
Collective effects in confined Active Brownian Particles
Lorenzo Caprini*,1 Claudio Maggi,2 and Umberto Marini Bettolo Marconi1
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We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite
the absence of explicit interactions among the velocities or the active forces of different particles, the system
displays a transition from a disordered and stuck state to an ordered state of global collective motion where the
particles rotate persistently clockwise or anticlockwise. We describe this behavior by introducing a suitable
order parameter, the velocity polarization, measuring the global alignment of the particles’ velocities along the
tangential direction of the ring. We also measure the spatial velocity correlation function and its correlation
length to characterize the two states. In the rotating phase, the velocity correlation displays an algebraic
decay that is analytically predicted together with its correlation length while in the stuck regime the velocity
correlation decays exponentially with a correlation length that increases with the persistence time. In the
first case, the correlation (and, in particular, its correlation length) does not depend on the active force but
the system size only. The global collective motion, an effect caused by the interplay between finite-size,
periodicity, and persistent active forces, disappears as the size of the ring becomes infinite, suggesting that
this phenomenon does not correspond to a phase transition in the usual thermodynamic sense.

I. INTRODUCTION

Active matter is comprised of motile active particles
that can perform mechanical work at the expense of
metabolic or environmental energy which drives the sys-
tem far from equilibrium1–4. Active particles may display
fascinating collective phenomena5, self-organize in com-
plex spatial patterns and form oriented domains which
are responsible for coherent motion6. This is the case of
flocking birds7,8 at the macroscopic scale, or the so-called
bacterial turbulence, at the microscopic-scale9. The lat-
ter, characterized by spatial structures in the velocity
field10, has been originally observed in dense suspensions
of E. Coli11 and successively in other species of bacte-
ria12,13. Large spatial correlations of the velocity field
have been also observed in cell-monolayers14,15, where
the velocity correlation lengths may reach values hun-
dreds of times larger than the typical cell size16–18.

Current explanations of these collective phenomena are
based on macroscopic hydrodynamic-like theories9,19,20,
in the spirit of the Toner-Tu approach, or, at the micro-
scopic level, by invoking effective alignment interactions
in the dynamics of both cell monolayers14,21–23 and bac-
teria24. However, recently, the occurrence of finite size
domains where the particles are aligned and, in general,
spatial velocity correlations are detected, have been ob-
served also in active dynamics of spherical particles in
the absence of explicit alignment interactions, both in
phase-separated25 and homogeneous configurations26,27.
In particular, the models usually employed to describe
the behavior of spherical active particles - that are based
on independent active forces with a certain degree of per-
sistence and pure repulsive interactions - are enough to
reproduce the salient features of the spatial patterns of
the velocity field. In the infinite volume limit, the theory
of Refs.25,26 is able to predict an exponential-like shape of
the spatial velocity correlations with a correlation length

that increases with the persistence time25 and is reduced
by inertial forces28 and in the low-density regime26. The
theory, originally developed for active solid configura-
tions, assuming the 6-fold symmetry, has been recently
extended to active liquids29 where the correlation length
of the longitudinal modes is larger with respect to that
of the transversal modes.

On the experimental side, active cell monolayers, bac-
teria, and self-propelled colloidal Quincke rollers show a
rich behavior when the system is confined in circular ge-
ometries30–33. Indeed, these systems display a transition
from an isotropic phase where the velocities of each par-
ticle are slightly correlated to another polar phase where
the whole system rotates persistently in the clockwise or
anticlockwise direction, even forming a giant vortex span-
ning the whole system size. Specifically, self-propelling
Quincke rollers in narrow closed channels may also dis-
play coexistence between a polar liquid and a moving
solid front of particles34. Collective rotations were also
observed and studied in highly packed three-dimensional
grains enclosed in a cylindrical container35–37, where each
granular particle is activated by the vibration of the bot-
tom plate. Finally, water droplets confined in narrow
channels, which self-propel due to the Marangoni effect,
are able to display a collective motion moving as trains
of particles38.

The broad experimental interest in strongly confined
active particles motivates the present paper, where we
numerically study a system of two-dimensional active
disks confined by a narrow annulus. Here, we show that
explicit alignment interactions between the particle ve-
locities of active forces are not necessary to induce the
collective rotations, in analogy with the spatial correla-
tions observed in unconfined systems. The global align-
ment of the tangential velocity field spontaneously arises
from the interplay between repulsive interactions and
persistent active forces, in the regime of large persistence
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time and density. In the opposite regime, particles do not
align along with the whole system but form multiple do-
mains with correlated velocities. The paper is structured
as follows: in Sec. II, we introduce the model employed
to describe active particles confined on a ring-like geom-
etry, while, in Sec. III, we report the main numerical and
analytical results to explain and characterize both the
stuck and the rotating phase. In particular, we study the
polarization of the velocity field for different values of the
persistence time and system size. This study is corrobo-
rated by the numerical and analytical investigation of the
spatial velocity correlations (and their correlation length)
in both regimes. Finally, a summary of results and dis-
cussion concerning the possible applications of this study
is presented in the conclusions.

II. MODEL

We study a two-dimensional system of N interacting
active particles using the underdamped version of the
Active Brownian Particles (ABP) model39–46. The par-
ticles are spatially confined in an annular container cre-
ated by the presence of repulsive soft walls which will
be described in the following. The particle positions, xi,
and velocities, vi evolve according to the law:

ẋi = vi , (1a)

mv̇i = −γvi + Fi + Fwi + fai +
√

2γT ηi , (1b)

where the constant γ is the drag coefficient, m the parti-
cle mass, and T the solvent temperature, that is related
to the translational diffusion coefficient, Dt, through the
Einstein relation, γDt = T/m. The term ηi is a white
noise vector with zero average and unit variance account-
ing for the collisions between the solvent and the active
particles, such that 〈ηi(t)ηj(t′)〉 = δ(t−t′)δij . In analogy
with equilibrium colloids, the solvent exerts a Stokes drag
force proportional to the particle velocity. The particle
interactions are represented by the force Fi = −∇iUtot,
where Utot =

∑
i<j U(|xi − xj |) is a pairwise poten-

tial. The shape U is chosen as a shifted and truncated
Lennard-Jones potential:

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (2)

for r ≤ 21/6σ and zero otherwise. The constants ε
and σ determine the energy unit and the nominal parti-
cle diameter, respectively. The term Fwi represents the
force exerted by the walls of the container. This is an
annulus centered at the origin with inner radius, Rin,
and outer radius, Rout, so that the average radius is
R̄ = (Rout + Rin) and its width w = (Rout − Rin). The
repulsion exerted by each wall is modeled through the
same potential U(r), introduced in Eq. (2), pointing in
the radial direction both for the inner and outer walls.
Further details about the implementation of the wall po-
tentials are reported in Appendix A.

In the ABP model, the active force is chosen as a time-
dependent force, fai , with a stochastic evolution, that acts
locally on each particle47–52. At this level of description,
the details about the microscopic-system-dependent ori-
gin of fai are not specified. This force drives the system
out of equilibrium and determines a persistent motion
in a random direction lasting for a time smaller than a
characteristic persistence time, τ . According to the ABP
model, the active force, fai = f0ni, has constant modulus
f0 and a time-dependent orientation, ni = (cos θi, sin θi).
The angle θi evolves stochastically via a Brownian mo-
tion:

θ̇i =
√

2Drχi , (3)

where χi is a white noise with zero average and unit
variance and Dr = 1/τ determines the persistence time
of the active force. We also remark that f0 fixes the swim
velocity induced by the self-propulsion, namely v0 = f0

γ ,

which is smaller as γ is increased. The value of Dt is
chosen smaller than the effective diffusivity due to the
active force, Da = v2

0τ , as in typical experimental condi-
tions of active colloidal and bacterial suspensions1. We
also fix γ = 102 and m = 1 so that the inertial time reads
τI = m/γ = 10−2.

III. RESULTS

The dynamics (1) has been numerically integrated set-
ting the channel width so that it equals the particle di-
ameter. In this way, the system can be treated as an
effective one-dimensional system with packing fraction,
φ ≈ N/Lr̄, where L = 2πR̄ is the length of the ring
and r̄ the average distance between neighboring parti-
cles along the ring. In the numerical study, φ is kept
constant and it is chosen to be large enough so that the
system displays almost solid-like one-dimensional config-
urations. In this regime, the i-th particle interacts with
the (i+ 1)-th and (i− 1)-th particle which are separated
by an average distance r̄ = πR̄/N from the i-th particle.
Such a “chain” of active particles is positioned at dis-
tance R̄ = (Rin +Rout)/2 from the center of the circular
crown.

Fig. 1 (a) and (b) shows two different snapshot configu-
rations obtained for τ = 10−2, 10, respectively. The color
gradients are chosen according to the direction of the ac-
tive force confirming that they are randomly distributed.
Each black arrow draws the particle velocity and reveals
a fascinating scenario. For the larger τ value, the par-
ticle velocities are aligned along the tangential direction
forming a unique domain spanning the whole ring. In this
regime, the particles move coherently along the tangen-
tial direction revealing a clockwise (or an anti-clockwise)
motion even though there are no explicit forces respon-
sible for such a global alignment. This phenomenon dis-
appears for smaller values of τ where one can still ob-
serve the formation of small domains where the tangen-
tial component of the particle velocities are aligned even
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FIG. 1. Global velocity alignment. Panels (a) and (b): snapshot configurations on the plane x, y obtained for two different
values of τ = 10−2, 10, respectively. The colors represent the orientation of the particle active force, θi, while the black arrows
are the particle velocity (for presentation reasons, we draw 1/3 of the velocity vectors). Panel (c): modulus of the velocity
polarization, 〈|V |〉, as a function of τ , for different size of the systems, N = L/r̄, as indicated in the legend. Panel (d):
probability distribution of the polarization, P (V ) for different values of τ as reported in the legend, for N = 170. The other
parameters are T = 10−1, γ = 102, v0 = 50 and ε = 102.

if the system does not show collective rotations. Fur-
ther decrease of τ (corresponding to further increase of
Dr) allows the active system to behave as a passive one
without spatial velocity correlations and with effective
temperature ∼ v2

0γ/Dr, a limit that in the absence of in-
ertia has been investigated both for interacting and non-
interacting active systems53 (See also Refs.54,55 for recent
works on the effective temperature in active systems). In
what follows, we identify the large persistence regimes
as those values of τ showing collective rotations while
we call small persistence regimes the remaining smaller
values of τ .

A. Polarization of tangential velocity

To give a quantitative measure of the alignment de-
gree characterizing the spontaneous rotations occurring
in the system, we introduce the instantaneous collective

polarization of the velocity, V (t), defined as:

V (t) =
1

N

∑
i

vti(t)

|vti(t)|
, (4)

where vti is the tangential component of the velocity with
respect to the center of the annulus. The variable V (t)
is not to be confused with the polarization of the ac-
tive force that is trivially zero in this system because
the self-propulsions evolving through Eq. (3) are inde-
pendent of each other. V (t) has the following proper-
ties: i) its temporal average vanishes, 〈V 〉 = 0, since no
forces break the rotational symmetry for finite τ ii) V (t)
reads almost zero if vti(t) are independent of each other
while takes the values 1 and −1 for clockwise or anti-
clockwise rotating configurations, respectively, occurring
when the particle velocities are globally aligned. Simi-
larly to Ising-like models, V (t) can be interpreted as a
sort of magnetization and, thus, a useful way to take the
temporal average without losing the information about
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FIG. 2. Spatial velocity correlations. Spatial correlations of the tangential velocity, C(r), and its connected version, Cc(r), for
panel (a) and (b), respectively. The correlations are reported for different values of τ as shown in the legend of panel (b) which
is shared also by panel (a). The solid black curve in panel (a) plots the phenomenological curve 1 − r/r̄/N , while the solid
black line in panel (b) corresponds to the theoretical prediction (11). The dashed black lines in both panels are obtained from
the other theoretical prediction (9). Finally, the other black lines are eye-guides, the dashed horizontal one marks zero while
the dot-dashed vertical one determines the maximal distance that the system is allowed to explore corresponding to L = πR̄.
The other parameters are T = 10−1, γ = 102, v0 = 50, N = 170 and ε = 102.

the alignment is to consider the average of its absolute
value, 〈|V |〉. This observable is shown in Fig. 1 (c) as
a function of τ , at fixed active speed, v0, and for dif-
ferent system size L = r̄N and confirms the qualitative
scenario already observed qualitatively in the snapshot
configurations. In particular, for the whole range of sys-
tem size explored, 〈|V |〉 monotonically increases with τ ,
from a very small value, that is ∼ 0, until to a large
value ∼ 0.9 where the particles are well-aligned to each
other and the system shows spontaneous collective ro-
tations. This scenario is confirmed by the study of the
distribution of V (t) reported in Fig. 1 (d): for the smaller
values of τ of the graph, P(V ) has a Gaussian-like profile
peaked around the origin and, in this regime, increasing τ
simply broadens the distribution. In a further regime of
τ , the distribution develops pronounced deviation from
the Gaussian shape and, in particular, at some threshold
value, two symmetric peaks are formed and the distri-
bution becomes bimodal. In this regime, the increase
of τ , on the one hand, shifts the peaks towards 1 and
−1 and, on the other hand, produces higher and narrow
peaks with a consequent very small probability of having
V (t) ∼ 0. However, as expected by symmetry, clockwise
and anti-clockwise rotations occur with the same prob-
ability (even in the presence of collective rotations) as
confirmed by the shape of P(V ).

The system size does not change qualitatively the pic-
ture so far presented and, in particular, the monotonic
increase of 〈|V |〉 with τ . However, the larger L = r̄N ,
the smaller 〈|V |〉 (at fixed τ), so that the occurrence of
spontaneous rotations needs larger values of τ for increas-
ing L. This is a first clue that the scenario presented

(and, in particular, the collective phase) does not survive
the infinite volume limit and, thus, does not correspond
to a phase-transition in the usual thermodynamic sense.
Moreover, it is still remarkable that the finite size of the
system can induce a transition from a disordered state,
not showing global rotations, to an ordered state, char-
acterized by collective rotations, despite the absence of
explicit alignment interactions that couple particle veloc-
ities or active forces.

B. Spatial velocity correlations and correlation length

Disordered and ordered states are studied in terms
of the spatial connected correlation function, Cc(r)

56–58,
that provides the information about the spatial correla-
tion between observables at separation r. To capture the
effective one-dimensional aspect of the system, we study
the spatial correlation of the velocity component tangent
to the ring. We first introduce the correlation, C(r) as:

C(r) =
〈vt(r)vt(0)〉
〈(vt)2〉

, (5)

normalized with respect to the second moment of the
tangential velocity, 〈(vt)2〉, and the connected correlation
defined as:

Cc(r) =
〈δvt(r) δvt(0)〉
〈[δvt(0)]2〉

, (6)

where δvt(r) = vt(r)− v̄t represents the deviation of the
velocity variable from its spatial average v̄t = 1/N

∑
i v
t
i
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FIG. 3. Correlation length. Panel (a): correlation length, λ, as a function of τ , for different system size N = L/r̄ as indicated
in the legend. The dashed black horizontal line are obtained from Eq. (13) for each system size, while the solid black line plots
Eq. (9). The vertical dotted dashed lines are marked in correspondence of τ = τc for each system size according to the color
notation of the legend. The τc values are obtained from Eq. (17). Panel (b): λ as a function of N for different values of τ
as indicated in the legend. Here, the black dashed line is obtained from Eq. (13). The remaining parameters are T = 10−1,
γ = 102, v0 = 50 and ε = 102.

and r is the spatial coordinate along the ring. The argu-
ment of both correlations cannot exceed the maximal dis-
tance along with the ring, ∼ πR̄. We remark that using
the connected velocity correlation function one can define
the correlation length even in the case of non-ergodic sys-
tems and, in particular, when the spatial average, V (t),
over the whole system does not vanish56 (as found for
the larger values of τ). To include these possibilities, the
correlation length λ is defined as56:

λ =

∫ r0
0
r Cc(r) dr∫ r0

0
Cc(r) dr

. (7)

where r0 is the distance where Cc(r0) = 0. In the case of
an exponential decay where Cc(r0) ≥ 0, we assume r0 ≈
πR̄ (see Ref.58 for a recent review on such a method).

1. Small persistence regime

C(r) and Cc(r) are shown for several values of τ in
Fig. 2 (a) and (b), respectively. In the small τ regime
(i.e. when the system does not display global collective
rotations, 〈|V |〉 ≈ 0), C(r) = Cc(r). Both observables
decay exponentially with a typical correlation length that
increases with τ . The Fourier transform of the tangen-
tial velocity correlation has the following form (see Ap-
pendix C):

〈v̂t(q)v̂t(−q)〉 ∝ 1

1 + 2 `
2

r̄2 [1− cos(q)]
, (8)

where q = 2πj/N , with j = 0, 1, 2, ..., N − 1, is a
one-dimensional wave-vector belonging to the reciprocal

Fourier space and v̂t(q) is the Fourier transform of the
tangential velocity. We have also assumed T � v2

0 as ob-
served in the experiments (the full expression is reported
in Appendix C). The length scale, `, can be expressed in
terms of the model parameters:

`2 = r̄2U
′′(r̄)

m

τ2

1 + τ
τI

. (9)

and depends both on the density (via the second deriva-
tive of the potential and r̄) and on the typical relaxation
times governing the dynamics, namely m/γ and τ . The
q-space correlation (8) can be transformed back to real
space in the limit ` � L, as shown in Appendix D,
leading to an exponential behavior in agreement with
Fig. 2 (a) and (b):

Cc(r) = C(r) ∝ e−r/` . (10)

The prediction (10) is in good agreement with the nu-
merical data as revealed in Fig. 2 (a) and (b) for the
smaller values of τ reported in the numerical study (see
the comparison between colored data and dashed black
lines). This range depends on the system size and is
larger as L = r̄N is increased. We also remark that,
when the prediction (10) holds, the dynamical param-
eter ` coincides with the correlation length, λ, as can
be seen from its definition (7). This agreement is nu-
merically confirmed in Fig. 3 (a) comparing λ (colored
points) and the prediction (9) (solid black lines) for dif-
ferent values of the system size. The agreement between
data and theory holds up to a threshold value, τ∗ that
increases when L = r̄N is increased as expected from
the analysis of the previous section. In particular, in
this regime such that λ ≈ `, λ scales as τ/

√
1 + τ/τI so
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that λ ∝ τ1/2 in the overdamped limit when τI � τ and
λ ∝ τ in the opposite inertial regime such that τI � τ .
Moreover, in both cases, λ is not affected by the system
size. This correlation length determines the average size
of the domains where the velocities are correlated and,
thus, aligned. Besides, the condition λ = ` � L = πR̄,
holding in this regime, guarantees the presence of many
domains along with the whole ring with different velocity
directions, in such a way that V (t) ≈ 0.We also observe
that if λ = ` . r̄ the spatial velocity correlation are neg-
ligible (being smaller than the particle diameter) and the
system behaves as a passive system with almost uncor-
related particle velocities.

As a further remark, the correlation length λ depends
only on τ and the inertial time, m/γ. In agreement with
previous theoretical results on two-dimensional infinite
systems28, λ does depend neither on the swim velocity,
v0 nor on the solvent temperature T . In other words, the
dynamical phenomenon reported here has not thermal
origin and is a dynamical collective effect.

2. Large persistence regime

For the larger values of τ such that V (t) 6= 0, the
system is non-ergodic and the spatial velocity correla-
tions, shown in Fig. 2, reveal an interesting behavior.
For τ & τ∗, the decay becomes slower than exponen-
tial and, in particular, C(r) does not decay towards zero,
as emerged by Fig. 2 (a). This is because the system
displays a non-zero polarization of the velocity, as previ-
ously discussed, and confirms that when the spontaneous
rotations take place the particle velocities of the whole
systems are strongly correlated. When C(r) does not de-
cay to zero, Cc(r) starts differing from C(r). The profiles
of Cc(r) for different values of τ are reported in Fig. 2 (b)
for a given value of the system size taken as a reference
case. In particular Cc(r) goes below zero at some value
r0 which varies as τ is increased until a saturation oc-
curs. In this case, the profiles of Cc(r) for large values of
τ collapse onto the same curve (roughly for τ & 10−1).
This saturation profile displays an algebraic decay that
results in good agreement with the theoretical prediction
derived in Appendix E, which reads:

Cc(r) ≈ 1− r

r̄

π2

N
+
r2

r̄2

2π2

N2
. (11)

This expression holds up to O
(
r4/(N4r̄4)

)
and, thus,

becomes inaccurate as r/N increases but shows a good
agreement at least up to r ≈ r0 (the value such that
Cc(r0) = 0). For this reason, it can be employed in
the calculation of λ. The condition to get Eq. (11) is
that ` � L, a parameter that, in this regime, does not
represent anymore the correlation length of the system.
It is remarkable that, according to Eq. (11), Cc(r) only
depends on the system size, L = r̄N and on the distance
between neighboring particles, r̄. The other parameters,

such as persistence time, swim velocity, viscosity, and
temperature, are completely irrelevant in this regime.

Fig. 3 (a) and (b) shows λ as a function of τ for differ-
ent system size, L = r̄N , and as a function of L = r̄N for
different τ , respectively. As already observed, λ increases
with τ and does not depend on the system size for the
smaller values of τ in agreement with the theoretical pre-
diction (9). This holds up to a threshold value, τ∗, that
increases with L. A dependence on L = r̄N emerges for
τ > τ∗ (panel (a)) that lowers λ with respect to the value
predicted by Eq. (9). The smaller L, the larger the dis-
crepancy with this prediction. In practice, the size of the
system acts as a natural cut-off for the correlation length.
At some value of τ , namely τc, that is again determined
by the system size, the value of λ saturates to λc that is τ
independent and scales linearly with L, as clearly shown
in panel (b). The dependence on L becomes slower than
a linear function when τ < τc. The value of λc can be
theoretically predicted by its definition (7), using the ap-
proximated profile of Cc(r), namely Eq. (11). Indeed, it
is possible to analytically calculate, the value of r0 such
that Cc(r0) = 0, that reads:

r0 ≈ αL , (12)

where α = 1
4

(
1−

√
1− 8

π2

)
< 1 is a numerical factor

that does not depend on the parameters of the model
and on the system size. Plugging the prediction (12)
into the definition of λ (Eq. (7)) and using the explicit
expression for Cc(r), we obtain:

λ ≈ βL , (13)

where β is another numerical constant, depending neither
on system size nor on the parameters of the active force,
which reads:

β = α

(
1

2
− 1

12
π2α+

π2

6

(
1− π2

4

)
α2

)
+O(α3) . (14)

The prediction (13) is in fair agreement with the numer-
ical data as shown both in Fig. 3 (a) and (b), confirming
that, in this regimes of parameters, λ (as also Cc(r)) does
not depend on the parameters of the model but is purely
determined by the size of the system.

C. Absence of criticality in the infinite volume limit

Fig. 3 (a) and (b) indicate the absence of any criticality
or scale-free properties surviving to the infinite volume
limit. This finding can be rationalized by remarking that,
after expanding Eq. (8) for small q, the Fourier trans-
form of the tangential velocity correlation has the same
Ornstein-Zernike form as the mean-field spin-spin corre-
lation of the one-dimensional Ising model. However, at
variance with the Ising model, since `2 > 0 there are no
values of the parameters for which Eq. (8) diverges in the
infinite volume limit, i.e. for q values arbitrarily small. In
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other words, a system of ABP particles does not show any
criticality in the infinite volume limit for finite τ . In our
periodic geometry, this limit can be achieved by setting
R̄ → ∞, but, in practice, coincides with the condition
`� L, that leads to the exponential prediction (10).

Here, we focus attention on finite-size periodic systems
(similar to those experimentally analyzed in Refs.31–33),
where the regime `� L is accessible even experimentally.
In this case, the expression for 〈v̂(q)v̂(−q)〉 is dominated
by the contribution for small q. Subtracting the term
corresponding to the zero mode, q = 0, from 〈v̂(q)v̂(−q)〉
in Eq. (8), and taking into account the finite size of the
system, the first accessible value of q is qmin = 2π/N . By
defining δv̂(q) = v̂(q) − v̂(0), if the following condition
holds

`2 � 1/q2
min =

L2

4π2
= `2c , (15)

we can approximate

〈δv̂(q)δv̂(−q)〉 ∝ 1

`2[1− cos(q)]
, (16)

with q = (2π/N)j with j = 1, 2, ..., N − 1 (we remind
that we have assumed T � v2

0 to get Eq. (16)). We
also remark that, upon normalizing Eq. (16), the profile
of the normalized spatial velocity correlation does not
depend on the details of the model but just on the system
size as observed in the numerical study for the larger
values of τ . Therefore, the condition (15) allows us to
define a “crossover” value τc from `c, below which the
prediction (13) fails:

τc =
L2

8π2

γ

r̄2U ′′(r̄)

(
1 +

√
1 +

16π2

L2
r̄2U ′′(r̄)

m

γ2

)
. (17)

The predictions from (17) are plotted in Fig. 3 (a) as
vertical dashed dotted lines for each system size, L = r̄N .
This analysis confirms that Eq. (17) is a good marker
to select the range of τ values such that λ reaches its
plateau. We also remark that the value of τc increases as
L2 when subleading orders in powers of L are neglected.
This is a further confirmation that the predictions (11)
and (13) cannot hold in the infinite volume limit.

1. The finite-size scaling ansatz

The spatial velocity correlation function discussed so
far is characterized by two length scales that are the
infinite-system correlation length ` (given by Eq. (9)) and
the size of the system L. ` coincides with the correlation
length of the system, λ, in the small persistence regime,
where `� L. On the other hand, L is the only relevant
length scale in the large persistence regime, where `� L,
and λ becomes independent on the model parameters be-
ing only determined by L according to Eq. (13). Unfor-
tunately, in the regime of parameters such that ` ≈ L

FIG. 4. Rescaled correlation length, λ/(Lβ), as a function
of `/L, for different system size N = L/r̄ as indicated in
the legend. The dashed black horizontal lines are eye guides
marked in correspondence of zero and λ/(Lβ) = 1. The other
parameters are T = 10−1, γ = 102, v0 = 50 and ε = 102.

(roughly corresponding to τ∗ . τ . τc) λ cannot be eas-
ily predicted theoretically. However, by following stan-
dard scaling arguments59,60, we expect that a smooth
function of the ratio `/L describes the behavior of λ also
in this cross-over regime. To corroborate this hypothesis
we formulate the following finite-size scaling ansatz:

λ = Lg(`/L) , (18)

where g(`/L) is a function whose detailed form is un-
known except for its asymptotic behavior, that can be ex-
trapolated by our theoretical arguments: g(`/L) = const
as `/L → ∞ and g(`/L) = `/L when `/L → 0.
Note also that the consistency with Eq. (13) implies
g(`/L→∞) = β. The scaling law (18) is checked in
Fig. 4 where λ/(βL) is plotted as a function of `/L for
several values of τ and L. Data with different values of τ
but the same L are plotted with the same color, revealing
a good data collapse. This confirms the validity of the
ansatz (18) in the whole range of parameters analyzed so
far.

IV. CONCLUSION

In this article, we have studied a system of repulsive ac-
tive particles evolving with the underdamped ABP model
confined to an annular region by soft walls. Despite the
absence of explicit alignment interactions between the
particle velocities and/or active forces, the particles syn-
chronize showing the occurrence of velocity alignment
producing collective rotations. In particular, when the
persistence of the active force increases, our system shows
a transition from i) a stuck disordered state to ii) a glob-
ally ordered state characterized by a collective rotating
motion that alternates clockwise and anti-clockwise rota-
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tions. The state i) is characterized by an almost vanish-
ing polarization of the velocity and by exponential pro-
files of the spatial velocity correlations, whose correlation
length is independent of the system size and increases
with the persistence time in agreement with previous
studies. In the rotating state ii), the velocity polariza-
tion reaches large values and the system is non-ergodic
since the spatial average of the particle velocities does
not coincide with its temporal average. Moreover, the
connected version of the spatial velocity correlations as-
sumes negative values and displays a correlation length
that is uniquely determined by the system size and does
not depend on the parameters of the active force. How-
ever, these effects (and, in particular, the rotating states)
disappear in the infinite volume limit, and thus, they do
not signal a phase transition in the thermodynamic sense.
However, it is still remarkable that collective alignment
effects spontaneously emerge in finite-size systems con-
fined in a periodic geometry even in the absence of ex-
plicit alignment interactions.

It would also be interesting to study how these ef-
fective alignments affect the rectification efficiency in
asymmetric geometries. It has been indeed observed
both in experiments and simulations that the behavior
of ratchet motors driven by active particles can be quite
erratic61–63 unless the orientations of the active particles
are fixed64,65. It could be that the confinement-induced
collective alignment of active particles, as the one studied
in this paper, could be exploited to improve the perfor-
mances of these particles-based micromotors.
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Appendix A: Details on the wall geometry

In this appendix, we provide the technical details on
the wall implementation responsible for the confinement
of the particles into an annular region, that is realized
through a narrow circular crown. Both the outer and
the inner walls exert a force, Fwout and Fwinn, respectively,
that acts on each particle (in this appendix the particle
index is suppressed to simplify the notation). As stated
in Sec. II, the two forces are obtained from the truncated
and shifted Lennard Jones potential, U(r), described by
the profile (2) (also used to model the repulsion between
two active particles) and point radially with the respect
to the center of the ring which is placed at the origin.

Specifically, we have:

Fwout = −U ′(R− R̄out)R̂ (A1)

Fwinn = U ′(R− R̄inn)R̂ , (A2)

where R is the radial coordinate of the particle position
(calculated with respect to the center of the ring) and R̂ is
the unit versor pointing radially (outward with respect to
the origin). Rout and Rinn are the positions of the outer
and the inner radius of the circular crown, respectively.
U ′ is simply the derivative of the potential U with respect
to its argument. As a consequence, Fwinn is a force defined
for R > Rinn while Fwout for R < Rout that confine the
radial coordinate of each particle to be in the interval
(Rinn, Rout). Finally, the total force Fw appearing in the
dynamics of each particle (see Eq. (1)) is simply given by

Fw = Fwinn + Fwout .

We remark that in the effective one-dimensional system
such that w = Rout − Rinn . σ, the force Fw fixes the
radial coordinate to be R ≈ R̄ = (Rout + Rinn)/2 pre-
cluding the dynamics on the radial direction.

Appendix B: Radial and tangential coordinates

Before taking advantage of the circular geometry, it is
useful to manipulate the particle interactions, Fi. Fol-
lowing Refs.26,27, we truncate the interparticle potential,
Utot =

∑
i<j U(|xi−xj |) at the first non vanishing order

performing a Taylor expansion around the equilibrium
interparticle distance. Our effective one-dimensional ge-
ometry allows the particle i to interact only with the
particles i+ 1 and i− 1 (with the exceptions of the par-
ticle i = 1, which interacts with i = 2 and i = N , and
of the particle i = N , which interacts with i = 1 and
i = N − 1, because of the periodicity of the circular ge-
ometry). With these assumptions, Fi reads:

Fi ≈ −K(2xi − xi+1 − xi−1) ,

where the constant K is

K ≈ U ′′(r̄) .

The harmonic approximation of the potential works be-
cause we are considering systems with a large den-
sity such that neighboring particles could just oscillate
around their average interparticle distance, r̄, by small
deviations.

The circular symmetry of the geometry suggests nat-
ural coordinates to study the dynamics (1) and develop
a suitable theory. Since the particles are arranged on a
ring at distance R̄ from the origin, each particle position
is described by the radial coordinate Ri and the polar
angle ψi. The velocity vector of each particle, vi, could
be decomposed into its radial and tangential components
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vri and vti , respectively. With this choice, we have:

Ṙi = vri (B1)

Rψ̇i = vti (B2)

while the components of the velocity evolve with

v̇ri =
(vti)

2

Ri
+ F ri − γvri + (fai )r +

√
2γTηri + Fwi (B3)

v̇ti = −v
r
i v
r
i

Ri
+ F ti − γvti + (fai )t +

√
2γTηti . (B4)

In these equations, ηr and ηt are two white noises with
zero average and unit variance, while F ri and F ti are the
radial and tangential components of the force due to the
interparticle interactions. The same notation applies to
the active force components. Fwi is the force due to the
walls, constraining the particles on the ring, and acts
along with the radial component only.

When the motion is constrained to an annular region
(i.e. a ring) we can assume that v̇ri = 0, vri = 0 and
Ri = R̄ so that the dynamics is ruled only by Eq. (B5)
that further simplies and reads:

v̇ti = F ti − γvti + (fai )t +
√

2γTηti . (B5)

The tangential component of the force due to the repul-
sion of the other particles, Fi, can be expressed as:

F t = −ŷFx + x̂Fy ,

where x̂ = cosψ and ŷ = sinψ are unit vectors along the
x and y directions. Specifically, the tangential component
reads:

F ti ≈ −R̄K [sin (ψi − ψi+1) + sin (ψi − ψi−1)]

≈ −R̄K [2ψi − ψi+1 − ψi−1]

= −K [2ri − ri+1 − ri−1] .

(B6)

where ri = R̄ψi defines the tangential coordinate along
the ring of the i-th particle.

The expansion of the sinus function for small ∆ψi =
ψi − ψi+1, can be performed if the ring contains a large
number of particles so that ∆ψi is small. With this effec-
tive one-dimensional approximation, the dynamics reads:

v̇ti = −K [2ri − ri+1 − ri−1]− γvti + (fai )t +
√

2γTηti .
(B7)

To proceed further, it is convenient to switch from
the ABP to the Ornstein-Uhlenbeck particle (AOUP)
model4,66–69, approximating the active force of each par-
ticle, fai , (in particular, its tangential component) with
a one-dimensional Ornstein Uhlenbeck process:

τ ḟai = −fai + v0

√
2τwi (B8)

where τ = 1/Dr is the persistence time of the active force.
This strategy is particularly suitable to get analytical re-
sults both at the single-particle70,71 and at the collec-
tive level27,72–75. Indeed, AOUP and ABP active forces

are characterized by the same temporal autocorrelation
function72. This ingredient seems to be crucial and, as
a consequence, the AOUP can reproduce the main phe-
nomenology experienced by the ABP model such as the
accumulation near boundaries76–78 and the motility in-
duced phase separation73,79. In particular, it has been
recently employed to analytically predict the spatial pro-
file of the velocity correlations in dense homogeneous
systems of ABP26,27. The success of this approach has
been corroborated, in Ref80, by the direct comparison be-
tween the single-particle velocity distribution of ABP and
AOUP at high density, which reveals a good agreement
between the two models for a broad range of parameters.
For these reasons, we adopt the AOUP approximation to
proceed further.

Appendix C: Spatial velocity correlations in the Fourier
space

In this appendix, we derive the profile of the spa-
tial velocity correlation in the Fourier space, given by
Eq. (8). The dynamics (B5) with the force (B6) has
the same structure as the equation of motion of the
one-dimensional system (one-dimensional active parti-
cles on a line with periodic boundary conditions) stud-
ied in Ref.27, upon replacing the position on the line
with the position on the ring. In particular, it is con-
venient to introduce the displacement of the n-th parti-
cle, un = rn − nr̄, from its positions nr̄ on the ring and,
then to evaluate Eq. (C4) in Fourier space. The discrete
Fourier transforms of uj , of the tangential velocity, vj ,
and of the active force along the tangential direction, fa,
are defined as:

û(q) =
1

N

N∑
n=1

e−in·qun (C1)

v̂(q) =
1

N

N∑
n=1

e−in·qvn (C2)

f̂a(q) =
1

N

N∑
n=1

e−in·qfan , (C3)

where we have omitted the superscript t, for simplicity,
and q = 2πj/N , with j = 0, 1, 2, ..., N −1. The dynamics
in Fourier space assumes a simple form:

d

dt
û(q) = v̂(q) (C4)

d

dt
v̂(q) = −ω2(q)û(q)− γv̂(q) + f̂a(q) +

√
2γT η̂ (C5)

d

dt
f̂a(q) = − f̂

a(q)

τ
+

√
2

τ
v0 η̂ . (C6)

where the frequency ω2(q) reads:

ω2(q) = 2K [1− cos(q)] .
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The crucial difference between the analysis on the ring
and that on an infinite line (or with periodic boundary
conditions) regards the infinite volume limit. A ring of
radius R̄ can .accomodate a maximal number of particles
Nm fixed by the density of the system. This implies the
presence of a physical lower cutoff in Fourier space. The
one-dimensional theory developed in Ref.27, can be easily
adapted to the active underdamped case, following Ref.28

The tangential velocity correlation function between dif-
ferent particles in Fourier space reads:

〈v̂(q)v̂(−q)〉 =
T

m
+
f2

0

m

τ

γ

1

1 + τ/τi

1

1 + τ2

1+τ/τI
ω2(q)

(C7)

where we have omitted the superscript, t, for concise-
ness. This profile Eq. (C7) coincides with Eq. (8) if we
neglect the first term taking the limit T � f2

0 γ
2 = v2

0 .
Equation (C7) is of the form:

〈v̂(q)v̂(−q)〉 = A+
B

1 + 2
`2

r̄2
(1− cos q)

,

where

A =
T

m
� B, (C8)

B =
f2

0

m

τ

γ

1

1 + τ/τi
(C9)

and

`2 = r̄2 τ2

1 + τ/τI

K

m
.

The Fourier coefficient of this function are

〈vi+nvi〉 = Aδn,0 +B
∑
q

cos (qn)

1 + 2
`2

r̄2
(1− cos q)

(C10)

where q = 2πj/N with j = 0, ..., N −1. We switch to the
integral representation approximating the sum with an
integral and subtracting the mode with j = 0, we have:

〈δvi+nδvi〉 =
B

π

∫ π

2π/N

dq
cos (qn)

1 + 2
`2

r̄2
(1− cos q)

, (C11)

where δvt(r) = vt(r) − v̄t and δvt(0) = vt(0) − v̄t, with
v̄t = 1/N

∑
i v
t
i , i.e. the spatial average. The integration

limits of the integral provide the physical cutoff associ-
ated with the system.

Appendix D: Small persistence regime, `� L

In this appendix, we derive the spatial profile of Cc(r)
in the limit ` � L, i.e. Eq. (10). Let us start from the
infinite volume limit, which allows the approximation,

2π/N → 0. The discrete nature of n allows us to solve
the integrals (C11) for every n. Explicitly, the integral
can be evaluated in terms of algebraic functions that can
be calculated by introducing the variable:

u2 = 1 +
r̄2

2`2
= 1 +

m

2K τ2

1+τ/τI

.

Specifically, we get:

g1 = 〈vi+1vi〉 =
B

2`2

[
u2

√
u4 − 1

− 1

]
= (D1)

=
B

`2

[
u2 −

√
u4 − 1√

u4 − 1

]

g2 = 〈vi+2vi〉 =
B

2`2

[
−1 + 2u4

√
u4 − 1

− 2u2

]
= (D2)

=
B

2`2

(
u2 −

√
u4 − 1

)2
√
u4 − 1

...

gn = 〈vi+nvi〉 =
B

2`2

(
u2 −

√
u4 − 1

)n
√
u4 − 1

. (D3)

It is convenient to express gn in terms of the variable
p = r̄2/(2`2), obtaining:

gn =
B

2`2

(
1 + p−

√
(1 + p)2 − 1

)n
√

(1 + p)2 − 1
.

By performing a Taylor expansion for small p, holding in

the regime of parameters τ2

1+τ/τI
� m/K, we have:

gn ∝
(
1−
√

2
√
p
)n

√
2
√
p

.

Now, taking formally the limit n → ∞ (more physically
n� n(

√
2p) and thus 1/(

√
2p)� 1), we have:

gn ∝

(
1− n

√
2
√
p

n

)n
√

2
√
p

→ e−n
√

2p

√
2
√
p
,

that leads to the exponential profile of the prediction (10)
upon plugging the definition of p in the above expression:

C(r) ∝ exp
(
−nr̄
`

)
,

where

`2 = r̄2U
′′(r̄)

m

τ2

1 + τ
τI

.

We stress again that these results hold if we can consider
the limit N → 0 to perform the integral, a condition
holding only if `� L.
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Appendix E: Large persistence regime, `� L

In this appendix, we derive the analytical predictions
for Cc(r) and λ when `� L, namely Eqs. (11) and (13).
To obtain these predictions one should be able to ana-
lytically calculate the integral (C11) for every n without
assuming the condition N → ∞. To get analytical re-
sults, we approximate the integral (C11) as follows:

〈δviδvi+n〉 ≈
B

2

r̄2

`2

∫ π

2π/N

dq

π

cos (qn)

(1− cos q)
=
B

2

r̄2

`2
I(n,N)

(E1)
where we have assumed that T � v2

0 (in such a way that
A� B) and we can neglect the first term also for n = 0.
To get the approximation (E1), we have also assumed
that

`2

r̄2
� L2

4π2
(E2)

a condition that is fundamental to neglect the factor 1 in
the denominator of the integral (C11). This approxima-
tion can be performed because of the lower cutoff on the
integral, 2π/N that sets the minimal q value. Indeed, the
integral (E1) is divergent for q → 0 at variance with the
integral (C11) that is always finite.

The integral (E1) can be solved for generic n in terms
of a series of trigonometric functions and reads:

I(0, N) =
cos(π/N)

π sin(π/N)
(E3)

for n = 0, while for generic n > 0, we have:

I(n,N) =
n

N
(2−N) +

n

π

cos(π/N)

sin(π/N)

− n

π sin(π/N)

n−1∑
j=1

1

j(j + 1)
cos
[
(2j + 1)

π

N

]
.

(E4)
Assuming to deal with a large number of particles N ∼
102, 103 (as in the numerical work) the expression can be
further simplified assuming that N � 1:

I(n,N) =
n

N
(2−N) +

n

π2
N

− n

π2
N

n−1∑
j=1

1

j(j + 1)
cos
[
(2j + 1)

π

N

]
,

(E5)

where we have neglected orders 1/N . We can also rewrite
the cosine as an infinite series:

cos
[
(2j + 1)

π

N

]
= 1 +M [j] ,

where

M [j] =

∞∑
k=1

(−1)k

(2k)!
(2j + 1)2k

( π
N

)2k

.

In this way, the normalized spatial velocity correlation
reads:

〈δviδvi+n〉
〈δv2

i 〉
=
π2

N
I(n,N) (E6)

since I(0, N) ≈ N/π2 (neglecting orders 1/N) and, thus:

〈δviδvi+n〉
〈δv2

i 〉
=
π2n

N2
(2−N) + n− n

n−1∑
j=1

1 +M [j]

j(j + 1)

= 1 +
π2n

N2
(2−N)− n

n−1∑
j=1

M [j]

j(j + 1)

(E7)

where we have used that
∑n−1
j=1

1
j(j+1) = 1 − 1

n . To pro-

ceed further, we note that the leading contributions in the
remaining sum are those where j appears at the maximal
power in each of the infinite terms of the sum defining
M [j]. To fix the ideas, we evaluate the first two terms of
the sum:

−n
n−1∑
j=1

M [j]

j(j + 1)
= −n

(
−1

2

π2

N2

[
4n− 3− 1

n

]

+
π4

4!N4

[
16

3
n3 +

8

3
n− 21

3
− 1

n

])
+ ...

≈ 2
( n
N

)2

π2 − 2

9

( n
N

)4

π4 ,

(E8)

where we have neglected orders n/N2 and higher orders
(such as 1/N2, (n/N2)2, n/N4 and 1/N4). The other
terms involved in the sum contain higher-order powers
of the form (n/N)α, with α = 6, 8, 10, .... Plugging the
results together, we have:

〈δviδvi+n〉
〈δv2

i 〉
≈ 1− π2n

N
+ 2

( n
N

)2

π2 − 2

9

( n
N

)4

π4 (E9)

where we have just neglected orders (n/N)6 and sublead-
ing orders (n/N2). All the terms of the orders (n/N)k

can be summed together. In particular, we get

−n
n−1∑
j=1

M [j]

j(j + 1)
≈ −

∞∑
k=1

(−1)k

(2k)!

(
2πn

N

)2k
1

2k − 1

= −
[
1− cos

(
2πn

N

)
− 2πn

N
SinInt

(
2πn

N

)]
(E10)

that is exact unless of the subleading order n2k−1/N2k.
We can easily observe that, by expanding the cosine and
the Sinintegral function in powers of n/N , we get the
correcting terms appearing in the profile of the spatial
velocity correlation functions, i.e. Eq. (E9).

Switching to a continuous notation such that vi →
v(r), being r the coordinate along the ring, one obtains:

〈δv(r)δv(0)〉
〈δv2〉

= 1− r

r̄

π2

N
+ 2

( x

r̄N

)2

π2 (E11)
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FIG. 5. r0 as a function of τ for different values of the system
size L = r̄N , as indicated in the legend. The dashed black
lines are marked in correspondence with the values predicted
by Eq. (12). The other parameters are T = 10−1, γ = 102,
v0 = 50 and ε = 102.

where r̄ is the average distance between neighboring par-
ticles along the ring (and v ≡ vt is the tangential com-
ponent of the particle velocity). Eq. (E11) corresponds
to the prediction (11) and the main correction occurs at
the order (r/L)4.

Appendix F: Numerical study of the parameter r0

In this appendix, we study the parameter r0 to check
the relation (12), for completeness. We remind that r0

is defined as the distance at which the connected spa-
tial correlation of the velocity (here, its tangential com-
ponent with respect to the center of the ring) vanishes,
Cc(r0) = 0. Fig. (5) plots r0 as a function of τ for dif-
ferent values of the system size, L = r̄N . This observ-
able cannot be evaluated for small values of τ (for which
the system is in the small persistence regime). Indeed,
in that case, the correlation function has an exponential
decay and does not reach negative values. Thus, the plot
shows values such that τ ≥ 10−1. Each curve (at fixed
L = r̄N) increases with τ until it saturates when the sys-
tem enters the large persistence regime characterized by
collective rotations. The value of the plateau, which is de-
termined by the system size, is calculated using Eq. (12)
(see the comparison between colored points and dashed
black lines in Fig. (5)) showing a fair agreement between
data and the theoretical predictions for each system size.
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22B. Smeets, R. Alert, J. Pešek, I. Pagonabarraga, H. Ramon and
R. Vincent, Proceedings of the National Academy of Sciences,
2016, 113, 14621–14626.

23D. Sarkar, G. Gompper and J. Elgeti, Communications Physics,
2021, 4, 1–8.

24R. Großmann, P. Romanczuk, M. Bär and L. Schimansky-Geier,
Physical review letters, 2014, 113, 258104.

25L. Caprini, U. M. B. Marconi and A. Puglisi, Physical Review
Letters, 2020, 124, 078001.

26L. Caprini, U. M. B. Marconi, C. Maggi, M. Paoluzzi and
A. Puglisi, Physical Review Research, 2020, 2, 023321.

27L. Caprini and U. M. B. Marconi, Physical Review Research,
2020, 2, 033518.

28L. Caprini and U. M. B. Marconi, Soft Matter, 2021.
29G. Szamel and E. Flenner, arXiv preprint arXiv:2101.11768,

2021.
30A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot and

D. Bartolo, Nature, 2013, 503, 95–98.
31B. Zhang, B. Hilton, C. Short, A. Souslov and A. Snezhko, Phys-

ical Review Research, 2020, 2, 043225.
32S. Jain, V. M. Cachoux, G. H. Narayana, S. de Beco,

J. D’alessandro, V. Cellerin, T. Chen, M. L. Heuzé, P. Marcq,
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