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Ionic conduction in non-uniform nanopores and DNA translocation: a Nernst–Planck–Jacobs
one-dimensional description
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The conduction of an electrolyte solution in the presence of a DNA intruder in a synthetic charged pore is studied by
theoretical means. The pore conductivity is controlled by two competing mechanisms: the steric effect of the DNA decreases
the current and the extra-surface charges determine an increase in the number of charge carriers that increase the current.
By using a Nernst–Planck description of the electrolyte and a one-dimensional advection-diffusion equation similar to
the Jacobs–Zwanzig method, we obtain the characteristic curve within the local electroneutrality approximation. Such an
information allows predicting the variation of the conductance caused by the DNA intruder and determining the current
blockage/enhancement phase diagram.

Keywords: ionic conduction; DNA translocation; nanopores; electrodiffusion

1. Introduction

In the last few years, we have witnessed a huge activity in the
area termed nanofluidics whose applications range from the
construction of nanofluidic diodes, rectifying properties,
energy conversion, to biological ion channels, molecule de-
livery and sensing [1–5]. Understanding the physical mech-
anisms of ion transport in nanometre-sized channels is of
capital importance in order to develop efficient techniques
to detect and manipulate single biomolecules, which are
electrically charged in most cases of interest.

Nanochannels may provide selectivity to charged ions
and molecules, such as DNA, due to the presence of un-
screened surface charges at their walls. At distances less
than 100 nm and submolar electrolyte concentrations, elec-
trostatic screening may not be effective so that the surface
charges repel the co-ions and favour the passage of counte-
rions. In this regime, the conduction of electric charges is
governed by the surface charge and the effect of the electro-
osmosis, that is, the charge motion induced by the presence
of double layers near the walls, is always smaller than the
electrophoretic effect, although not always negligible [6].

When analysing the system and neglecting electro-
osmotic effects, the starting point is the three-dimensional
(3D) Poisson–Nernst–Planck (PNP) equation describing
the drift-diffusion of ions in liquid solutions under the influ-
ence of an electric driving field [7]. If this transport process
occurs in very narrow long pores, it is convenient to con-
sider a reduced description, where the important properties
of the system are expressed in terms of a one-dimensional

∗Corresponding author. Email: umberto.marinibettolo@unicam.it

effective PNP equation. This is achieved by means of a
homogenisation technique, which leads to a set of coupled
one-dimensional equations for the sectional averages of the
ionic concentrations and electric field. The method can also
handle channel inhomogeneities such as narrowings and/or
non uniformities in the chemical nature of their confining
surfaces. The idea goes back to Jacobs [8] who proposed an
effective one-dimensional representation of the diffusion
equation for channels of non-uniform section. His work
was continued by Zwanzig [9] and other authors [10–13],
who used the concept of entropic barriers. In the study of
ion channels, the same homogenisation techniques has also
been applied [14].

The resulting one-dimensional PNP model consists of
two diffusion equations for the species densities in the pres-
ence of the self-consistent electric potential. Such a poten-
tial is the solution of a Poisson problem whose source is the
instantaneous charge distribution. The equation is highly
non local and thus requires a numerical solution [15]. A
much faster solution is however possible in the high elec-
trolyte concentration regime, because the Debye screen-
ing length is small compared to the typical dimensions
of the system under scrutiny. It is therefore possible to re-
place the PNP equation by the simpler Nernst–Planck equa-
tion in conjunction with the local electroneutrality (LEN)
condition, which gives a local relation between the poten-
tial and the charge distribution. Many authors have used
this classical approximation [2,7,16–19], originally intro-
duced by Planck, to obtain simple descriptions of the solute

C© 2013 Taylor & Francis
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distribution and derive the current–voltage characteristic
curve. The method has been validated in a recent paper
compared to 3D simulations [20].

In the present paper, we apply the Nernst–Planck equa-
tion in the LEN approximation to derive the characteristic
curve for a model of pore with an access region modelled as
a funnel. We also consider how the pore resistance changes
with the diameter of the inner part and with the surface
charge and the presence of a cylindrical intruder modelling
a DNA molecule.

2. Nernst–Planck equation in the LEN
approximation

2.1. Model

In this section, we describe a simple model to predict
the change in conductivity due to the presence of double-
stranded DNA in a pore, by extending the methods intro-
duced elsewhere to a system of coaxial cylinders [20]. A
DNA molecule is assimilated to a very long thin cylindrical
of radius Ri and the pore is modelled by two funnels joined
by a cylindrical section with Rw(x) > Ri (Figure 1). Such
model has been shown to be an accurate representation of
double-stranded DNA in nanopores [21]. By this approach,
we account for two separate effects: (1) the reduced space
available to the ionic solution due to the presence of the
DNA molecule and (2) the extra contribution due to the
mobile charges brought about by the DNA surface charge.
Effect (1) tends to increase the resistance of the system,
whereas effect (2) tends to decrease it.

We consider a nanochannel comprises three sections:
an entrance and an exit region modelled as conical funnels
joined together by a straight cylindrical sector of radius Rw.
On the inner walls of the cylindrical section sits a charge of
surface density �w. At each end of the system, the charge
concentration of the electrolyte is fixed to the bulk value,
associated to two bulk reservoirs. We also model a cylindri-
cal intruder, coaxial with the first cylinder, of fixed radius
Ri < Rw and carrying a surface charge �i. An electrolyte
solution can flow in the cavity formed by the two subsys-
tems.

A standard approach to the investigation of the elec-
trophoretic transport is provided by the PNP model. One
considers the continuity equation for each ionic species α

present in solution,

∂nα(r, t)

∂t
+ ∇ · Jα(r, t) = 0 (1)

supplemented by the following constitutive equations for
the partial currents Jα ,

Jα(r, t) = −Dα

(
∇nα(r, t) − ezαnα(r, t)

kBT
E(r, t)

)
(2)

where Dα is the diffusion coefficient of each species, e is
the elementary charge, zα is the ionic valence, while the
electric field E = −∇V, where V is the electric potential,
is obtained from the charge distribution using the Poisson
equation,

∇ · E(r, t) = ze

ε

(
n+(r, t) − n−(r, t)

)
. (3)

2.2. Effective one-dimensional problem

If the motion of the ions occurs in very narrow cylindrical
channels, using the dominance of the motions along the
axial direction, it is possible to deduce the following one-
dimensional equation [20],

∂cα(x, t)

∂t
= Dα ∂

∂x

(
∂cα(x, t)

∂x
− ∂ ln S(x)

∂x
cα(x, t)

− ezα〈E(x, t)〉
kBT

cα(x, t)

)
, (4)

where cα(x, t) is related to the sectionally averaged density,

< nα(x, t) >≡ 1

S(x)

∫
S(x)

dS nα(r, t), (5)

by cα(x, t) = <nα(x, t) > S(x), and S(x) is the section
of the space between the cylinders or between the inner
cylinder and the funnels, at the axial position x. In addition,
〈E(x, t)〉 ≡ 1

S(x)

∫
S(x) dS Ex(r, t).

Due to the impermeability of the lateral boundaries, the
normal component of the current of each species vanishes
at the walls,

Jα(r, t) · n|S = 0. (6)

By restricting the discussion to the stationary regime,
∂nα (r,t)

∂t
= 0, the divergence of each current must vanish

∇ · Jα(r) = 0, (7)

and one finds that d
dx

( 〈J α
x (x)〉
Dα S(x)

) = 0, where 〈J α(x)〉 ≡
1

S(x)

∫
S(x) dS J α

x (r, t), so that the flux in the axial direction
is constant,

Iα = 〈J α(x)〉
Dα

S(x) = const. (8)

We use this result to write down the following ordinary
first-order differential equations for the stationary case,

dcα(x)

dx
− d ln S(x)

dx
cα(x, t) − ezα〈E(x)〉

kBT
cα(x) = −Iα.

(9)
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The solution of Equation (9) is

c±(x) = c±(0)
S(x)

S(0)
e∓φ(x) − I±e∓φ(x)S(x)

×
∫ x

0
dx ′e±φ(x ′) 1

S(x ′)
(10)

with

φ(x) = − e

kBT

∫ x

0
dx ′〈E(x ′)〉 . (11)

The equation for cα must be supplemented by the equation
for the axial component of the sectionally averaged electric
field, 〈E(x)〉, which fulfils the following equation:

d〈E(x)〉
dx

+ d ln S(x)

dx
〈E(x)〉

= 1

εS(x)

[
z+c+(x) + z−c−(x) + 2πRw(x)�w(x)

×
√

1 +
(

dRw(x)

dx

)2

+ 2πRi�i

]
, (12)

where the last two terms in Equation (12) have been ob-
tained using the relation between the electric field normal
to the surface and the surface charge to eliminate the radial
component E [20]. As a result, the surface charge appears
explicitly as a source term in Equation (12).

We notice that Equations (9) and (12) can be generalised
to the case of an arbitrary distribution of radii of co-axial
cylindrical objects. Let us consider a sequence of K radial
profiles Rα(x), with Rα(x) > Rα + 1(x), in a system with a
maximal available section πR2

0, taken to be constant. The
available section is S(x) = π

∑K
α=0(−1)αR2

α , subjected to
the condition S(x) > 0. For each profile Rα , we associate a
profile for the number of charges per unit area �α(x). Then,
Equation (9) remains valid and Equation (12) generalises
to

d〈E(x)〉
dx

+ d ln S(x)

dx
〈E(x)〉

= 1

εS(x)

[
z+c+(x) + z−c−(x) + 2π

K∑
α=1

Rα(x)�α(x)

×
√

1 +
(

dRα(x)

dx

)2
]
. (13)

In the present study, we particularise to S(x) ≡ π (R2
w(x) −

R2
i ). Few comments are in order: the presence of the square

root stems from the fact that the surface area of the walls
is proportional to the length of the line described by the
curve Rw(x); finally the second term on the left-hand side,
due to the sectional averaging, has the form predicted by

[22] and enforces the flux conservation of the electric field
in the absence of sources (see [20] for details).

Summarising, in the case of a binary electrolyte it is
necessary to solve a system of three coupled equations
for the ions and the electric field, namely Equation (4) for
time-dependent conditions, or Equation (9) for stationary
conditions, and Equation (12). In some applications, it is
however possible to employ approximations that avoid the
solution of the highly non-local Poisson equation.

In the literature, the main approaches to study transport
in charged pores are of two kinds and valid in two different
regimes: (1) when the pores are short with respect to the
Debye screening length, this is the Goldman approxima-
tion that assumes the axial component of the electric field
constant along the pore and (2) in the case where λD is
much smaller than the typical length of the channels one
can employ the LEN approximation. In practice, instead of
solving the Poisson equation for the electrostatic potential,
one determines an effective potential φ, which enforces the
LEN. This is achieved for electrolyte solutions of moderate
concentrations on a scale, which is somehow larger than
the atomic scale, therefore the LEN conditions hold true
in a coarse-grained sense. In the following, we will discuss
these approximations in detail.

For the sake of simplicity, we assume a binary elec-
trolyte with valences z− = −z+ = 1. To establish these
two very common approximations, it is useful to consider
the following non-dimensional variables in Equation (12):
Ẽ ≡ zeL

kBT
〈E(x)〉 and x̃ = x/L, where L is the longitudinal

size of the channel of interest [23]. Let us assume R0 to
be typical transversal size of the channel, πR2

w to be its
section and cb to be the bulk value of c± , c̃± ≡ c±

cb
and

R̃(x̃) ≡ Rw(x)
R0

. Thus, we rewrite Equation (12) as

dẼ(x̃)

dx̃
+ 2

R̃(x̃)

dR̃(x̃)

dx̃
Ẽ(x̃)

= L2

λ2
CπR̃2(x̃)

[ ∑
α

zαc̃α(x̃) + 2πR̃(x̃)�̃(x̃)

×

√√√√1 +
(

R0

L

dR̃(x̃)

dx̃

)2

+ 2π
Ri

R0
�i

]
, (14)

where λC =
√

εkBT
(ze)2

πR2
0

2cb
is a local screening length asso-

ciated with the channel and �̃ ≡ �R0/2cb. The first im-
portant limit occurs when λC/L → 0, which gives the
condition,

z(c+(x) − c−(x)) + 2πRw(x)�wall(x)

√
1 +

(
dRw(x)

dx

)2

+ 2πRi�i = 0, (15)
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the celebrated LEN condition that replaces the Poisson
equation by a much simpler constraint on the partial densi-
ties [7].

The opposite limit, λC/L → ∞, often considered in
membrane science, implies the condition of conservation of
the flux of the electric field in a tube of varying section, that
is, E(x)R2(x) = constant. Notice that in the case of con-
stant section, it reduces to the constant field approximation
introduced by Goldman in 1943 and Hodkin–Goldman–
Katz, forming the basis of the theory of thin membranes
[24].

The LEN approximation is widely employed in the de-
scription of electrolytic transport due to its relative sim-
plicity. Its main advantage is that for the two component
electrolyte at steady state, one can eliminate the charge-
density distribution in favour of the fixed surface charge
distribution and solve a very simple equation for the den-
sity profiles in terms of the electric current and the mass
current. Piecewise constant surface charge distributions can
be easily accounted for and it is possible to determine the
matching conditions for the density and the potential at the
junctures. The numerical solutions allow us to compute nu-
merically the conductance of channels of different shapes
through the I–V relation. They also allow to compute the
selectivity of a channel defined as the ratio between the cur-
rent due to the two species. The present method based on
LEN is a simple extension of the one proposed to discuss
the properties of nanofluidic diodes [1]. To the best of our
knowledge, the Nernst–Planck equations under the LEN
approximation, for which there exist many applications in
the case of uniform pores, have not been considered in the
presence of channels of non-uniform shapes.

Hereafter, we derive the consequences of the LEN con-
dition by first introducing new concentration variables,

cN (x) = c+(x) + c−(x) (16)

cQ(x) = c+(x) − c−(x), (17)

and currents

IN = (I+ + I−) (18)

IQ = (I+ − I−), (19)

and we rewrite the Nernst–Planck equations (9) as

dcN (x)

dx
− d ln S(x)

dx
cN (x) + φ′(x)cQ(x) = −IN (20)

dcQ(x)

dx
− d ln S(x)

dx
cQ(x) + φ′(x)cN (x) = −IQ. (21)

Since the LEN condition (Equation (15)) dictates that the
charge density obeys the following condition:

cQ(x) = −
[

2πRw(x)�wall(x)

√
1 +

(
dRw(x)

dx

)2

+ 2πRi�i

]
, (22)

we use Equation (21) to determine the potential φ(x).
Finally, cQ(x) and φ(x) are inserted in Equation (20) to
determine the concentration cN(x).

Coherently with the limit λC/L → 0, we assume that
regions of different surface charge are separated by very
thin interfaces. At each of these interface one has to apply
the appropriate juncture conditions for the concentrations
and the potential. A convenient modelling is to employ a
piecewise constant surface charge distribution, �(x). To
derive the juncture conditions, we integrate the resulting
equations using Equation (10) across a juncture,

c±(x + δ)

S(x + δ)
= c±(x − δ)

S(x − δ)

exp(∓(φ(x + δ))

exp(∓φ(x − δ))

− exp(∓φ(x + δ))
∫ x+δ

x−δ

dx ′ exp(±φ(x ′))

× I±
x (x ′)
S(x ′).

(23)

When the thickness of the boundary region δ ∝ λC → 0,
the integral vanishes and we obtain

c+(x + δ)c−(x + δ)

S2(x + δ)
= c+(x − δ)c−(x − δ)

S2(x − δ)
(24)

and


φ = φ(x + δ) − φ(x − δ)

= 1

2
ln

(
c−(x + δ)

c+(x + δ)

c+(x − δ)

c−(x − δ)

)
. (25)

Using the LEN condition Equation (15), we relate the
mass concentration per unit length on the two sides of the
boundary,

c2
N (x + δ) − c2

Q(x + δ)

S2(x + δ)
= c2

N (x − δ) − c2
Q(x − δ)

S2(x − δ)
.

(26)
Equations (24)–(26) can be viewed as a generalisation of
the standard Donnan relations [25,26] between the densities
and the potentials of two adjacent regions having different
ionic concentrations and/or different surface charges. To
this purpose, we notice that by setting c+(x − δ) = c−(x −
δ) = cbulk one immediately recovers the well-known
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relation 
φ = 1
2 ln( c−(x+δ)

c+(x+δ) ) giving the value of the Donnan
potential [26] resulting from the asymmetric distribution of
the charged species within the pore. Conditions (24)–(26)
together with Equation (20) can be used to derive the prop-
erties of pores of non-uniform section and non-uniform
charge.

Utilising such an approximation, it is possible to derive
numerical solutions under the form of simple recursive rela-
tions for the reduced concentration cN and for the potential
φ, at some specific grid point without solving the Poisson
equation. In practice, one computes the profile cN(x) for
fixed values of the charge and density current and IQ and IN

for a given piecewise constant charge–density distribution
cQ. The value of IN is determined using a shooting method
as to satisfy the boundary condition cN (L) = cout. Since the
value of V depends on the electric current IQ, one obtains
the I-V characteristic curve of the system.

2.3. Resistance

We discuss an important characteristic of a channel, namely
its electrical conductance in the case of channels of vary-
ing section. Variations in the ionic conductance upon the
insertion of a biological molecule in a nanopore are in fact
currently investigated as a tool for detecting and sequenc-
ing DNA molecules [27]. Interpretative models describing
the pores as cylindrical channels fail to describe the correct
dependence of the conductance on the pore width and one
has to include the region adjacent to the pore ends, which is
known to contribute to the conductance with the so-called
access conductance [28,29].

In the present modelling, we assimilate the two reservoir
chambers to two conical sections whose smallest radius is
R0 and Rw(x) = R0 ± B0(x − xI, O) with B = the slope
of the funnel and xI, O are the coordinates of the inlet and
of the outlet, respectively, of the cylindrical section joining
the chambers.

With the help of Equation (21), we derive the expression
for the resistance of a wire. For this purpose, we assume that
both the surface charge and the mass current, IN, vanish.
By assuming that the charge carriers have a nearly uniform
volume distribution, i.e. cN(x)/S(x)  2ns, where ns is the
bulk density of one species of ions, we obtain

V (xO) − V (xI ) = −kBT

ze

IQ

2ns

∫ xO

xI

dx
1

S(x)
. (27)

For the cylindrical region of the pore of length L and con-
stant radius R0, the resistance is

Rch = ρ0
L

π (R2
0 − R2

i )
, (28)

where ρ0 is the specific resistivity, related to the micro-
scopic parameters by ρ0 = kBT

D
1

2nse2 . In the limit Rw(xO)/R0

� 1, the funnel resistance is

Rfunnel = ρ0

π

1

2B0Ri

ln

(
1 + Ri

R0

1 − Ri

R0

)
, (29)

which reduces to the value Rfunnel  ρ0
1

πB0

1
R0

when the ra-
dius of the intruder vanishes. The total resistance of the
channel is Rtotal = Rch + 2Rfunnel, and for large values of
R0 this is dominated by the funnels, the so-called access re-
sistance. The total conductance of an open pore (i.e. without
the intruder), reads

G(R0) = π

ρ0

1
L

R2
0

+ 2
B0

1
R0

. (30)

Notice that the behaviour described by Equation (30) is
purely Ohmic and differs by a constant geometrical pref-
actor from the formula proposed by Dekker et al., who
considered an hourglass-shaped pore [27]. Both the access
resistance and the pore resistance increase due to the re-
duced effective section of the pore caused by the finiteness
of intruder radius Ri. With the help of Equation (27) we
compute, in the limit of short pores R0/L � 1, the differ-
ence between the conductances of the open pore and the
pore with the intruder and assuming Ri < R0 we obtain


G = G(R0) − G

(√
R2

0 − R2
i

)
≈ πB0

6

R2
i

ρ0 R0
(31)

that can be compared with Dekker’s phenomenological
formula [27],


GDekker = GDekker(R0) − GDekker

(√
R2

0 − R2
i

)

≈ 1

2

R2
i

ρ0R0
(32)

obtained by replacing the conductance in Equation (30) by
the following expression:

GDekker(R0) = π

ρ0

1
L

R2
0

+ π
2R0

, (33)

based on a different estimate of the access resistance. In
both approaches, the presence of the intruder determines
a decrease of the effective pore section and consequently
of the relative pore conductance, Gi, so that Gi < Gopen

for purely steric reasons. In the case of long pores, R0/L
� 1 that represents the typical experimental condition, we
obtain instead 
G  π

ρ0

1
L
R2

i . The case studied numerically
in the following belongs to the latter regime.

From the equations, it is apparent that the presence of
DNA results in an increase i the pore conductance [4].
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Figure 1. Sketch of the systems. Left: Channel without DNA intruder. Right: Channel with DNA intruder. The horizontal dashed lines
represent the regions where the surface charge density is present, while the vertical lines represent the boundaries of the system where the
electric potential is imposed.

The DNA charge determines an increase in the number of
mobile charge carriers due to the LEN condition, an effect
which can be quite relevant in the case of moderately dilute
solutions and small pore radii, comparable in size with the
DNA effective radius. We describe the presence of the non-
uniform surface charge (for not too large values of �w, or
for not too dilute solutions), by modifying the local carrier
density within the channel, changes from the bare value 2ns

to a new value 2n∗
s , which depends on the position within

the pore given by

n∗
s (x) =

√
n2

s +
(

�w(x)Rw(x) + �iRi

R2
w(x) − R2

i

)2

. (34)

The resistance within the cylindrical channel is modified
according to

Rch = kBT

D

1

2nch
s

L

π (R2
0 − R2

i )
, (35)

with nch
s ≡

√
n2

s + (�wR0+�iRi

R2
0−R2

i

)2. In the limit of vanishing

bulk salt concentration ns → 0, it reduces to

Rch = kBT

e2D

L

2π (�wR0 + �iRi)
(36)

and reaches a finite value, in agreement with the experimen-
tal observations [27]. In the following, we also examine the
conductance for pores of different radii as a function of the
salt concentration. Correspondingly, the funnel resistance
is modified as

Rfunnel = lim
|xR−xO |→∞

1

π

∫ xR

xO

dx

kBT
e2D

2n∗
s (x)(R2(x) − R2

i )
,

(37)
where xR is the position of the right boundary of the system.
In the following, we illustrate numerically the effect of the
DNA intruder on the pore conductance.

3. Applications involving channels of variable
section and non-uniform surface charge

In the present calculations, we adopt the physical parame-
ters related to DNA translocation set-ups, as reported in
[4], which are L = 34 nm, R0 = 5 nm, RDNA = 1.1 nm,
�i = −0.61 nm−2 and �w = −0.375 nm−2 with surface
charge densities being given in number of charges per unit
area, B0 = 1 and the total length of the system is 100 nm. The
molarity is varied between 0.2 and 1.2 M, D = 10−9 m2/s

is the value of the diffusion constant of the ions [5]. Using
these data, we obtained for a 1 M solution, the value ρ0 =
1.34 10−1 � m for a 1 M solution. In Figure 2, we illus-
trate the partial density profiles in a channel of non-uniform
shape. The presence of two steep regions is due to the sur-
face charge discontinuity at the two ends of the cylindrical

Figure 2. Counter-ion (solid) and co-ion (dashed) density pro-
files for a funnel pore for a current 4.8 nA. The profile enhance-
ment is due to the surface charge and is very small. The density
profiles are non-uniform outside the cylindrical region due to
the shape of the funnel. Parameters are L = 34 nm, R0 = 5 nm,
RDNA = 1.1 nm, B0 = 1, �DNA = −0.61 and �wall = −0.375
nm−2.
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Figure 3. Potential profile for a funnel pore corresponding to
three different currents, namely 4.8 nA (solid), 3.2 nA (dashed)
and 1.6 nA (dotted-dashed). The position of the potential well
corresponds to the region of fixed surface charge. This result is
similar to the one observed in the solution of the full PNP problem.
Parameters are the same as in Figure 2.

portion. Within the bottleneck, the concentration of co-ions
becomes smaller and the co-ions tend to be expelled due to
the surface charge. The ion concentration profiles are very
sensitive to the applied voltage and at high enough surface
charge, the polarisation effect appears to be narrowing.

In Figure 3, we display the potential profile for a funnel
pore. The well corresponds to the region where the system
is narrower and there is a fixed surface charge. The observed
jump is the result of the LEN condition and the disconti-
nuity in the global surface charge. It is the same kind of
discontinuity that appears in the treatments of nanofluidic
diodes based on the Donnan method [26].

In the case of rather diluted solutions the Debye length
cannot be assumed to be small and one has to consider
the solution of the Poisson equation, which was avoided by
the LEN approximation. Such a solution can be computed
by a successive over-relaxation method [30]. Alternatively,
one may seek for simple geometries Green’s function of the
Poisson–Boltzmann problem associated with the linearised
Equation (12). However, the general trend is well repro-
duced even by the LEN, which on the other hand cannot
capture the smooth behaviour of the full solution of the
Poisson equation.

In Figure 4, we display the I–V characteristic curve
for different molarities. The figure shows that the pore
resistance increases with decreasing concentration due to
the reduction of the charge carriers. On the other hand,
at very low concentrations as illustrated in Figure 5, the
conductance does not vanish for pores sufficiently small.
In fact, the presence of the surface charge in the narrow

Figure 4. I –V characteristic curve for different molarities, given
by 2 × 10−3 (solid), 10−3 (dashed), 5 × 10−4 (dotted-dashed)
and 10−4 M (dotted line). The resistance increases with decreas-
ing concentration. The remaining parameters are the same as in
Figure 2. Inset: I–V characteristic curve for the funnel with (solid
line) and without surface charge (dashed line) in the channel. The
resistance is higher without surface charge and the behaviour is
linear, and the presence of the surface charge only modifies the
resistance.

Figure 5. Absolute conductance vs. salt concentration. For van-
ishing salt concentrations, the conductance of the cylindrical
pore reaches a finite value, whereas the conductance of the fun-
nel section vanishes. Parameters are L = 34 nm, RDNA = 1.1 nm,
�DNA = −0.61 nm−2 and �wall = −0.375 nm−2. The different
curves correspond to values of the pore radii R0 = 5 nm and
R0 = 2.5 nm as indicated in the box legend. Notice that in the
case of the narrower channel the conductance in the presence of
the intruder becomes larger than without the intruder, due to the
higher effective surface charge.
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Figure 6. Relative conductance vs. salt concentration in moles.
The relative difference between the conductance with the DNA and
without intruder but with charge 
G ≡ (GDNA − Gopen)/Gopen

is plotted. Parameters are L = 34 nm, RDNA = 1.1 nm, �DNA =
−0.61 nm−2, �wall = −0.375 nm−2. The different curves corre-
spond to different values of the pore radii: R0 = 2.5 nm (dot-
dashed), R0 = 5 nm (dashed) and R0 = 10 nm (solid line).

regions determines by the mechanism of electroneutrality,
an accumulation of counterions in the same region. These
counterions are responsible for the so-called surface con-
duction phenomenon and give rise to a finite conductivity.

For the double funnel geometry illustrated above, we
observe that when the surface charge density exceeds a crit-
ical value, the resistance of the pore containing the DNA
molecule is lower than the bare resistance of the pore with-
out intruder. Such an increase in the conductance is caused
by the tendency of the system to accumulate counterions,
in order to screen the negative fixed surface charges, thus
enhancing the number of charge carriers. Eventually as the
surface to volume ratio of the channel increases, such an
effect beats the steric hindrance, and the value of the con-
ductance in the presence of the DNA intruder is higher than
without the DNA intruder, so that the ratio,


G ≡ GDNA − Gopen

Gopen

changes sign as shown in Figure 6. Qualitatively the shape
of the curve agrees with the experimental ones [27] and
we observe a crossover at molarities, which depend on the
radius of the pore. Since the Debye length for the present
system ranges from 0.3 nm to 1 nm for 1 M and 10−1 M
solutions, respectively, our approximations hold. The same
type of crossover is also evident in Figure 5 for the smaller
pore (2.5 nm), but not for the larger.

Figure 7. Phase diagram representing the radius at which the
difference between the conductance of the open pore and that of
the pore with DNA changes sign as a function of the concentration
of the electrolyte. Below each of the curves the conduction is en-
hanced whereas above it is hindered. The three curves are obtained
for three different choices of the charge of the intruder and walls,
that is by multiplying �DNA = −0.61 nm−2, �wall = −0.375 nm−2

by the factor α 0.2 (solid) , 0.5 (dashed) and 1 (dot-dashed). The
enhanced region shrinks if the surface charge decreases.

Finally, in Figure 7, we summarise the observations
by presenting a ‘phase diagram’ using the plane having
the concentration and the pore radius as coordinates. The
three curves correspond to different values of the total sur-
face charge in the channel. Each curve separates a region
where the conductance of the pore is enhanced with respect
to the conductance of the pore without a DNA molecule
from a region where the current is depleted. Such a di-
agram was also studied for a straight uniformly charged
cylinder by means of a Smoluchowski–Poisson–Boltzmann
approach [31] in a situation where the surface charge was
much smaller and thus the electro-osmotic effect dominant.

4. Conclusions

The goal of the present paper was to assess the modulation
of ionic currents in a charged nanopore with and without
the presence of a DNA molecule in the pore. Such set-up
is typically realised in experiments involving DNA translo-
cation in solid-state pores. Once a fully stretched DNA
molecule threads in the pore, data have revealed either an
enhancement or a (partial) blockage of ionic current. For
this purpose, we have elaborated an analytical method to
determine the charge distribution under transport condi-
tions and the characteristic curves. Such a model relies on
the homogenisation of the electrodiffusive equations and
the LEN condition.
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The method of homogenisation presented here is
general and finds applications in the analysis of charge
transport in confined geometries, therefore it is a viable and
efficient substitute of more detailed descriptions. In spite of
the approximations involved, it offers a valid opportunity
to deduce analytically the main physical characteristics
of ion transport in channels. In addition, the method can
be advantageously employed to precondition the solutions
of more computationally demanding methods, such as 3D
density functional calculations [32] and Lattice Boltzmann
solutions [33].

In the future, we plan to exploit this model to study
systems in contact with two reservoirs characterised by
different salt concentrations. In this case, the conductivity
in the reservoir of higher concentration is larger. Thus as
the current flows the potential drop is smaller than the side
at low concentration.
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