the formation of a biconcave lens [-6]. Again, for a very 
long pore like the one studied here, we would expect to observe the 
formation of multiple lenses. 

4.2. Hard Spheres Against a Hard Wall  

To test the results of the D F T  for arbitrary binary mixtures, we perfor- 
med MC simulations for mixtures of hard spheres of different size ratios 
dz/d 1. In Fig. 3 we present typical results for a mixture of size ratio of 1.5. 
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Fig. 3. Density profiles p~(z) for a binary hard-sphere mixture of size ratio 
d2/dl= 1.5 against a hard wall. The mole fraction of species 1 is 
approximately 0.25. The solid lines represent the density functional theory 
prediction, while the dotted lines correspond to the MC results. The 
simulation profile has been averaged over both walls. 

In the calculations we used aq total of N = 216 spheres, 54 of which belong 
to species 1. The distance between the two hard walls was L/d1 = 14, which 
is sufficiently far apart for the profile to approximate a fluid in the presence 
of a single wall. That is, the density profiles pi(z) both show a non- 
oscillatory region in the center of the box, indicating that there is no 
significant interference between the walls. This allows us to average the 
profiles over both walls. The bulk density of each species was read from the 
profile, and these were used to obtain the bulk mole fraction (xl ~0.25) 
and, hence, the chemical potentials/t  i via the PY-compressibility equation 
of state. This information then served as input for the density functional 
theory [cf. Eq. (5)]. We thus force the density profiles for the theory and 
simulations to be the same well away from the wall. The prediction from 
the theory is shown as solid lines. The overall agreement is satisfying. The 
theory closely reproduces the oscillations of both species, and the level of 
agreement is similar to that found by Tarazona [-9] for the pure system. 
However, since we truncate the weighting function expansion at first order, 
we must expect the agreement to be less satisfactory at higher densities 
and/or larger size ratios. A more detailed comparison and a full discussion 
of the DFT will be published shortly El0]. 
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