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Groove instability in cellular solidification
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We simulate in two dimensions the cellular solidification of a binary alloy, to focus on the emergence of a
secondary instability consisting in the periodic detachment of liquid droplets from the bottom of the intercel-
lular liquid grooves. This phenomenon, observed in the solidification of thin samples, was previously inter-
preted in terms of an instability of the liquid-jet type; as it should occur only in three-dimensional systems, it
was argued that even for thin samples the grooves have a tubelike structure. Recently the droplets detachment
has been evidenced also in a two-dimensional simulation, so that a different interpretation should be given. We
show that the phenomenon arises as the result of diffusional and capillary effects driven by the strong curvature
of the solid—liquid interface. The dependence of the emission frequency and the droplets radius on the growth
velocity is also studied.
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Directional solidification experiments conducted on thindirection at constant velocity, and the solidification front
samples of binary alloys, in the cellular growth regime, dis-follows the advancing isotherms. With this arrangement we
played the emergence of a secondary instability consisting ineglect the latent heat released at the growing interface. At
the periodic detachment of liquid droplets at the bottom oflarge growth rates this approximation ceases to be satisfac-
the intercellular liquid groovegl]. These droplets, already tory, however we believe that the relevant features of the
reported in the literature by Sato and Ohira for an Al—cysolidification process are still preserved. The problem that
alloy [2], are strongly enriched in solute and survive for Will be treated is scaling lengths to the reference length
some time as they are advected back into the solid. Th& 2-1X10"* cm and time to£%/D;, D, being the solute
droplets diameterD was found in the range O<ID/\ diffusivity in the liquid phase. Allowing for anisotropy of the

<0.2, \ being the spacing between the cells tips, and theurface tension, the field equations become
spatial periodicitylL, is of the order ofA/2. The interpreta- i A B 2 ,
tion of the phenomenon in terms of a Rayleigh-type instabil- ?t= (1~ ¢)m+cm KVI7*(0)Ve1+[n(6)n' (6)dyly

ity led Brattkus[3] to conclude that even for thin samples the ~[7(0) 7' (0) byl +(1—c)QANT, ) +cQ(T, )},
grooves have a three-dimensional structure; on the other

side, numerical studies conducted in two dimensipghs6] (1)
showed the formation of a bulge at the bottom of the B A B

grooves, but the pinch-off which should be responsible of the ™ ~Vic(1-OMPHYAS,T)—HY (S TV
droplets detachment had not been observed. Recently the +c(1—c)N ) (p,T)VT—N\(¢)Vc}, )
droplets formation has been evidenced also in a two-

dimensional simulatiorj7], opening a new perspective for T,=—VG. &)

the understanding of this instability.

In the present study we use the phase-field mgglell 1]
to simulate the directional solidification of a binary alloy.
The results will show that the emission of solute-enriche
liquid droplets, observed in two dimensions, is due to diffu-
sional and capillary effects inside the liquid grooves. We
found that at fixed values of the thermal gradient the drops v T_TAB
radius decreases with increasing the emission frequency, in - HAB(¢ T)=WABgG'($)—LAB-"p'(¢) —==zp-, (4)
agreement with the experimental d4td; the emission fre- R L
guency is in turn an increasing function of the pulling speed.
The system is an ideal binary solution with constituefits

In the above equationg is an order parameter assuming
he valuesp=0 in the bulk solid andp= 1 in the liquid. The
unctionsHAB(¢,T), QB(4,T), andT'(¢,T) are defined

2

(solveni andB (solute. Initially a solid (x<x) and a liquid Q*B(¢,T)=— (hAT)zg’(@

(x>xp) region are separated by an interface at temperature

f; the solute concentrationis fixed on the solidus line at 1 £LAB T-TAB

T,. Then the temperature fiel{x), characterized by a posi- + —p'(¢),

A,BLA,B
tive uniform gradientG, is pulled towards the positive 6v2 o™"h Ti

riam=-m P WA, ®)
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TABLE |. Material parameters for the Ni—Cu alloy.

Parameter Nickel Copper
T (K) 1728 1358

L (J/cnt) 2350 1728
vm (cm®/mole)? 7.0 7.8

o (Jlent) 3.7x10°° 2.8x10°°
D, (cn¥/s) 105 105

8An average value of 7.4 will be taken.

whereg(¢) = ¢?(1— ¢)?/4 is a symmetric double well po-
tential with equal minima atp)=0 and ¢=1; the function
p(¢), defined asp(p)=¢3(10—15¢+6¢2) enforces the
condition that the bulk solid and liquid are described &y
=0 and¢=1, respectively, for every value of temperature.
LAB and TA'B represent the latent heat per unit volume and
the melting temperature of the pure componexts B; R is

the gas constant ang, is the molar volume. In E¢5) o8,

h”AB indicate the surface tension and the interface thickness
of the componenté andB, respectively. The functioR(¢),
defined as\(¢)=Ds/D,+p(¢)(1—D/D,) describes the
smooth transition of the bulk solute diffusivity frog (in

the solid to D, (in the liquid. The model parameters™ &,

WAB depend on the physical properties of the alloy compo-
nents as [10] m*B=(BABoABTAB)/(D,LAB), WAB

= (120 o *B)/(V2RTABhAB), where A8 is the kinetic
undercooling coefficient of puréd or B. Equation(1) ac-
counts for the anisotropy of surface enerdyis the angle
between the normal to the interface and a fixed diredtioe

X axis in our calculations and the functionz(8)=(1
+0.01 cos 4) enforces a fourfold symmetfy.2]. To fix the
model parameters we referred to the physical properties of a
nickel (solven} and coppef(solute binary alloy, which are
summarized in Table I; the solute diffusivity in the solid
phase was esﬁmated Bs=10 GXD" Due to limitations Of ortion (1.92<x=<3.84) of the computational domain is repre-
the computatlonaLrBesources, Efge vaIu_e selected for t_he inte ented. In order of decreasing darkness we have three zones for the
face thickness H™"=4.2}10""cm) is about 10 times ,pase fieldp<0.33(solid), 0.33< $=<0.66, andp>0.66 and four
larger than actual values; moreover we cho'  7ones for the concentration field:=<0.425, 0.425c<0.450,

=0.511 cms* K™! and g®=0.641 cms*K™!, values 0 450<c<0.475, andc>0.475(atomic fraction
much smaller than the actual best estimates. These approxi-

mations determine a shift of the dynamida(v) curve to-
wards lower values of the growth velocity, but do not affect
the interplay between the diffusional and capillary effects algcJ
the basis of the process evolution.

Equations(1)—(3) have been solved on the computational

FIG. 1. Contour plots of the phasgkeft) and soluteright) fields
for cellular solidification at=0.24 forV=12 andG=8 K. Only a

solidification. After the process reached the stationary re-
ime, to activate the two-dimensional dynamics a periodic
orrugation x(y,t*)=x* + 0.1 sin(4wyly,,) was forced at
timet* on the planar interface locatedxa{y,t*) =x*. Here
and in the following, except for temperatures, all the results

ioma'nl.oixsrm'pfyﬁ)t/_m Wlthhxm=6-40 andy|m=(()j.4t8. 4 Vill be presented in nondimensional units; for the reader's
n eXpﬂ']C' :Jf‘.r mfegra |§r_1 St9 eme (;Nas emdp 03&6 0 i ‘commodity we recall that the length scale is fixedat2.1
vance the solution forward in ime and second order central, 1 -4 cm, and the resulting time and velocity scales are

differences were used to discretize the Laplace operator. TQ 41103 s and 4.76.10°2 cmis, respectively: the ther-

ensure an accurate resolution of both the phase and the COH;' . R, ' : )
: : . . | gradientG is given in temperature unit it is referr

centration profilefand mesh independent resyltee grid al gradien® is give emperature units, as it is referred

. i X to a nondimensional length.
A= — 3.
spacing was selected =Ay=8X10"% details of the In the region of thes,V plane we explored two cells were
numerical method are reported [ih3].

. ; allowed to grow into the liquid, though we observed also the
Th? |n|t|allconcentrat|on _Of the_ alloy was settp=0.4 planar growth limit(at low pulling velocitie$ and the tip
(atomic fraction, on the solidus line aff,=1573 K; then  gplitting and the subsequent formation of four cells for large
the initial temperature profile defined 8¢x,0)=T,+G(x  growth rates. The effects of the groove instability are dis-
—Xp) was pulled towards the positive direction, starting played in Fig. 1, where the cellular configuration is shown
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GROOVE INSTABILITY IN CELLULAR SOLIDIFICATION
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FIG. 2. The emission frequency of the droplets versus the pull-
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ing velocity forG=4 K (diamond$, G=8 K (solid circles, and
G=12 K (triangles.

for G=8 K andV=12. In the same graph both the phase
(left-hand sid¢ and the solute fieldgright-hand sidg are
represented. It is clearly recognizable that the trail of droplets
left behind the advancing solidification front, on the axes of
the liquid grooves. The spacing between the cells tips is
=0.240; the droplets spatial periodicitylig=0.192 and the
time emission periodicity is=1.6x 10 2, that is Lp=Vr.

The droplets diameter, immediately after the emission and
the subsequent sphericization, s=4.6x 10 2. Rescaling
the pattern configuration to the intercellular spacing we have
L,/A=0.80 andD/N=0.19, in good agreement with the ex-

perimental data. The snapshot has been taken just at the mo-

ment in which we can observe the pinch-off of the liquid
bulges. Notice that the droplets frozen in the solid phase

thermal gradienG: G=4 K (diamond$, G=8 K (solid circles,

time between droplets
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FIG. 4. Contour plots of the phad&eft-hand sid¢ and solute
(right-hand sidg fields for the shrinking dynamics of the planar
strip, att=6. The initial length and width of the strip are,
=9.12 andW=8.80x10"2. In order of decreasing darkness we
have three zones for the phase fiell=0.33 (solid), 0.33< ¢
=0.66, and¢$>0.66, and six zones for the concentration fiedd:
<0.405, 0.405:c<0.418, 0.418c=<0.431, 0.43¥c=<0.444,
0.444<¢<0.457, andc>0.457 (atomic fractions

correspond to highly solute-enriched regions; for this reason
they survive for some time after being advected into the solid
phase. We found that the solidification front at the bottom of
the groove follows a cyclic dynamics, retarding in respect to
the thermal field for the most part of the cycle, during the
bulge formation. When the pinch-off of the bulge occurs the
solid-liquid interface becomes cusp-shagede Fig. 1 and

the (negative curvature becomes locally infinite. Due to the
Gibbs-Thomson effect the driving force for solidification be-
comes also infinite: the bottom of the groove is suddenly

FIG. 3. The radius of the droplets increases with increasing théidvanced and the interface temperature is raised. It is reason-
emission time. Each set of data refers to a different value of théble to argue that the observed pinch-off occurs when the

andG=12 K (triangles.

neck of the bulge is cooled below a certain level. In this case
the emission frequendiy,= 1/7 should increase with increas-
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ing the pulling velocity. This suggestion is confirmed in Fig. the strip shrinks along its main axis assuming the shape of a
2 where we see thdt, is essentially determined by the iso- “dumbbell.” If we assume that the bulges at the dumbbell
therm velocity, while the thermal gradient has a minor effectends can be chacterized by a single time-dependent length
on the timing of the process. The experiments of KurowskiscaleR(t), it is found that the length reductiarft) of the

et al. [1] indicated a tendency to emit smaller droplets alstrip in the process of its shrinking scales &)
larger frequencies but, due to the strong scattering of the data\y—12t12 \yhile the radius of the bulges increases as
(see”Fig. 4 of that referengehis point was not Qefinitely R(t) ~W*4t14 [14]. The matching of the bulges to the pla-
clarified. Figure 3 shows that the droplets radius is a decreagy, - hart of the strip is characterized by positive curvature and
ing function of the emission frequency; the three sets of dat%cts as a sink of solute from both the bulge and the adjacent

correspond to different values of the thermal gradient. Thisplanar region: as a consequence the latter is progressively

result can be explained observ_mg that _th(_a emission freéolidified, acquiring the characteristic shape of a bottleneck
quency is controlled by the pulling velocity; on the other

. which is throttled until the bulge is detached from the strip.
side, the growth rate of the bulge depends on the local shap]? we assume that detachmegt occurs when an area of F'ihe
of the liquid groove which, in turn, is strongly affected by

the thermal gradien®. As V (andf.) increase the bulge has qrder ofV\/.2 is solidified, gimensional analysis shqw; that the
little time to develop before the detachment and the resultingMe required scales a&”. The effects of the shrinking dy-
droplets are small. The droplets emission is not always ob?@mics are displayed in Fig. 4, where both the phiéesi-
served, and disappears for sufficiently high values of thé'and side and the solute fieldgright-hand sidg are repre-
thermal gradient or of the pulling velocity. It is reasonable tosented; the process has been simulated through the same
argue that in these cases the bulge has no time to devel@®verning equationsand the same physical paramejeas
and to detach before that freezing occurs. for cellular solidification, but assuming a static thermal field.
The details of the solidification dynamics, during the The strip width and initial length ar&/=8.80x 1072 and
bulge formation and detachment, are not accessible to andy=9.12, respectively. Due to the symmetry of the problem,
lytic calculation especially in the strong nonlinear regimeonly one-half of the strip is shown in the figure. We can
characteristic of deep cells. However, to get some insighobserve the trail ofsolute enrichedliquid bubbles which
into this interesting behavior we observe that it presentsesult from the fragmentation of the liquid strip. The spatial
strong analogies with a different but simpler phenomenonperiodicity isL,=1.08 and the time between droplets7is
We start observing that the intercellular groove can be con=1.99. The scaling of the emission time with the strip width
sidered as a thin liquid strip, in which the solute concentrahas been checked over less than a decade, as the numerical
tion is not far from equilibrium, surrounded by the walls of cost of the simulations increases dramatically vilthhow-
the adjacent solid cells. The shrinking of such a strip, ofever, we observed that the guessW? is reasonable, as the
rectangular shape and large aspect ratio, was addrgséed best fit for the numerical data s~ W22,
in the context of a phase separation problenodel B. We In summary, a jet-type instability, driven by both diffu-
now are going to extend these results to the formally nonsional and capillary effects, can be observed also in two di-
conserved dynamicémodel Q of a solidification process; mensions for the isothermal dynamics of a liquid strip sur-
however previous studigd5] demonstrated that in the cur- rounded by its solid phase. The same physical picture is
vature driven coarsening of liquid domaifthe problem in  ultimately at the origin of the groove instability in cellular
which we are interestedo a good extent of accuracy the solidification. In the latter case the droplets emission should
order parameter can be considered as conserved. The liquii® observed when the velocity of the thermal field is slow
strip, of initial lengthL , and widthW<s L, is prepared along enough to allow the bulge formation and detachment.
the x axis, in thermal and chemical equilibrium with the sur- Rescaling the solidification pattern to the intercellular spac-
rounding solid phase. In a static thermal field due to thdng, both the droplets diameter and periodicity result in good
interface curvaturélargest and negative near the strip ends agreement with the experimental data.
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