
FLUCTUATION-DISSIPATION RELATIONS: A MACROSCOPIC WINDOW ON

THE MICROSCOPIC REALM

The passage of an electric current under the action of a potential difference between the

ends of a metallic wire is a familiar phenomenon of our daily life. Such an electric current

is the response to the potential difference of electrons in the metal and, according to Ohm’s

law, is proportional to the potential difference, with a proportionality constant given by the

inverse of the resistance of the wire. An interesting question, which is the central issue of

this paper, is: can we compute the resistance without applying an electric potential? In

other words: can we measure the response of the electrons in the wire by simply knowing

their behavior in the absence of electric fields? More generally, can we understand the

nonequilibrium behavior of a many particle system just by observing its equilibrium properties

or, viceversa, can we infer its equilibrium properties from nonequilibrium experiments? (see

Box 1 and Fig. 1).

This is the basic question of the Fluctuation-Dissipation (or Fluctuation-Response) prob-

lem, which plays a fundamental role, both from the conceptual and applied point of view,

in statistical physics, the discipline which aims at deriving the macroscopic behavior of a

system from its microscopic properties. The Fluctuation-Dissipation Relations (FDR) orig-

inated more than a century ago from Einstein’s investigation of the Brownian Motion, and

then have been investigated by Onsager, during the 30’s of the last century, and by Kubo,

in the 50’s, with a renewed interest in the last decades (Morriss, Evans, Cohen, Gallavotti,

Jarzynski and others, in the 90’s). In the following we will touch these recent progresses, with

a discussion on some interesting modern applications, e.g. for the physics of the proteins

(studied by Bustamante and coworkers in 2005).

Einstein showed the possibility of obtaining the number of molecules contained in a mole

of fluid, known as Avogadro’s number NA, by observing with a microscope the motion of

small grains suspended in water (see Box 2). The experimental test of the theory was realized

with success in 1909 by Perrin and led to the conclusion that molecules exist and cause

the diffusive motion of grains. S. Arrhenius summarizing the work of Einstein and Perrin

wrote: after this, it does not seem possible to doubt that the molecular theory entertained by

the philosophers of antiquity, Leucippus and Democritos, has attained the truth at least in

essentials.
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FIG. 1: An ideal experiment shows the essence of the Fluctuation-Dissipation relation: a stiff

spring (case I) at rest (a), under the action of a small force F responds with an elongation ∆l

(b). Spontaneous fluctuations of the position as function of time are shown in (c). In II the same

with a loose spring. Since ∆ℓ is larger the spontaneous fluctuations are bigger. In a laboratory it

is possible to perform a real experiment which shows the features above illustrated: using a laser

beam one amplifies the rotational oscillations of a small mirror mounted on a torque pendulum

which experiences thermal fluctuations due to interaction with the air molecules.

To obtain this crucial result, Einstein considered the two effects produced by fluid’s

molecules on a small but macroscopic (i.e. much larger than the molecules) object:

1. fluctuation: because of the continuous kicking of fluid’s molecules, the velocity of

the suspended object irregularly grows and decreases, displaying unpredictable fluctu-

ations;

2. relaxation, also called dissipation or response: if an external force is applied to the

object for a very small time, its velocity suddenly changes and then decays (“relaxes”)
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FIG. 2: Schematic behavior of the relaxation of perturbations (left) and of spontaneous fluctuations

(right) of the velocity of the grain in the BM. Different colors indicates different realizations of the

same experiment. The black curves are averages over many of these realizations: in the Gaussian

limit, the mean relaxation coincides with the correlation function (equivalent to the average of the

fluctuations starting from a given level).

toward zero (or to the mean fluid’s velocity).

The fluctations of the (very small) instantaneous velocity of the suspended object may be

depicted as in the right frame of Fig. 2, where it is assumed that the velocity rises up to a fixed

threshold, in a time t0. A quantitative description of the fluctuation and relaxation processes

is given by the so-called “autocorrelation” functions.[1] The typical behavior following a

spontaneous fluctuation is its decay, represented by the descending relaxation processes in

Fig. 2. The chosen threshold may also be artificially produced, by initially perturbing the

state of the system, in such a way that the initial velocity corresponds to the threshold value.

Each relaxation process differs from case to case, as in the left frame of Fig. 2. However,

the fundamental meaning of FDR is that the relaxation towards equilibrium of an external

perturbation is on average the same as the decay of a spontaneous fluctuation.

More in general, the FDR expresses the relation between the fluctuations of an unper-

turbed system and an appropriate response function. This is a formal answer to the question

about the electric current at the beginning of the article: it is possible to compute the resis-

tance of the wire, which is a response to the applied potential difference, from the properties

of the wire in absence of the potential. In Box 3 another classical example is discussed.

During the period following Einstein’s work, the FDR was verified in a number of exper-
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iments and models leading to the conclusion that the erratic motion of small constituents

of matter (atoms, molecules, electrons, etc.) results in a systematic dissipative effect and a

much smaller fluctuating force. In 1931 L.Onsager proposed the universality of this relation,

extending it to all systems near equilibrium (see Box 1). In particular, Onsager supposed

that the averages of the physical quantities “respond” to external perturbations decaying

from near-equilibrium states following correlation functions of the unperturbed system. In

other words, the FDR states that the behaviour of a system out of, but close to, equilib-

rium may be understood in terms of averages of physical quantities computed in equilibrium

states. Twenty years later, R. Kubo demonstrated the general validity of the FDR for sys-

tems near equilibrium, obtaining also very useful formula to compute transport coefficients.

These coefficients express the response of more complicate quantities to external perturba-

tions: for instance, thermal conductivity is the response to a temperature difference, shear

viscosity is the response to an applied shear force. The process of unveiling the universality

of the FDR took more or less 50 years and the resulting “linear response theory” is, even

today, one of the most effective tools in non-equilibrium statistical physics. The relevance of

FDT is due to its twofold nature: it is a fundamental result on a very general and abstract

level, and is also a handy practical tool to make predictions.

Nowadays, the advancement of computational power and experimental techniques opens

the possibility of investigating matter at scales smaller than micron, close to the nanometer.

New classes of systems whose fluctuations play major roles have been met, and have stimu-

lated the researchers to generalize the original FDT to far from equilibrium states (see box

1). This has led to the vast territory of the so-called Fluctuation Relations first discovered in

1993 by Evans, Cohen and Morris and two years later formalized by Gallavotti and Cohen.

The Fluctuation Relations concern a quantity called “entropy production” (representing

the dissipation), and for perturbations which do not need to be small and states not neces-

sarily close to equilibrium. Later, Fluctuation Relations for different quantities have been

found, most of them concerning the fluctuations of heat exchanged by the system of interest

with some external device. These relations have been tested and verified in experiments

concerning “small systems”, i.e. systems containing few thousand particles, such as macro-

molecules of biological interest. At such small scales the statistical nature of the second

principle of thermodynamics, i.e. for short times a decrease of entropy seems to be realized.

While further tests are necessary and under way, the Fluctuation Relations have widened
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FIG. 3: A single biomolecule is stretched, by means of a moving laser trap pulling one end of the

chain, while the other end is kept fixed by a micropipette; the increase of the distance L brings the

molecule from a folded state A to an unfolded state B. The experiment is repeated a large number

of times and the work done in each realization by the tweezer is recorded and analyzed through the

Jarzynski’s equality: this allows to obtain a precise estimate of the free energy difference ∆FAB .

our understanding of the physics of matter.

For instance, the relation obtained in 1997 by C. Jarzynski, known as Jarzynski’s equality

(JE), has proved useful in experiments on biomolecules. It allows to infer the free energy

difference ∆FAB, between two equilibrium states A and B of a given system, from the

collection of different values of the works done on the system, when the transformation from

A to B is repeatedly imposed. The values of the free energy characterize the equilibrium

states of a given system; in particular, lower values of F imply more stable states. As the

free energy is a property of equilibrium thermodynamic states, the JE obtains information

about equilibrium states from nonequilibrium experiments, in contrast with the FDT, which

obtains information on nonequilibrium phenomena from equilibrium experiments.

For this reason, the JE has found applications in the study of protein folding (see Fig. 3).

The structure of a protein, which determines its biological function (i.e. whether the protein

“works” or not) may change when the environment changes. The stability of the “good”

5



structure depends on the difference of free energies with other competing structures. Scien-

tists have used extremely small “tweezers”, obtained by interweaving laser rays, in order to

manipulate an end of the protein (which is similar to a very long and entangled chain), while

the other end is fixed to a substrate. The tweezers pull the protein from its original (“native”)

structure, stretching it out to a different non-native one. The same experiment is repeated

a large number of times, and each time the different energy (the so-called “non-equilibrium

works”) required by the tweezers is recorded. A simple analysis of the histogram of these

works, through the JE, is sufficient to determine ∆FAB, an important result for biology and

for non-equilibrium statistical physics.

The far from equilibrium generalizations of the FDT are valid either in a non-equilibrium

stationary state (for example turbulent fluids, or a strongly shaken box containing sand), or

in slowly relaxing systems (gels, pastes, colloidal melts, glassy materials, even real glasses),

which are not fully understood states of matter. In these situations, there is no universally

accepted microscopic definition of temperature. The efforts to generalize the FDT to these

systems has led to the definition of “dynamical temperatures”, whose meaning is matter of

debate. It has been recently understood that correlations between velocities of molecules,

which are negligible in equilibrium systems, may become significant far from equilibrium

and may lead to a breakdown of the usual FDT. This may be be exploited to produce a new

kind of thermometer, one based on a fluctuation-response measurement.

Assuming that the FDT holds beyond its original framework, i.e. the physics of Hamil-

tonian systems (i.e. evolving according to the Newton laws of the dynamics) with many

degrees of freedom (for instance, a gas or a liquid appear to have many degrees of freedom

from the microscopic point of view, because of their large number of molecules), one can

conclude that the behavior of the response to external perturbations provides the same type

of information contained in the spontaneous (internal) fluctuations. At present, there is no

rigorous extension of FDT to generic chaotic systems (e.g. the celebrated Lorenz model

which is a simplified but non trivial description of atmospheric convection). But in practice

such a problem can be neglected in the vast majority of cases of physical interest, in which

some noise is always present. Leith and Kraichnan, about 35 years ago, suggested that the

FDT could be used to understand the climate, and the effects produced on it by abrupt

changes of parameters, like the concentration of CO2 in the atmosphere which could result,

for instance, from anthropic or volcanic activity. This would require an analysis of the data
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concerning the past. However, the climate system has features which make this use of the

FDT far from trivial:

• a) many different characteristic times (from few seconds to 103 years) are involved in

climatic systems;

• b) the laws ruling the time evolution of the system are not well known;

The above issues do not imply conceptual limitations, since appropriate generalizations

of FDT to finite size perturbations have been derived, but pose technical challenges due

to the extremely complex dynamics of the systems. For instance, the characteristic decay

time of a certain variable depends on the amplitude of the initial perturbation acting on

it. Small perturbations may decay rapidly, while large perturbations may decay much more

slowly. Such a behavior is brought about by the presence of many degrees of freedom with

very different characteristic times, for instance the typical times of small scale turbulence

and the deep oceanic currents are of the order of seconds and of millennia respectively.

However, the main idea underlying the FDT, that external perturbations are equivalent to

spontaneous fluctuations, leads to a severe difficulty in the case of climate: the understanding

of the effects of large perturbations requires knowledge of rare fluctuations, whose statistics

are necessarily affected by large uncertainties.

BOX 1 NON EQUILIBRIUM SYSTEMS

A macroscopic system is in mechanical equilibrium when there is a balance among the

forces acting on it. Chemical reactions, and transport of matter may alter the state of a

system in mechanical equilibrium. If this is not the case, the system is also in chemical

equilibrium. Furthermore, the system is in thermal equilibrium if its state does not change

when it is removed from the environment and is surrounded by adiabatic walls. The system

is said to be in thermodynamic equilibrium when it is in mechanical, chemical and thermal

equilibrium. Under these conditions, all parts of the system have the same temperature,

which is also the temperature of the environment. Therefore, the state can be characterized

by a few global quantities, which are constant in time.

Lack of mechanical equilibrium leads to acceleration, turbulence, waves etc. Lack of chem-

ical equilibrium leads to variations in the chemical composition of the system or transport
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of matter. Lack of thermal equilibrium leads to heat flows.

If the system is not in thermodynamic equilibrium and it does not interact with the

external environment, its state evolves till equilibrium is estabilished. However, the coupling

of the system with the outer environment may prevent this relaxation to equilibrium; then

energy is dissipated and nonequilibrium steady states may be realized.

A flask of hot coffee for few hours can be considered an equilibrium system, while the

electric current in a metallic wire is a non-equilibrium system: in fact it is possible only in

presence of a potential difference between the ends of the wire.

The coupling between a body and its environment often allows the formation of patterns

and of ordered structures. This is the most common situation in nature. In particular, living

organisms exist precisely because of the continuous flow of energy between them and their

environment. Needless to say, life is the most striking nonequilibrium phenomenon.

BOX 2 BROWNIAN MOTION

In 1827 the botanist R. Brown, observing small (but macroscopic) grains suspended in

water, through a microscope, noticed that each grain was performing a jiggling motion, now

known as Brownian motion (BM). For decades the importance of BM was not appreciated

until it was independently understood by Einstein and Smoluchowski, at the beginnning of

the 20th century.

A few years later, Langevin proposed a description in terms of a stochastic differential

equation, describing the total force acting on the pollen grains as the sum of a deterministic

friction, due to the liquid seen as a continuum, and a random force resulting from the

interactions with the liquid molecules. Both Einstein and Langevin assumed that a) the

frictional force acting on such a small object is given by the Stokes law describing the

friction force on a macroscopic body through a liquid and b) the equipartition of kinetic

energy holds, i.e. the average kinetic energy of the grain coincides with the average kinetic

energy of a molecule of the fluid. Using these two simple hypotheses they predicted that a

Brownian particle diffuses, i.e. its displacement x(t) behaves in such an irregular way, that

at long times is expressed by

〈|x(t)|2〉 ≃ 6Dt. (1)

The diffusion coefficient D, which is a property of the system in the absence of any per-
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turbation, was related to the mobility µ, which measures how the velocity of the particle

responds to a small dragging force:

µ =
D

kBT
(2)

where kB, is Boltzmann’s constant. Such a formula represents the first example of a FDT

relation and illustrates the central role of fluctuations in statistical physics. Finally, ex-

pressing kB in terms of the universal gas constant, R, and Avogadro’s number NA = R/kB,

and employing Stokes’ relation, between the mobility, the viscosity (η) of the liquid and

the radius of the Brownian particle (a), one finally obtains a prediction for the diffusion

coefficient

D =
RT

6πNAηa
. (3)

Although the analytical aspects of Einstein’s and Langevin’s works are quite simple, one

cannot overstate the profound subtlety of the assumption on which the theory is based,

i.e. that Stokes’ law (which has a macroscopic nature) holds together with the statistical

equilibrium of the Brownian particle with the molecules of the liquid, notwithstanding the

enormous mass difference between them. The importance of Eq. (3) lies in the fact that

it provides a recipe for the determination of Avogadro’s number, a microscopic quantity,

from experimentally accessible macroscopic quantities (D, T , R and so on), thus providing

a unambiguous link between the microscopic and macroscopic levels of description. Indeed,

the Brownian particle, which is large enough to be visible at the microscope (it has a

diameter around 1µm), is thus turned into a kind of “magnifying glass” which unveils the

atomic structure of matter.

BOX 3 FLUCTUATION-DISSIPATION RELATIONS AND ATOMS

The energy fluctuations in an N particle system are connected to the specific heat cv,

i.e. the heat quantity (per particle) necessary to increase the temperature of one centigrade

degree:

〈(E − 〈E〉)2〉 = kBT 2Ncv, (4)

since cv = 1

N

∂

∂T
〈E〉, the specific heat, is a particular response function, i.e. it specifies how

the mean energy changes when the temperature varies. In formula (4), 〈 〉 indicates the

statistical average and T is the absolute temperature. Einstein highlighted the conceptual
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relevance of Eq. (4) noting that it “would yield an exact determination of the universal

constant (the Avogadro number NA), if it were possible to determine the square of the energy

fluctuations of the system”. An important feature of the FDR, manifested by eq. (4), is

its role as a “magnifying glass” for fluctuations. Indeed, in spite of their very small values

in standard macroscopic systems, fluctuations can be indirectly measured, via FDR, by

applying a perturbation to the systems of interest.
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[1] The autocorrelation of a given quantity X is the average of the product X(t)X(0), the value

of the quantity at the initial time by its value at any other time t. The average is computed

over all possible initial states. The irreversible evolution of a given system towards a steady

state, independent of the initial state, is characterized by the convergence to 〈X〉2 of the

autocorrelation functions.
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