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We study the dynamics of one-dimensional active particles confined in a double-well potential, focusing on the
escape properties of the system, such as the mean escape time from a well. We first consider a single-particle
both in near and far-from-equilibrium regimes by varying the persistence time of the active force and the
swim velocity. A non-monotonic behavior of the mean escape time is observed with the persistence time
of the activity, revealing the existence of an optimal choice of the parameters favoring the escape process.
For small persistence times, a Kramers-like formula with an effective potential obtained within the Unified
Colored Noise Approximation is shown to hold. Instead, for large persistence times, we developed a simple
theoretical argument based on the first passage theory which explains the linear dependence on the escape
time with the persistence of the active force. In the second part of the work, we consider the escape of two
active particles mutually repelling. Interestingly, the subtle interplay of active and repulsive forces may lead
to a correlation between particles favoring the simultaneous jump across the barrier. This mechanism cannot
be observed in the escape process of two passive particles. Finally, we find that, in the small-persistence
regime, the repulsion favors the escape, like in passive systems, in agreement with our theoretical predictions,
while for large persistence times, the repulsive and active forces produce an effective attraction which hinders
the barrier crossing.

I. INTRODUCTION

Nowadays, biological systems, such as bacteria and
cells, or some specific classes of colloids are classified
as active1–3. They distinguish from passive systems for
a plethora of interesting phenomena experimentally ob-
served which opens the way to many intriguing medi-
cal and engineering applications4. Active systems of-
ten accumulate near obstacles5–7 and boundaries8–10 and
display collective phenomena such as living-clusters11,12,
motility induced phase separation13–18 and spatial veloc-
ity correlations19–22. These properties have been repro-
duced with the help of coarse-grained stochastic models
that neglect the biological or chemical origin of the ac-
tivity in favor of an additional degree of freedom, simply
referred to as active force23,24. This ingredient guaran-
tees the time-persistence of single-trajectory experimen-
tally observed that is recognized to be a fundamental
hallmark of active systems.

Recently, the behavior of active systems confined in
thin geometries or by external potentials has been a mat-
ter of intense investigation25–31 through both experimen-
tal and numerical studies. For instance, active colloids
could be confined in external potential by magnetic or
optical tweezers32 and recently by using acoustic traps33,
while the confinement for Hexbug particles, i.e. macro-
scopic self-propelled toy robot, could be simply achieved
through a parabolic dish34. Some approximate theo-
retical treatments have been formulated to predict the
statistical properties of active systems35. These include:
the diffusion properties in complex environments36,37, the
probability distribution function (displaying strong devi-
ation from Boltzmann profiles)38,39, the pair correlation
functions40,41, the pressure and the surface tension42.
However, these methods usually work in specific regimes

of parameters and, in some cases, break down in regimes
of strong (e.g. persistent) activity. This failure is found
in the case of the active version of a celebrated problem
of equilibrium (e.g. passive) statistical mechanics: the
escape from a potential barrier, also known as Kramers
problem43,44. In this context, a paradigmatic case that
has received much attention in the literature of passive
particles concerns the escape in a double-well potential.
In the active case, some analytical results have been ob-
tained in near equilibrium regimes45–47, where the av-
erage escape time can be analytically predicted by tak-
ing advantage of equilibrium-like approximations. Sub-
sequently, most of the studies have been focused on far-
from-equilibrium regimes (large swim velocities and/or
large persistence times) showing behaviors without pas-
sive counterparts: for instance, Woillez et. al. found that
the escape time of active particles is affected by the whole
shape of the potential and not only by the height of the
potential barrier48. In addition, some peculiar properties
of the escape mechanism in the large persistence regime
have been discussed in Ref.49: a bifurcation-like scenario
in the position-velocity phase space emerges. A suitable
theory for the escape rate in this regime has been derived
by using large deviation techniques holding in the limit
of infinite persistence time50, while, in the same regime
of parameters, Fily obtained an approximate expression
for the probability distribution51. Finally, Debnath et.
al.52 focused on the escape time in two dimensions and
in the presence of hydrodynamic interactions of an active
Brownian particle carrying a passive cargo.

The interest in the active escape processes goes be-
yond the paradigmatic case of the double-well potential
as testified by the studies on the escape from other po-
tential shapes53,54, for instance, harmonic potentials55,56

with interesting applications for the active version of the

ar
X

iv
:2

11
0.

03
04

2v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  6

 O
ct

 2
02

1



2

trap model57 or the behavior of active particles in rugged
energy landscapes58. It is important to remark that the-
oretical results for the mean escape time in the presence
of general potentials have been only derived in the limit
of small active force59. Finally, recent works have studied
the escape of active particles from thin openings of con-
fining geometries, such as disks60–62, for their potential
applications in biological processes63. The average escape
time has been investigated also in simpler geometries
such as one-dimensional channels64, open-wedge chan-
nels65 and channels with bottlenecks66 suitable to model
the escape of living organisms from biological pores.

In this paper, we focus on the escape properties of
active particles evaluating both small, intermediate and
large persistence and find the occurrence of an optimal
persistence favoring the escape from the potential bar-
rier. In the second part of the work, the same problem is
addressed by considering a system formed by two inter-
acting active particles to assess the effect of repulsive in-
teractions on the escape process. The paper is structured
as follows: In Sec. II, we introduce the model used to sim-
ulate the dynamics of active particles, while in Secs. III
and IV, we study the escape problem for one and two
interactive particles, respectively. In the final section, we
present the conclusions.

II. MODEL

We consider the dynamics of active particles confined
in an external double-well potential of the form:

W (x) =
W0

4
(x2 − a2)2 . (1)

The profile of W (x) is characterized by two minima at
x = ±a separated by a potential barrier at x = 0 of height
Wb = W0a

4/4. The dynamics is made active by includ-
ing a stochastic force, fai , in the evolution for the particle
position xi. fai is generated by an Ornstein-Uhlenbeck
process and is characterized by a persistence time τ and
a variance v0. This choice corresponds to the so-called ac-
tive Ornstein-Uhlenbeck particles (AOUP) model35,67–72,
and reproduces the typical phenomenology of active par-
ticles38,73,74. The AOUP has been often employed as an
approximation for other popular active models75–77 or
to describe the behavior of a colloidal particle in a bath
of active particles78–80. The equations of motion for N
overdamped AOUP with position xi are given by:

γẋi = fai −W ′(xi) + Fi (2a)

τ ḟai = −fai + γv0

√
2τξi , (2b)

where ξi is a white noise with zero average and unit vari-
ance such that 〈ξi(t)ξj(0)〉 = δijδ(t) and γ is the fric-
tion coefficient. Finally, the last force term in Eq. (2),
namely Fi = −∂xi

Utot, is due to the repulsive inter-
actions between neighboring particles and models vol-
ume exclusion. This force corresponds to the potential

Utot =
∑
i<j U(|xj − xi|), where U is a Weeks-Chandler-

Andersen (WCA) potential of the form:

U(r) =

4ε

[(
σ

r

)12

− 2

(
σ

r

)6

+ 1

]
r ≤ σ

0 r > σ

(3)

where r = |xi−xj | is the distance between the two parti-
cles, σ is the nominal particle diameter, and ε the typical
energy scale of the interaction; for simplicity, we set σ = 1
and ε = 1.

III. ONE-PARTICLE ACTIVE ESCAPE PROBLEM

Before delving into the case of two particles, we con-
sider a single particle, i.e. the dynamics (2) with N = 1.
In this section, for simplicity, we omit Latin subscripts.

In the one-particle case, Refs.49,50 have been already
shown that the jump mechanism from a potential well to
the other is strongly affected by the persistence time τ
which can change also qualitatively the dynamical picture
of the escape process. Roughly speaking, we can distin-
guish two limiting mechanisms depending on the values
of τ considered: i) the regime of small τ , such that fa re-
laxes faster than the particle position, x, and ii) a regime
of large persistence, such that fa relaxes slower than x.

A. Small persistence regime

When fa relaxes faster than x (namely, in the regime of
small τ), the system is near the equilibrium and the uni-
fied colored noise approximation (UCNA) applies35,81,82.
This means that the role of the active force can be recast
onto an effective potential with an effective diffusion coef-
ficient Da = v2

0τ . In practice, the active particle behaves
as a Brownian-like particle described by the probability
distribution:

p(x) ∝ exp[−H(x)/Daγ] , (4)

where H(x) is the following effective potential82:

H(x) = W (x) +
τ

2γ
(W ′(x))2 −Daγ log

(
1 +

τ

γ
W ′′(x)

)
,

(5)
where the prime denotes the spatial derivative. H(x) can
be interpreted as the Hamiltonian of a passive particle
depending on W (x) and its derivatives. The extra terms
in Eq. (5) maintain the symmetric two-well structure (see
Fig. 1 (a) illustrating H(x)/Daγ for two different values
of τ), but shift the positions of the two minima, |xm|,
and change the height of the effective potential barrier,
Hb = H(0)−H(|xm|). To first order in τ , we obtain:

|xm| ' a
(

1 + 3
Daτ

a2

)
(6a)

Hb '
a4W0

4

(
1 + 12

Daτ

a2

)
. (6b)
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FIG. 1. Panel (a): Effective potential, (H(x) − H(0))/γDa, where Da = v20τ , for τ = 10−1 (red curve) and τ = 5 × 10−2

(blue curve). Horizontal dashed lines are guides for the eyes, marking the value of the maximum and minima of the effective
potential, while vertical dashed arrows measure the height of the effective potential barrier, Hb/(Daγ). Panel (b): average
escape time, te, as a function of the persistence time τ for two different values of the swim velocity v0. Colored points are
the results of numerical simulations, solid lines are obtained from Eq. (7) and dashed ones from Eq. (8). We remark that the
prediction (7) is shown for those values of τ for which the UCNA prediction is defined. The other parameters of the simulations
are: W0 = 1 and a = 2.

The height of the potential barrier increases with the ac-
tivity, thus one would expect that a larger activity hin-
ders the passage from one well to the other. On the
contrary, since the key factor controlling the escape dy-
namics is the ratioHb/Daγ = Hb/(v

2
0τγ) which decreases

with τ (and v0), one finds that the active force favors the
escape process (as shown in Fig. 1 (a)). In summary, in
the small persistence regime, the jump process resembles
its passive counterpart and the average escape time, te,
can be estimated by applying the Kramers formula83 by
considering the effective potential (5):

te ≈
2π√

H ′′(|xm|) |H ′′(0)|
exp

(
Hb

Daγ

)
, (7)

where H ′′ denotes the second derivative of Eq. (5) and,
as usual, formula (7) holds when Hb/(Daγ) � 1. As a
matter of fact, in the regime of small τ , the leading term
in the expression (5) is simply the potential W (x) while
the remaining terms provide small corrections whose rele-
vance increases as τ grows. As a consequence, for τ small
enough (when the O(τ) are negligible in the expression
for H(x)), Eq. (7) reduces to:

te ∼ exp
[
Wb/(v

2
0τγ)

]
, (8)

which mainly depends on the height Wb of the potential
barrier, showing that te exponentially decreases when τ
or v0 are increased.

Predictions (7) and (8) have been checked numerically,
as shown in Fig. 1(b), where the escape time te is plot-
ted as a function of τ for two different values of v0. As
expected from the naive passive-like formula (8), te de-
creases as τ grows, and similarly it becomes smaller as v0

increases. However, a quantitative agreement in a wide
τ -range is achieved only by using the UCNA result (7)
whereas Eq. (8) fails at larger values of τ .

B. Large persistence regime

In the case where fa relaxes slower than x, that is
in a regime of large persistence, we can identify a jump
mechanism differing from that of a passive particle49. In
fact, if τ exceeds a certain threshold, the UCNA distri-
bution (4) becomes ill-defined as the argument of the
logarithm

log

(
1 +

τ

γ
W ′′(x)

)
in Eq. (5) becomes negative for certain values of x. At
large enough value of τ , this occurs because W ′′(x) < 0

for |x| < a/
√

3. Nevertheless, even for large τ , as
shown in Ref.49, around the potential minima the parti-
cle distribution can be fairly well represented by p(x) ∝
e−H(x)/Daγ . Moreover, Ref.49 shows that, in regime of
large τ , the jump process occurs almost deterministically
when the modulus of the active force |fa| exceeds the

threshold fM = 2W0a
3/(3
√

3) corresponding to the max-
imal force exerted by the double-well (i.e. the modulus

of the force evaluated at the inflection points ±a/
√

3). In
particular, jumps from the left (right) well to the right
(left) one occur when fa > fM (fa < −fM ). These
results have been formalized using large-deviation tech-
niques in Ref.50, where an asymptotic expression for the
distribution function, p(x), has been derived in the limit
τ →∞.



4

τ

fmax~W0 a
3=cost

τ

t e

(a) (b)

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

W
0
=10

W
0
=20

W
0
=40

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

v
0
=100

v
0
=200

τ

τm

τm

τm

FIG. 2. Average escape time, te, as a function of the persistence time τ for two different values of the swim velocity v0 =
102, 2 × 102 (with a fixed potential) in panel (a) and by keeping fixed v0 and by changing the potential parameter in panel
(b). In particular, in the latter case, te is shown for three different values of the potential strength W0 = 10, 20, 40 by keeping
fixed the maximal force exerted in the flex point, fM ∼ W0a

3. The colored dashed lines in panel (a) are obtained by using
Eq. (9) with the values of v0 indicated in the legend. Instead, the dashed black line in panel (b) qualitatively shows the linear
scaling with τ . Finally, the dotted black lines are eye-guides which mark the value of τm The other parameters of panel (a)
are: W0 = 10, a =

√
10, while the other parameters of panel (b) are: v0 = 102 and a scaling accordingly to the value of W0

such that W0a
3 = 105/2.

To understand how the escape properties are modified
by a persistent active force, we study the average escape
time, te, as a function of τ and explore values for which
UCNA does not hold. In particular, Fig. 2 (a) shows te
vs τ for different values of the swim velocity, v0. For
each value of τ , the larger v0, the larger the value of
te. Instead, as a function of τ a non-monotonic behav-
ior is observed. After a first decrease, which resembles
the Kramers-like behavior (8) described in the small τ
regime, the escape time drops to a minimum for τ = τm,
till to increase at larger values of τ . This means that,
for a given potential set-up and swim velocity, one can
identify an optimal value of the persistence time (τm)
favoring the jump process. The above scenario can be
explained through a simple argument based on the in-
terplay between persistence length ` = v0τ and the dis-
tance between maximum and minimum of the potential,
a. When ` � a, the active force can change direction
during the barrier climbing. In this regime, we have al-
ready seen in Fig. 1 that te decreases as τ grows. Instead,
when ` � a, the escape occurs almost deterministically
when the active force overcomes fM and fa has a little
chance to reverse the direction during the barrier cross-
ing, at variance with the small-τ regime where fa can
invert its direction many times. Thus, for ` � a, a bar-
rier crossing is simply related to a first passage for the
process (2b): the larger τ , the larger the time waited for
the occurrence of a value of the active force such that
fa > fM , implying a larger te. As a consequence, we
expect the presence of a minimum in the intermediate
regime, say ` = v0τ ∼ a. The argument explains the

behavior of τm with the swim velocity: indeed, as shown
in Fig. 2 (a), τm decreases with v0 in agreement with the
scaling:

τm ∼
a

v0
.

We remark that the non-monotonic behavior with τ has
been already observed in other observables of this system,
such as the entropy production84 or the integrated linear
response to a small perturbation, introduced to test the
breakdown of the detailed balance85.

As reported by Fig. 2 (a), the increase of te with τ for
τ > τm is quite slow and displays an algebraic growth,
which roughly approaches a linear dependence te ∼ τ in
the regime τ � τm. This qualitative observation can be
supported by a theoretical argument holding in the limit
τ →∞. As already discussed, since for τ � τm, a jump
occurs only when fa > fM (or fa < −fM ), we can iden-
tify te as the typical time taken by fa to reach fM (or
−fM ), which is nothing but the first-passage problem of
an Ornstein-Uhlenbeck process. This is briefly reviewed
in Appendix A (see also Ref.86) and provides the follow-
ing prediction:

lim
τ→∞

te ≈ τ
√
π

∫ φ

0

du eu
2

(1 + Erf [u]) , (9)

where, φ = fM/
√

2v0γ is a dimensionless force and Erf[ · ]
indicates the error function. As shown in Fig. 2 (a) (see
the dashed colored lines) the prediction (9) is in fair
agreement with data (except for the presence of an extra
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factor
√

2 which is missed by our theory) and, in partic-
ular, allows us to explain the behavior te ∝ τ observed
by simulations for τ � τm. In addition, the saddle-point
method, applied to Eq. (9) for fM � v0γ, yields the
expression

lim
τ→∞

te ≈ τ
fM
v0γ

√
π

2
exp
( f2

M

2v2
0γ

2

)
, (10)

which coincides with the result of Ref.50 except for the
prefactor depending on τ , that has not been derived by
Woillez et. al.. From Eqs. (9) and (10), the difference
with the passive escape problem is contained in the scal-
ing of te with the parameter of the potential. Indeed, the
average escape time of a passive Brownian particle mainly
depends on the height of the potential barrier which
scales as W0a

4/4 for the double-well given by Eq. (1).
Instead, in the active persistent case, in particular in the
regime of large τ such that `� a (so that τ � τm), the
escape time depends on the value of the maximal force
fM = 2W0a

3/(3
√

3) experienced along the barrier climb-
ing. This scaling is checked in Fig. 2 (b), where te is
shown as a function of τ at fixed v0, by varying a and
W0 such that W0a

3 = const to keep fM constant. In par-
ticular, we plot three different values of W0 showing the
collapse of the curves when τ � τm. This also confirms
that the active escape does not depend on the height of
the barrier.

IV. TWO-PARTICLE ACTIVE ESCAPE-PROBLEM

In this section, we consider the dynamics (2) with
N = 2 particles to understand the impact of the inter-
particle interactions on the escape process in the double-
well potential (1). For this reason, we kept constant the
parameters of the potential and the swim velocity, v0,
whose roles have been already analyzed and understood
in the previous section.

As in the single-particle case, we first describe the
regime of small τ , where we expect the system to behave
as a passive one with an effective potential, and then the
large τ regime.

A. Small persistence regime

In analogy with Eq. (5), we can express the joint prob-
ability distribution p2(x1, x2) for the position of the two
particles in the small-τ regime, as

p2(x1, x2) ∝ exp[−Htot(x1, x2)/Daγ] , (11)

where Htot(x1, x2) is an effective Hamiltonian which can
be decomposed as:

Htot(x1, x2) = H(x1) +H(x2) +Hint(x1, x2) . (12)

The term H is the single-particle effective Hamiltonian
(which depends only on the external potential and its

10
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t e
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e
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FIG. 3. Average escape time, te (one particle) and tient for
the one-particle system (green triangles) and the two-particles
system (red circles), as a function of the persistence time
τ . Colored solid lines are obtained by the theoretical predic-
tions (7) (green line) and by Eq. (7) with H → Heff , where
Heff is obtained by Eq. (14). The other parameters of the
simulations are: v0 = 5, W0 = 1, a = 2, ε = 1, σ = 1.

derivatives) already introduced in Eq. (5), while Hint is
the interaction Hamiltonian (containing the inter-particle
potential, U) that reads:

Hint ≈
τ

γ

[
(∂x1

U)
2

+ (∂x2
U)

2
+ 2(∂x1

U)∂x1
W (x1)

+ 2(∂x2
U)∂x2

W (x2)

]
−Daγ log

(
1 + 2

τ

γ
∂2
x1
U

)
.

(13)
Notice that the last term follows from the approximation
of the determinant of the Hessian matrix appearing in
the UCNA distribution. For further details about this
result in the interacting (two-particles) case, see Ref.40.
We remark that Hint not only depends on the interaction
potential (as usual in passive systems) but also on the ex-
ternal potential and their derivatives which produce the
effective attraction qualitatively responsible for cluster
formation and motility induced phase separation76 (see
also Ref.87 for the parameter range for the application of
such a method).

In virtue of these analytical results for p2, it is possi-
ble to find an effective description for a tagged particle
(namely, particle 1) by integrating out the coordinate of
the second particle, x2, in Eq. (11). Applying this pro-
cedure, we obtain the expression for the single-particle
marginal probability distribution, p1(x1), from which the
single-particle effective Hamiltonian is derived by taking
the logarithm, as follows:

Heff(x1) = H(x1)

−Daγ log

∫
dx2 exp

(
−Hint(x1, x2) +H(x2)

Daγ

)
,

(14)

where we recall that Da = v2
0τ . At this stage, Kramers’
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respectively, with v0 = 5. In both panels the two dashed black lines mark the positions of the minima. The green dashed
square is drawn in correspondence of a simultaneous jump while the yellow one in correspondence of two independent jumps.
Panel (c): fraction of simultaneous jump, α, as a function of τ for two different values of the swim velocity, v0 = 2.5, 5. The
other parameters of the simulations are: W0 = 1, a = 2, ε = 1, σ = 1.

formula (7) can be easily applied by replacing H with
Heff to derive an analytical expression for the effective
escape time tint

e , for the tagged particle in the interacting
system.

In Fig. 3, tint
e is numerically studied as a function of

τ (only small values of τ are shown) and the results are
compared with the Kramers-like theoretical prediction.
As in the one-particle case, the agreement is fairly good
for the smaller values of τ , while the theoretical predic-
tion underestimates the numerical value of tint

e when τ is
increased. Fig. 3 also reports the comparison between tint

e

and te (the escape time from the double-well potential in
the non-interacting case). As it occurs in passive systems,
we see that tint

e < te. This result can be easily explained
because the interaction potential decreases the effective
potential barrier of the single-particle. Indeed, when the
particles are placed in different wells, the escape follows
the rules of the non-interacting problem. Instead, when
the particles are placed in the same well, for instance the
left one, the right particle can escape more easily with re-
spect to a non-interacting particle, because it is roughly
placed at xintm ≈ −a+σ (see also Fig. 4 (a)) and, thus, the
single-particle effective potential barrier is reduced with
respect to the bare value Wb = W0a

4/4. We also ob-
serve that, as the persistence is increased, the difference
between te and tint

e reduces until tint
e ≈ te. This occurs

because the interaction Hamiltonian, Hint, contains ef-
fective attractions terms whose relevance increases when
the persistence time grows40. These effective attractive
terms hinder the escape from a well, similarly to the real
attraction in passive systems, see e.g. Ref.88, for the case
of two particles interacting via a harmonic force, forming
a dimer.

B. Large persistence regime

As we expect, the UCNA prediction (13) cannot work
in the large persistence regime like in the one-particle
case. In the absence of a theoretical picture, we resort to
numerically study the active escape properties. Before
delving into the study of the mean escape time, we focus
on the phenomenology of the escape process to under-
stand the difference between small and large persistence
regimes. Fig. 4 (a) and (b) show the single-particle tra-
jectories, namely the positions of the two particles, x1(t)
and x2(t) normalized by a, as a function of time. In the
two panels, two different values of τ are considered as
illustrative cases for the two regimes. In the small per-
sistence regime (Fig. 4 (a)), it is not surprising that the
two particles perform uncorrelated jumps so that each
particle independently escapes from a well as it occurs in
a system of two passive particles. Instead, in the large
persistence regime, the escape process is quite different,
as seen in Fig. 4 (b), because, among the escape events,
there is a non-negligible fraction jump involving both par-
ticles, whereby they cross the barrier almost simultane-
ously (see dashed green rectangles). We refer to these
events as correlated jumps. Let us suppose that the par-
ticles are both in the left well, x1 < x2 < 0. The active
particle “1”, which is farther from the barrier x = 0,
could be able to drag the particle “2” towards x = 0,
forcing its escape even if the active force of “2” is smaller
than fM , thus producing a simultaneous jump. To make
this picture more quantitative, in Fig.4 (c), we measure
the fraction, α, of correlated jumps occurring in a long-
time simulation run as a function of τ for two different
values of v0. This fraction is defined as α = ns/ntot being



7

10
1

0.3 30.1 1 10

One particle

Two particles

τ

t e
 ,

  
  t

e
in

t

FIG. 5. Average escape time, te (one particle) and tient for
the one-particle system (green triangles) and the two-particles
system (red circles), as a function of the persistence time τ .
Solid lines are guides for the eyes. The other parameters of
the simulations are: v0 = 5, W0 = 1, a = 2, ε = 1, σ = 1.

ns the number of simultaneous jumps and ntot the total
number of jumps occurring in the time-window of the
run. As expected, α is an increasing (monotonic) func-
tion of τ : the larger is the persistence, the more probable
is the occurrence of a correlated jump. Interestingly, de-
pending on the value of v0, the fraction α could reach also
large values, so that even the 10% or 20% of the escape
events could be simultaneous. This correlated-escape sce-
nario has not a passive counterpart, since in that case
the probability of observing a simultaneous jump is al-
ways negligible. However, correlated jumps have been
observed in granular systems, where dissipative collisions
determine a kind of “effective” attraction similar to that
discussed in this paper89.

Finally, Fig. 5 shows the average escape times, tint
e and

te, for the interacting and non-interacting cases, respec-
tively, as a function of τ , exploring also values of τ out-
side the applicability of UCNA. Both the escape times
decreases until a minimum is reached and, then, for fur-
ther values of τ , they monotonically increase. We re-
mark that, at variance with the small-τ regime, now we
observe tint

e > te. This scenario could be explained by
the well-known slow-down due to the interplay between
the active and repulsive forces, which concur to produce
an effect qualitatively similar to an effective attraction.
This mechanism hinders the escape process with respect
to the non-interacting case.

V. CONCLUSION

In this paper, we have studied the escape properties
of active particles - using the active Ornstein-Uhlenbeck
model - confined in a double-well potential, with a partic-
ular focus on the mean escape time from a well. At first,
we have investigated the escape of a single-particle con-

sidering a wide range of persistence regimes of the active
force. Interestingly, we have observed the existence of an
optimum value of the persistence time (at fixed external
potential), which minimizes the mean escape time. We
have also developed a theoretical explanation for the be-
havior at small-persistence regime, combining the Unified
Colored Noise approximation (UCNA) with a Kramers-
like theory. We have also proposed a simple theoretical
argument to explain the linear growth of the mean escape
time in the large persistence regime.

As a second step, we have considered a system of two
active particles interacting via a repulsive potential. Also
this case, we derive a theoretical prediction for the aver-
age escape time holding in the small persistence regime:
as expected for passive particles, the escape is favored in
the interacting system because each particle behaves as if
was affected by an effective barrier lower than the barrier
of the external potential. Interestingly, in the large per-
sistence regime, we observe the opposite: the interplay
between the active force and the repulsive interaction in-
duces an effective attraction between the particles which
hinder the escape process in the two-particle systems. In
addition, we outline the peculiar properties of the two-
particle active escape: in the regime of large persistence,
we observe a large fraction of simultaneous jumps (which
occurs when the two particles jump together) that does
not have a passive counterpart.

Recently, Brückner et. al. have performed intriguing
experiments of strongly confined active particles: they
consider epithelial (even cancerous) cells in a simple ge-
ometry consisting of two adhesive sites connected by a
thin constriction90–92. The cell, which has a certain de-
gree of persistence, migrates from a site to the other and
seems to behave as if it is subject to a double-well poten-
tial along with the travel direction. The results of these
experiments, in particular the position-velocity phase
space and the features of the jump mechanism, are in
qualitative agreement with those obtained by numerical
simulations using the active Ornstein-Uhlenbeck model
in a double-well potential which shows a bifurcation-like
scenario in the proximity of the potential maximum49.
By such an analogy, we believe that our work could stim-
ulate future experimental and numerical studies focused
on the escape properties (i.e. the time that a cell needs
to cross a thin constriction) and shed light on the jump
properties of such an experimental system.
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Appendix A: Derivation of Eq. (9)

In this Appendix, we derive the expression (9) for the
escape time te, holding in the limit of τ → ∞. As also
discussed in Sec. III, in this regime of τ , te can be de-
termined by the mean first passage time taken by the
active force fa to overcome the threshold |fM | (namely,
the maximal force experienced by a particle in climbing
the barrier). According to the first passage theory (see
Ref.93), this time is related to the survival probability,
S(fa, t), by the integral83:

T (fa) =

∫ ∞
0

dt S(fa, t) .

By definition, S(fa, t) is the probability that the process
has not yet reached fmax at time t. S(fa, t) is known to
satisfy the backward Fokker-Planck equation83, that for
the OU process reads

∂S

∂t
= −f

a

τ

∂S

∂fa
+

(γv0)2

τ

∂2S

∂(fa)2
, (A1)

with the boundary conditions S(fmax, t) = 0. In the
following, for the sake of concision, we set a = (γv0)2. To
obtain a differential equation for T (fa), it is sufficient to
integrate Eq. (A1) in the interval 0 ≤ t <∞, and taking
into account that S(fa,∞) = 0 and S(fa, 0) = 1, we get:

− fa ∂T
∂fa

+ a
∂2T

∂x2
= −τ , (A2)

that has to be solved with the boundary conditions
T (fmax) = 0 and T ′(−∞) = 0. The first condition states
that a process started at the boundary fM is instanta-
neously absorbed and the second one that fa = −∞ acts
as a reflecting barrier, since very large fa-values are prac-
tically inaccessible due to the quadratic form of the po-
tential, f2/2τ . The solution of Eq. (A2) can be obtained
by quadrature, setting T ′(f) = w(f), and reads:

T (fa) =
τ

a

∫ fM

fa

dxex
2/(2a)

∫ x

−∞
dye−y

2/(2a) .

After performing the integration on y, one obtains:

T (fa) = τ

√
π

2a

∫ fM

fa

dx ex
2/(2a)

(
1+Erf

[
x√
2a

])
. (A3)

Finally, by evaluating the expression (A3) at fa = 0 and
after a change of variable in the integration, we obtain
Eq. (9), since T (fa = 0) = te.
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38É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco and
F. van Wijland, Physical review letters, 2016, 117, 038103.

39U. M. B. Marconi, A. Puglisi and C. Maggi, Scientific reports,
2017, 7, 1–14.

40U. M. B. Marconi, M. Paoluzzi and C. Maggi, Molecular Physics,
2016, 114, 2400–2410.

41R. Wittmann and J. M. Brader, EPL (Europhysics Letters),
2016, 114, 68004.

42R. Wittmann, F. Smallenburg and J. M. Brader, The Journal of
chemical physics, 2019, 150, 174908.

43P. Hänggi, P. Talkner and M. Borkovec, Reviews of modern
physics, 1990, 62, 251.

44V. I. Mel’nikov, Physics Reports, 1991, 209, 1–71.
45A. Sharma, R. Wittmann and J. M. Brader, Physical Review E,

2017, 95, 012115.
46A. Geiseler, P. Hänggi and G. Schmid, The European Physical

Journal B, 2016, 89, 1–7.
47A. Scacchi and A. Sharma, Molecular Physics, 2018, 116, 460–

464.
48E. Woillez, Y. Zhao, Y. Kafri, V. Lecomte and J. Tailleur, Phys-

ical review letters, 2019, 122, 258001.
49L. Caprini, U. Marini Bettolo Marconi, A. Puglisi and A. Vulpi-

ani, The Journal of chemical physics, 2019, 150, 024902.
50E. Woillez, Y. Kafri and V. Lecomte, Journal of Statistical Me-

chanics: Theory and Experiment, 2020, 2020, 063204.
51Y. Fily, The Journal of chemical physics, 2019, 150, 174906.
52T. Debnath and P. K. Ghosh, Phys. Chem. Chem. Phys., 2018,
20, 25069–25077.

53A. Scacchi, J. M. Brader and A. Sharma, Physical Review E,
2019, 100, 012601.

54A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit and
G. Schehr, Physical Review E, 2019, 99, 032132.

55D. Wexler, N. Gov, K. Ø. Rasmussen and G. Bel, Physical Review
Research, 2020, 2, 013003.

56S. Gu, T. Qian, H. Zhang and X. Zhou, Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 2020, 30, 053133.

57E. Woillez, Y. Kafri and N. S. Gov, Physical Review Letters,
2020, 124, 118002.

58S. Chaki and R. Chakrabarti, Soft Matter, 2020, 16, 7103–7115.
59B. Walter, G. Pruessner and G. Salbreux, Phys. Rev. Research,

2021, 3, 013075.
60K. S. Olsen, L. Angheluta and E. G. Flekkøy, Physical Review

Research, 2020, 2, 043314.
61M. Paoluzzi, L. Angelani and A. Puglisi, Physical Review E, 2020,
102, 042617.

62A. Biswas, J. M. Cruz, P. Parmananda and D. Das, Soft Matter,
2020, 16, 6138–6144.

63Z. Schuss, A. Singer and D. Holcman, Proceedings of the National
Academy of Sciences, 2007, 104, 16098–16103.

64E. Locatelli, F. Baldovin, E. Orlandini and M. Pierno, Physical
Review E, 2015, 91, 022109.

65L. Caprini, F. Cecconi and U. Marini Bettolo Marconi, The Jour-
nal of chemical physics, 2019, 150, 144903.

66P. K. Ghosh, The Journal of chemical physics, 2014, 141,
061102.

67L. Berthier, E. Flenner and G. Szamel, New Journal of Physics,
2017, 19, 125006.

68D. Mandal, K. Klymko and M. R. DeWeese, Physical review
letters, 2017, 119, 258001.

69L. Dabelow, S. Bo and R. Eichhorn, Physical Review X, 2019, 9,
021009.

70L. Caprini and U. Marini Bettolo Marconi, The Journal of Chem-
ical Physics, 2021, 154, 024902.

71D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini,
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