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SUMMARY. Nanofluidics, thanks to the recent progress in the fabrication of micro and nanode-
vices, has become an intense research field. Confined fluids in nanoscale geometries exhibit physical
behaviors that, in several cases, largely differ frommacroscale dynamics. The crucial differences are:
i) in nanoscale systems the usual mathematical description for continuum fluid dynamics (Navier-
Stokes equation), often fails to reproduce the correct fluid dynamics behavior and ii) in a number of
crucial applications the focus is on the motion of a single macromolecule. These occurrences natu-
rally call for an atomistic description of the whole system, which however remains currently limited
to relatively small systems (tens of nm simulated for hundreds of ns). The simulation of the fluid mo-
tion at nanoscale is here addressed via a recent developed mesoscale approach. In particular the flow
of an electrolyte through a nano channel is analyzed. The system represent an experimentally well
characterized solid-state nanopore employed for DNA and protein translocation. The simulations
are aimed at estimating the effect of DNA translocation on mass and charge flow rate potentially
shedding light on the molecular mechanism behind recent experimental observations.

1 INTRODUCTION
Nanopore-based protocols for macromolecule detection and characterization are a promising

technology for the development of sensors and devices able to operate at single-molecule level.
Their working principle is, in essence, very simple. A nanopore connects two reservoirs containing
an electrolyte solution and an applied voltage across the chambers generates a net ion current. When
one of the macromolecules dispersed in the solution engages the pore, the ion flux is altered and
a change in the current is measured. The intensity, the sign and the duration of the current drop
depend on the physico-chemical properties of the passing molecule. Hence the current track can,
in principle, provide precise information on a single-molecule level. In the past decade significant
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efforts have been devoted to nanopore DNA sequencing [1, 2] and recently also proteomic applica-
tions have started being explored [3, 4, 5, 6, 7, 8, 9] using both solid-state and biological pores. In
this contribution we deal with the mass and charge transport in a solid state nanopore of diameter
D = 6nm and length L = 20nm. The size is selected in order to resemble the typical size of solid
state nanopores that are commonly drilled using FIB or TEM [10, 11] in 20 nm wide silicon nitride
(SiN ) membranes. In particular we analyze via numerical simulation the effect of a charge distribu-
tion at the pore entrance on the mass and charge fluxes across the pore, as a preliminary investigation
of the current alteration due to the presence of charged macromolecule, in particular the negatively
charged DNA molecule, stuck in front of the pore on the way of translocating.
The contribution is structured as follows: in the section (2) the general electrohydrodynamical

model is formulated in term of partial differential equation (Navier-Stokes, Charge transport, Pois-
son equation) followed by the brief description of the Lattice-Boltzmann (LB) approach used for
molecular simulations. In section 3 the preliminary results are presented and discussed.

2 THE MODEL
In this section we discuss the field equations that, under the continuum assumption, properly

describe the system, the system geometry and the relevant boundary conditions.

2.1 Field equations
The motion of a dilute electrolyte where only two carrier species are present is described by

the following set of partial differential equations for velocity u, pressure p, number density n± and
electric E fields defined in the domain D sketched in Fig. 1:

i) mass conservation
∇ · u = 0 (1)

ii) incompressible Navier-Stokes equation

∂u

∂t
+ u ·∇u = −

1

ρ
∇p− ν∇2

u+
σe

ρ
E (2)

iii) transport equations for the two charged species

∂n±

∂t
+ u ·∇n± = −∇ ·

[

D±∇n± + n±µ±ez±E
]

(3)

iv) Poisson equation
∇2Φ = −

σe

ε
(4)

where, ρ is the fluid density, ν is the kinematic viscosity of the solvent, n+ and n− are the number
concentrations of the positive and negative charge carriers, respectively, σe = e(z+n+ − z−n−), Φ
is the electrical potential such that E = −∇Φ, D+ and D− the diffusion coefficient of the carriers
and µ+ and µ− their nobilities, e the electron charge, z± the ion valence, ε = ε0εe, with ε0 the
vacuum dielectric constant and εe the relative permittivity of the solution. The specific assumptions
underling the presented model deserve some detailed discussion. As a first comment the description
in terms of continuum fields does not take into account the motion of individual molecules. Several
studies indicate that for simple fluids this is a good description up to the nanoscale [12, 13, 14]. Since
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the model is assumed to be valid for dilute solutions, all the fluid properties (ν, εr, ρ) are taken to be
constant (i.e. independent of the charge carrier concentrations) and equal to solvent one (water). In
the following, for the sake of simplicity, the electrolytic solution is taken to be symmetric, i.e. the
positive and negative carriers have identical valence z+ = z− and mobility, i.e. µ+ = µ−.
The model is completed by a prescribed negatively charged distribution of overall intensity Q

fixed in front of the pore mouth. This prescribed charge distribution is required to account for the
presence of a charged macromolecule, e.g. DNA, stuck in front of the pore prior to translocation.
Its presence is expected to alter the currents flowing through the pore by electrostatic interactions.
After the present preliminary study, the same tools here introduced will allow to simulate the entire
translocation process for a realist model of a DNA molecule [15].

2.2 Boundary condition
In micro and nanofluidic devices in general the proper boundary condition for the tangential com-

ponent of the velocity u is the Navier boundary condition that for planar wall reads Vs = Ls∂uπ/∂n
where Vs is the fluid velocity relative to the wall, uπ the tangential component of the velocity
field, n the direction normal to the wall and Ls the so called slip length[16]. Atomistic simulation
and recent experiments suggest that the slip length Ls for water on smooth surfaces hardly exceed
1 − 2nm[17, 18, 19, 20]. In the system we are interested in, the diameter of the pore is 6nm. At
these scales slip lengths on the order of 1nm, describing (macroscopically) small deviations from
the no-slip boundary condition, can lead to significant modifications in the flow pattern. However, in
general, the materials usually employed for fabricating the nanopore are hydrophilic, thus allowing
to safely assume the usual no-slip boundary condition.
Concerning the Poisson equation, Gauss law implies the tangential component ofE to be contin-

uous at the liquid-solid interface, i.e. (Ee)π = (Ew)π where the subscript e denotes the electrolyte
side and w the solid wall side, and a jump in the normal component

ε0εeEe · n̂ = ε0εwEw · n̂+ qw , (5)

where qw is the surface charge distribution at the interface. In practical cases the huge disparity
in the dielectric constants, εe # 80 for liquid water and εw ∼ 5 (εw # 3.9 for silicon oxide and
εw # 7.9 for silicon nitride) for the wall, allows to simplify Eq. (5) in the form

∂Φ

∂n
= −

qw
ε0εe

. (6)

Fully developed flow is assumed at the inlet (blue, in Fig.1) and outlet (red) sections, modeled
as electrodes at prescribed electrical potential (φin = 0 and φout = ∆V ). Dirichlet boundary
conditions enforce the bulk concentration nbulk of the two charged species at inlet and outlet, namely
n+
in = n+

out = n−

in = n−
out.

2.3 Numerical approach

The dynamics described by the system of equation (1-4) is simulated by a version of the so-called
Lattice Boltzmann Method [21, 15], a computational technique inspired to the classical Boltzmann

3



L
D

Lx

- +Q

Figure 1: System set-up. The cylindrical nanopore (diameter D, length L) connects two reservoirs
(diameter 3D, length L each). A voltage is applied between inlet and outlet (blue –negative– and
red –positive– lines). The negative charge distribution Q is positioned at the pore entrance.

equation for the evolution of a particle population. The macroscopic fields are recovered by properly
averaging the particle microscopic distribution. Space is discretized in a cubic mesh of size a and
the continuous distribution of microscopic velocity is restricted to a set of 19 values, describing the
streaming from one cell to one of its 6 first neighbors and 12 second neighbors completed by the null
velocity state for particles at rest. A collision step accounts for determining the microscopic velocity.
In the present case [22, 23, 24], three different particle populations are evolved corresponding to the
neutral solvent and the two charged species. In addition a Poisson solver is used for the electric
field. The prescribed charge distribution stuck in front of the pore is discretized as a system of
regularized point-wise charges. From the three distributions one can extract information on the
resulting macroscopic fields, e.g. overall solution velocity u or the velocity of each single species,
u0, u+, and u−.

3 NUMERICAL RESULTS
Before presenting the data we briefly report the units of measurement employed. Lengths are

measured in units of lattice spacing. Time is measured in units of the discrete step of the lat-
tice Boltzmann solver. Electron charge e is assumed to be unitary as well as the bulk fluid den-
sity ρ. The thermal energy kBT is specified by fixing the thermal velocity whose value is vT =
(kBT/m)1/2 = 1/31/2 in lattice units [22]. The dielectric constant is imposed via the Bjerrum
length, lB = e2/(4πεkBT ). In order to map the code units in actual ones, as a first step it is needed
to set the lattice length, in our case for instance one lattice length corresponds to 0.2nm. Then map-
ping the fluid viscosity it is possible to express the value of the lattice Boltzmann solver time unit
in seconds. Values of electron charge and liquid mass density allow to convert all the other quanti-
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Figure 2: Currents as a function of the applied voltage∆V forQ = 0. It is apparent that the positive
and negative carries contribute to the correct equally, i.e. their current are equal in magnitude and
opposite in sign.

ties such as potential drop and electric field. For the purpose of the present preliminary study it is
not needed to map the results in actual units, hence in the following data are reported in the above
defined lattice units.
The observables we focus on are the mass fluxes defined as

Mα =
1

L

∫

uα
xρ

αdV , (7)

where α = +,−, 0 refers to the species considered and the mass density is simply ρα = nαmα

where mα is the mass of the single molecule of each species. The total mass flux is M = M0 +
M+ + M−. The resulting electric current I can be expressed as the sum of the partial electric
currents, I = |I+ − I−|, where I± = e(z±M±/m±) where e is the electron charge here assumed
equal to unity. Here we assume z± = 1.
As a first step in our analysis we verify the behavior of our observables in absence of the pre-

scribed charge Q. Fig. 2 reports I+ and I− as a function of the applied voltage ∆V . It is apparent
that the two currents, I+ and I−, have the same intensity and opposite signs (towards the negative
electrode for +, towards the positive one for −, implying that the electric currents have the same
direction once the sign of the transported charge is included). This is expected in a system where
the two charge carriers are symmetric (same bulk concentration, same mobilities, same ion valence).
The solvent is at rest, e.g. M0 = 0, since locally, the forces exerted by the two opposed charged
species on the neutral one mutually cancel out, due to the symmetry of the electrolyte. The currents
I± appear to be proportional to the applied potential, implying that the usual Ohm’s law for electric
current holds in the voltage range explored.
The effect on the currents of the presence of the static negative charge Q in front of the pore

mouth, see the sketch in Fig. 1, is summarized in Fig. 3 for several simulations at changing the
intensity of the charge Q and constant applied voltage. In panel the left panel of the figure the
currents I± are plotted as function of the charge intensity. The quantities reported in the figure are
the absolute values of the currents, since I+ concerns the positively charged species which moves
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Figure 3: Left) Current I as a function of the absolute value of the (negative) chargeQ for∆V = 3.
Right. Total electrical current I and mass flow rateM .

in the negative x-direction, from the positive to the negative electrode (i.e. I+ ≤ 0). Analogously
I− ≥ 0. As already discussed, at Q = 0 the two current intensities are identical, see also Fig. 2.
The presence of an increasingly negative charge Q induces the increase of the local number density
of positive charge carriers. Consistently |I+| increases, while at the same time |I−| decreases. The
decrease of |I−| is however larger than the increase in |I+|, resulting in the monotone decrease
of the resulting electric current I = |I+ − I−|, see the green circles in the right panel of the
figure. The unbalance between the mass fluxes of the two charge carriers induces a net force on
the neutral species. As a consequence an overall electro-osmotic flux, dominated by the neutral,
abundant species, is generated. The fluid streams in the direction of the mass flux of the positive
charge carriers towards the negative electrode (i.e. the mass flux is negative, see the scale on the
second ordinate axis on the right of the plot). Fig. 4 reports the concentration and the flux of positive
and negative carriers for Q = −100. It is apparent that the present of the charge alters the carrier
distribution.

4 CONCLUSIONS
The present study provided evidence of the substantial effect a negative charge stationary at the

pore mouth may have on the mass and charge transport through a nanopore subject to a voltage.
Interestingly the resulting electric current is found to decrease as a function of the charge strength
|Q|. The unbalance between the mass flux of the two oppositely charge carriers gives rise to a
net electro-osmotic flux, driven by the dominating mass flux of the positive free charges. These
preliminary results open the way to the application of the proposed meso-scale approach to simulate
and interpret the experimentally observed current signature associated to the interaction of a neatly
charged bio-molecule (e.g. DNA) and solid state nanopores.
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Figure 4: Upper panels: n+ (left) and n− (right) fields. It is apparent that the presence of the negative
charge outside the pore, alters the carrier distributions. In particular n+ in the pore is larger than the
bulk value while the opposite happens for n−. Lower panels: x−component of the flux of n+ (left)
and n− specie.
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