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Active particles under confinement and effective
force generation among surfaces

Lorenzo Caprini a and Umberto Marini Bettolo Marconi *bc

We consider the effect of geometric confinement on the steady-state properties of a one-dimensional

active suspension subject to thermal noise. The random active force is modeled by an Ornstein–

Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing

equations, and analytically by solving the associated Fokker–Planck equation under suitable approximations.

The comparison between the two approaches displays a fairly good agreement and in particular, we

show that the Fokker–Planck approach can predict the structure of the system both in the wall region

and in the bulk-like region where the surface forces are negligible. The simultaneous presence of

thermal noise and active forces determines the formation of a layer, extending from the walls towards

the bulk, where the system exhibits polar order. We relate the presence of such ordering to the

mechanical pressure exerted on the container’s walls and show how it depends on the separation of the

boundaries and determines a Casimir-like attractive force mediated by the active suspension.

1 Introduction

Self-propelled particles, motile organisms such as bacteria, and
artificial micro-swimmers display a characteristic tendency to
aggregate, a phenomenon which is currently the object of vivid
interest among physicists and biologists.1–4 Unlike standard
molecular systems, where aggregation is induced by attractive
forces and/or entropic interactions5 due to volume exclusion,
active particles may spontaneously produce regions of higher
density because their dynamical properties change if they interact
with other particles. These phenomena have been investigated
experimentally, by numerical simulation and theoretically6,7 and
led in the case of self-propelled particles endowed with only
repulsive inter-particle interactions to the concept of motility
induced phase separation (MIPS)8 analogous to the liquid–gas
coexistence in standard liquids. On the other hand, the accu-
mulation phenomenon in the proximity of a purely repulsive
confining wall, i.e. the aggregation with an external object,
occurs even when active particles are not subject to mutual
interactions.9 Such a behavior is of great practical importance
since experiments are often conducted on systems where the
size of the experimental apparatus could be of an order of
magnitude comparable to the persistence length of the active
particles, which is the typical distance over which particle’s
orientation persists. The explanation of the underlying mechanism

attributes the accumulation to the reduction of the particles’
mobility in the presence of the walls and is captured by some
existing theories.10–15

Confining surfaces besides triggering particle accumulation in a
very thin adjacent region, may also create a diffuse layer where
neither the density is constant nor polar order field vanishes as in
bulk systems. In a series of recent articles Brady and coworkers16,17

have thoroughly investigated such an inhomogeneous layer by
means of a mesoscopic approach where these effects were
captured by a simple system of differential equations and the
action of the walls was taken into account by prescribing the
appropriate boundary conditions.

In the present article, we consider the effect of a confining
potential, f(x), varying along the single x-direction, on the
steady-state behavior of an assembly of non-interacting self-
propelled particles described by means of the so-called active
Ornstein–Uhlenbeck particle (AOUP) model18,19 The AOUP is
driven by an active force of variable intensity and direction
assimilated to a Gaussian colored noise process20 sharing the
same exponential two-time correlator as the active force of
the ABP model.

The characteristic time, t, of the process represents the
average persistence of the trajectory along a given spatial
direction, i.e. the crossover time from a ballistic to a diffusive
behavior. In fact, in both models the mean square displace-
ment evolves ballistically at short time and diffusively at long
times with an effective diffusion coefficient given by the sum
of an active contribution, Da plus a thermal contribution, Dt,
stemming from the microscopic collisions with the solvent
molecules. Regarding the difference between the two models,
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in ABP the absolute value of the active speed is constant,
whereas in AOUP each component independently fluctuates
according to a Gaussian distribution. Our choice to use the
AOUP, instead of other popular alternatives such as the ABP and
the Run and Tumble21 models is motivated by the possibility of
applying straightaway methods and concepts similar to those
employed in the study of the Kramers equation.22 In the last
few years, approximate treatments of the AOUP, such as the
Fox method of ref. 23 and 24 and the so-called unified colored
noise approximation (UCNA),25 have been developed: by using
an adiabatic approximation, which is tantamount to impose
a detailed balance condition,26 the UCNA allowed making
reasonably accurate predictions about the steady-state proper-
ties of a rather general class of active systems.27,28 Nevertheless,
the UCNA results regarding the structure of active suspensions
in the proximity of a confining surface disagree with those
obtained by mesoscopic treatments of the ABP model, where
the container wall is treated as an infinitely sharp interface and
a set of boundary conditions on the density and polar fields are
imposed on it. Such a discrepancy is more severe when the
finite diffusivity of the solvent, Dt, is not negligible and a polar
order appears close to the surface. In the present theory, we go
beyond the UCNA and do not impose the detailed balance
condition in deriving the form of the steady-state solution. In
contrast with mesoscopic approaches,10,16,29 we treat the wall
and bulk regions on equal footing and instead of considering
the wall as a sharp boundary30 we study the distribution
function in each region thus providing a microscopic descrip-
tion of why and how particles accumulate at the boundaries
and form a diffuse layer near it.

At variance with the ABP model which is well defined only for
two or more dimensions, the AOUP model can be implemented
also in one-dimension. In a system with a simple geometry, such
as infinite parallel plates – a situation which can be realized
assuming periodic boundary conditions – the coordinates
parallel to the plate play just a minor role, as a constant factor
in the definition of the control parameters. In practice, provided
we restrict to a region far enough from the edges of the plates the
present treatment applies also to the case of finite plates and the
one-dimensional description is valid.

Besides clarifying the mechanism causing the enhancement
of the density and polar order near the walls in self-propelled
systems, we discuss the role of the activity in determining the
forces that the particles exert on inclusions, a topic of current
interest. In fact, several groups by numerical simulation of RnT,31

ABP32 and swimmer suspensions,33 have recently reported
evidence about effective interactions arising between two plates
placed in a bath of active particles, a phenomenon akin to
the Casimir-like attractive force34 observed in the presence of
non-equilibrium diffusive dynamics.35,36

The paper is organized as follows: in Section 2, we introduce
the model of confined active particles and consider a truncated
parabolic confining potential.37,38 In Section 3, we illustrate the
numerical method and study the model by numerical simulations,
in Section 4 we present our theory which goes beyond the UCNA
concerning an important aspect: for a system of non-interacting

particles the UCNA predicts that the distribution function has a
local dependence on the potential, thus if the potential and its
derivatives vanish in some region of space the distribution is
uniform. By using a hierarchy of equations for the velocity-
moments of the phase-space distribution we are able to
describe non-local effects and obtain predictions which are
in better agreement with the numerical simulation results. In
Section 5, we discuss the pressure exerted on the walls by the
active suspension using the results of Section 4. As an applica-
tion we derive a new expression for the effective force between
two plates induced by the activity when the molecular diffusion
is finite. Finally in Section 6 we present the conclusions.

2 Model

The model consists of a system of N non-interacting active
particles suspended in a fluid, driven by an active force gu,
where g is a Stokes friction constant, and subjected to an
external potential f(x) and to a random force representing the
effect of the collisions with the molecules of the fluid. The self-
propulsion force, originating from an internal mechanism and
fluctuates both in intensity and direction and is modeled by a
colored noise term, u(t), evolving according to an Ornstein–
Uhlenbeck process of correlation time, t. The resulting governing
equations read:

g _x ¼ �f0ðxÞ þ guþ g
ffiffiffiffiffiffiffiffi
2Dt

p
x; (1)

t _u ¼ �uþ
ffiffiffiffiffiffiffiffiffi
2Da

p
Z; (2)

where x and Z are two independent white noises with unitary
variance and zero average and (Dt, g) and (Da, t) refer to the
interactions with the solvent and with the active bath, respectively.
The term gu represents the self-propulsion mechanism, an
internal degree of freedom converting energy into motion and

has the following self-correlation huðtÞuðt 0Þi ¼ Da

t
expð�jt� t 0j=tÞ,

with variance Da/t identified with the active power. It is well-
known that this system is out of equilibrium whenever t 4 039

and that in the limit :
u E 0 eqn (2) reduces to u �

ffiffiffiffiffiffiffiffiffi
2Da

p
Z, a

Wiener process so that eqn (1) describes a Brownian passive
particle where the term gu merely produces an extra contribu-
tion to the diffusion.

We, now, generalize to the case Dt a 0 the change of variable
of ref. 40 which allows a hydrodynamic study of the model:

we define the new variable v ¼ _x�
ffiffiffiffiffiffiffiffi
2Dt

p
x and replace eqn (1)

and (2) by the following set of equations:

_x ¼ vþ
ffiffiffiffiffiffiffiffi
2Dt

p
x (3)

_v ¼ �1
t
vþ f0ðxÞ

g
�

ffiffiffiffiffiffiffiffiffi
2Da

p
Z

� �
� f00ðxÞ

g
v�

ffiffiffiffiffiffiffiffi
2Dt

p

g
f00ðxÞx: (4)

Thus the AOUP dynamics eqn (1) and (2) has been mapped onto
the underdamped dynamics of a fictitious Brownian particle
of position x and velocity v and effective mass m = tg evolving
with a space dependent Stokes force and experiencing a
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delta-correlated thermal noise acting additively on the x and
multiplicatively on the velocity.41 Given the presence of multi-
plicative noise terms we use the Stratonovich interpretation of
the stochastic differential equation.20

For mathematical convenience, we shall restrict our study to
the case where the effect of the confining walls is represented
by two repulsive truncated harmonic potentials, y(�x)kx2/2 and
y(x � 2L)k(x � 2L)2/2 (y being the Heaviside function) acting
only in the regions (�N, 0) and (2L, N), whereas the central
region (0, 2L) is a force-free region. The harmonic force is
proportional to k, modeling the penetrability of the wall: since
the range and strength of the force are both finite it could
describe an elastic membrane of stiffness k allowing the particles
to explore the regions x r 0 and x Z 2L. On the other hand, if
the spatial resolution of the experimental device is low or the
penetrability of the wall is small the use of a sharp interface
model, obtained by imposing no-flux boundary conditions to
prevent particle crossings as in ref. 16, is well justified.

Finally, with the aim of developing the theoretical methods
of Section 4 we introduce the stationary Fokker–Planck
equation (FPE)42 for the phase-space distribution f (x,v) providing
an equivalent statistical description of the system (3) and (4).
We substitute f0(x) = k[xy(�x) + (x � 2L)y(x � 2L)] and
f00(x) = k[y(�x) + y(x � 2L)] and obtain the following equation:

v
@f ðx; vÞ
@x

�Dt
@2

@x2
f ðx; vÞ � 1

t
@

@v

Da

t
@

@v

�

þ 1þ yð�xÞ þ yðx� 2LÞð Þtk
g

� �
v

�
f ðx; vÞ

¼ yð�xÞkx
tg
þ yðx� 2LÞkðx� 2LÞ

tg

� �
@f ðx; vÞ
@v

þ yð�xÞ þ yðx� 2LÞð ÞDt

g
k

k

g
@2

@v2
f ðx; vÞ � 2

@2

@v@x
f ðx; vÞ

� �
;

(5)

where g/k is the characteristic time of the x-process.

3 Numerical methods and results

In our numerical simulations eqn (1) and (2) have been inte-
grated by using the Euler–Maruyama algorithm neglecting terms
of order dt5/2, where dt is the time-step size of the numerical
integration.43 Except where noted, each simulation has been
run until time 2 � 103t, with dt B O(10�4–10�6), depending
on the t values. The observables, such as the probability
distribution and its momenta, have been computed by using
both time and ensemble averages: we usually perform simula-
tions with N = 104 particles, waiting for a transient time 103t, in
such a way the system is fully thermalized.

In Fig. 1 we display the density profile obtained by numerical
simulation in the case of two walls separated by a distance 2L = 8
keeping constant the ratio Da = 1 and t = 1 and varying the
intensity of the thermal noise Dt as shown in the legend. One can
observe that the density profile, n0(x), is continuous for all values
of Dt including the value Dt = 0, at variance with the UCNA which

predicts a finite jump at x = 0 and x = 2L.30 The effect
of increasing the thermal diffusion, Dt, is to broaden the
distribution with respect to the case Dt = 0 and is best
appreciated in the inset which shows that the profiles corres-
ponding to the larger values of Dt have slower decay. Such a
scenario is similar to the one observed in the ABP model,16

where the presence of thermal noise has two consequences:
(a) it reduces the accumulation near the walls and (b) it
determines an exponential decay of the density profile in the
force-free region and an associated screening length, l, roughly
dependent on the ratio D = Dt/Da. It is also interesting to see
that the accumulation phenomenon near a repulsive wall,
a typical non-equilibrium effect, survives upon the addition of
thermal noise and disappears only in the limit Dt c Da when
the particles behave as passive ones. We may conclude that Dt

has a double role in the potential region: on one hand, reduces
the accumulation, decreasing the height of the peak; on the
other hand, it favors the dispersion for x 4 0 as shown in the
inset of Fig. 1.

In Fig. 2 we analyze the system with Dt = 0 discussing for the
sake of simplicity just the left wall: the particles accumulate
approximately in the region close to x = 0 and their profile does
not have a Brownian counterpart: in fact, in the Brownian limit
t - 0, they would be uniformly distributed between 0 and 2L
and depleted within the repulsive regions according to the
Boltzmann weight pexp(�f(x)/T) at a uniform temperature
T = (Da + Dt)g. If t 4 0, the accumulation can be understood
by considering the eqn (5) (with Dt = 0): the Stokes force is
discontinuous, being gGv for x o 0, with G = 1 + tk/g, and gv
for x 4 0. Hence, on one hand particles slow down in the
regions [�N, 0] and on the other hand the repulsive wall
pushes the particles towards the edge x = 0. The interplay
between the slow-down and the repulsion determines the
observed accumulation. In the left panel of Fig. 2 each line
corresponds to a system with t = 10 and Da ranging between
1 and 100. Notice that the peak broadens and shifts towards
more negative values of the x-coordinate with increasing active
power Da/t. The right panel of Fig. 2 shows that the location of
the peak does not change if Da/t remains constant but its

Fig. 1 Density profile, n0(x), for a system with symmetric harmonic walls
placed at a distance 2L = 8 at x = 0 and x = 8. The curves correspond
to simulation results for different values of Dt as shown in the legend,
while Da = 1, t = 1 and k = 10 are kept fixed. In the inset: rescaled density
profiles, n0(x)/n0(0).
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height increases when t increases: indeed, a larger t corresponds
to a longer time spent by the particle in front of the wall and
has no influence on the peak dispersion.

4 Theoretical treatment

Now, we present a theoretical analysis of the confined active
system using a velocity-moment expansion to derive approx-
imate solutions of the FPE (5) and compare the theoretical
predictions with the numerical solutions of eqn (1) and (2). To
this purpose it is mathematically convenient to study separately
the two boundary regions characterized by a finite value of the
external field from the central force-free region and write the
stationary distribution associated with the FPE (5) as f (x,v) =
y(�x) fl(x,v) + y(x)y(L � x) fc(x,v) + y(x � L) fr(x,v), where fl and fr

are the distribution functions in the left and right regions,
respectively, while fc is the distribution in the central region.

4.1 Density profile in the wall region

In order to derive a theoretical expression for the probability density
n0(x) in agreement with the numerical results above illustrated, we
first consider the region x o 0 and leave the treatment of n0(x) in the
central region, 0 r x r L, until Section 4.2. Neglecting the truncated

shape at x = 0 of the potential
kx2

2
yð�xÞ and using the (x, u)

representation, we begin by approximating the probability dis-
tribution pl(x,u) by the stationary distribution, ph(x,u) of an

AOUP confined to a symmetric harmonic trap
kx2

2

� �
given by:44

phðx; uÞ ¼Ne
� kx2

2Dag
1

1
GþD

� �
e
� tG

2Da
u�kg

x
1þDG

� �2
� �

; (6)

N being a normalization factor and D = Dt/Da. A similar
expression for fh(x,v) is reported in eqn (34) if we employ the
(x, v) representation. The reduced probability distribution

n0ðxÞ ¼
Ð
duphðx; uÞ computed using formula (6) shows a poor

agreement with the numerical results of Fig. 2, since it is a
Gaussian centered at x = 0, in contrast with the numerical
evidence illustrated in Fig. 1 and 2 where such a peak is shifted
towards negative x-values. The domain of validity of the harmonic
approximation (6) can also be tested by comparing the simulation
results for the conditional probability distribution function,
p(x|u) = p(x,u)/p(u) (where pðuÞ ¼

Ð
dxpðx; uÞ) with the corres-

ponding quantity obtained from the theoretical expression
eqn (6). In the left panel of Fig. 3, one observes significant
deviations between the two curves when x 4 0.

Instead, in the right panel of Fig. 3, we display the compar-
ison between the theoretical (computed from the Gaussian
formula (6)) and numerical x-variance,

Ð
dxx2pðxjuÞ: one can

see that the first decreases as u increases, whereas the latter
remains nearly constant. The departure from the Gaussian
prediction, becomes more and more relevant when u increases,
while it is negligible for negative values of u.

The comparisons shown in Fig. 3, indicate that the Gaussian
formula (6) agrees quite reasonably with the numerical results for
the conditional probabilities p(x|u) and p(u|x), when u o 0 and
x o 0, respectively, but the same formula does not provide an
adequate prediction for the density profile n0(x) for x o 0. Based
on these evidences we improve the Gaussian approximation (6)
by modifying the left wall (x, u) distribution in the following way:

pl(x,u) E ph(x,u)y(�u)y(�x) (7)

and an analogous expression for right wall distribution, i.e.
pr(x,u) E ph(x,u)y(u)y(x � L). The rationale for such an assump-
tion is the following remark: the wall can be regarded as a very
massive body having zero speed and the active particle as a
moving object with self-propulsion force gu. A collision between
the left wall and the active particle occurs only if u assumes
negative values and x o 0. These two conditions are encapsu-
lated in formula (7) and we, now, use it to derive an expression
for n0(x) in the wall region x r 0 by integrating with respect
to u. The resulting density, n0(x), in the region x r 0, reads:

nleft0 ðxÞ ¼ nwe
� kx2

2Dag
1

1
GþD

� �
erfc

ffiffiffiffiffiffiffiffiffi
tG
2Da

r
1

ð1þ GDÞ
k

g
x

� �
yð�xÞ; (8)

Fig. 2 Density profiles, n0(x), for a system with Dt = 0, k = 10 and
symmetric harmonic walls placed at a distance 2L = 8 at x = 0 and x = 8.
In these panels, for presentation purpose, we only show n0(x) in the
proximity of the left wall. Left panel: Each line corresponds to a system
with t = 10 fixed and different values of Da in an interval between 1 and 100,
(and so varying the active power Da/t). Notice that the peak broadens and
shifts towards more negative values of the x-coordinate with increasing
active power. Right panel: Simulation results with Dt = 0 and different values
of t, keeping constant the ratio Da/t.

Fig. 3 Left panel: Comparison between the conditional probability dis-
tribution p(x|u) (data) and a fitted Gaussian (solid line), for two different
negative values of u. Right panel: We show for different values of u the
comparison between the x-variance,

Ð
dxx2pðxjuÞ obtained from numerical

simulations (red symbols) and the corresponding variance computed using
the harmonic potential formula (6). Parameters: k = 10, Da = t = 1, Dt = 0.
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where nw is the density at x = 0 and x = 2L. Formula (8) shows a
fairly good agreement with the simulation data both for Dt = 0
and for Dt 4 0, as the left panel of Fig. 4 reveals.

Eqn (8), which describes the space-density in the potential
regions, generalizes the result of ref. 16 to a soft-wall, modeled
as an external truncated potential. Moreover, we overcome the
unphysical results of the UCNA approximation at Dt = 0 and
for hard walls, i.e. a discontinuous space density discussed
in ref. 30.

In order to assess the ansatz pl(x,u) = ph(x,u)y(�u)y(�x), we
analyzed the numerical joint probability distribution p(x|u), at
fixed u and estimated how important is the neglected contribu-
tion due to the population with u Z 0. The right panel of Fig. 4
shows that in the region x r 0 the population characterized by
a positive sign of the active force p(x,u 4 0) represents only a
small contribution to the density n0(x) for x r 0, thus roughly
validating the approximation leading to formula (8). One can
observe that the p(x,u Z 0) decreases much faster than p(x,u r 0)
as x becomes more negative. Interestingly, a similar scenario
was reported by Widder and Titulaer for a related model:45

these authors studied the distribution function in the presence
of a partially absorbing wall with specular reflection and found
that p(x,u) at the boundary x = 0 was peaked at negative values
of u and rapidly decreasing towards zero for positive u.

Let us remark that the argument of the complementary error
function in eqn (8) is proportional to the ratio between the wall
force �kx and the average absolute value of the active force,

g
ffiffiffiffiffiffiffiffiffiffiffi
Da=t

p
. On the other hand, if t = 0 there is no shift and as we

shall see below the accumulation phenomenon is completely
suppressed and on the contrary, one observes a depletion
of the density controlled by the standard Maxwell–Boltzmann
weight. It is possible to define an effective potential as
Ueff(x) = �ln nleft

0 (x) and obtain:

UeffðxÞ ¼
k

Dag
1

1

G
þ D

� �x2

2
� ln 1þ erf

ffiffiffiffiffiffiffiffiffiffiffiffi
t

2DaG

r
k

g
jxj

1

G
þ D

� �
0
BB@

1
CCA

0
BB@

1
CCA

� 1

1

G
þ D

� � k

2Dag
x2 � 2ffiffiffi

p
p

ffiffiffiffiffiffiffiffiffiffiffiffi
t

2GDa

r
k

g
jxj

� �
:

For small |x| and not too stiff walls (k c 1 and/or Da/t { 1) we
find that the effective force vanishes when

xp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pG
Dat

r
;

whereas for strong walls xp E 0. The position of the peak of the
distribution does not depend on the ratio D of the two diffusion
coefficients, but its width does. The position, xp, of the peak
gives a measure of the stiffness of the wall and we expect that
for k large enough the wall is quite impenetrable and xp E 0,
while for smaller values of k we have xp o 0, a situation describing
a soft wall or a floppy membrane.46

4.2 Central region

As illustrated in the previous section, the predictions for the
density profile relative to the potential regions are in good
agreement with the numerical data. Nevertheless, in the force-
free regions (both for Dt = 0 and Dt a 0) one observes a
phenomenology which cannot be captured by simply setting
to zero the external potential in eqn (6), with the result of
producing a constant n0(x). In particular, the numerical n0(x)
displays a smooth decay from the wall value towards the value
at midpoint x = L. Hereafter, we develop a hydrodynamic
approach in order to find an approximation scheme for n0(x)
and for this reason we consider appropriate to switch again to
the (x, v) representation of the distribution function. Since
for a uniform system f (x,v) is a Maxwell–Boltzmann distribu-
tion, in the force-free region we may expect to find a good
approximation by expanding f (x,v) in Hermite functions of the
velocity and taking into account only the first few terms. To this
purpose, we seek for an approximate solution of the FPE (5) in the
central region by employing the following Hermite expansion:

fcðx; vÞ ¼
t

2pDa

� �1=2X
n�0

nnðxÞhnðvÞ exp �
t

2Da
v2

� �
; (9)

where the Hermite polynomials are

hnðvÞ ¼ ð�1Þn
Da

t

� �n=2
exp

t
2Da

v2
� �

dn

dvn
exp � t

2Da
v2

� �
: (10)

By substituting the expansion in the FPE (5) when k = 0 we
obtain the following recursion relation for the amplitudes nn:

@nn�2ðxÞ
@x

þ nDa

t
@nnðxÞ
@x

¼ �n � 1

t
nn�1ðxÞ

þDt
@2

@x2
nn�1ðxÞ; (11)

with the condition n�1 = 0 and n0ðxÞ ¼
Ð
dvfcðx; vÞ. We can, now,

define the steady-state average polarization m(x) as the first
velocity moment of the distribution function:

mðxÞ ¼
ð
dvvfcðx; vÞ ¼

Da

t
n1ðxÞ: (12)

Under stationary conditions and Dt = 0, m(x) is proportional
to the local average of the active force (being u = v in this
region) and thus vanishes in the absence of external fields in

Fig. 4 Left panel: Density profile, n0(x), in the wall region for Dt = 0, 10�1,
respectively blue and red curve. Circles represent the numerical data and
lines the theoretical prediction eqn (8). Right panel: Conditional probability
distribution p(x|u) as a function of x for different values of u as reported
in the legend: the colored curves represent the data with u r 0 and the
three black curves the data for u Z 0. Parameters: Da = 1, t = 1, k = 10.
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virtue of eqn (1); this is seen by considering eqn (11) for n = 1
together with (12):

@mðxÞ
@x

¼ Dt
@2

@x2
n0ðxÞ; (13)

and assuming a zero current condition. On the other hand, if
Dt 4 0, the fact that the external force is zero in some region of
space does not necessarily imply the corresponding vanishing
of m(x). To show that, let us use again eqn (13) and consider a

finite density gradient term, Dt
@n0ðxÞ
@x

: a non uniform density

profile is now sufficient to induce a polarization even where the
external force acting on the AOUP is locally zero. As we shall see
in Section 5, such a coupling between standard diffusion
and polar order, represented by the n0(x) and m(x) terms,
respectively, determines an effective force between inclusions
immersed in active suspensions.

Since eqn (11) represents an infinite hierarchy of coupled
differential equations for the coefficients nn, we need to intro-
duce a suitable truncation able to capture the phenomenology
discussed in the previous sections. Our truncation procedure
comes easily in the Hermite-basis and consists in setting
nn(x) = 0 for all n Z nmax, i.e. in assuming corrections around
a Gaussian-like approximation. The simplest possibility is to
set nmax = 2 (case A), which leads to the so called screening-
approximation. Instead, by considering nmax = 4 (case B), the
resulting approximation is equivalent to the hydrodynamic
treatment based on the first three moments of the velocity
distribution47 together with the idea that the term n3(x) (analogous
to the heat flux) can be eliminated in favor of the spatial
gradient of n2(x), i.e. to the gradient of a kinetic temperature.

Thus we write the following equations:

1

t
1þDa

Dt

� �
mðxÞ �Dt

@2

@x2
mðxÞ þ 2

Da
2

t2
@n2ðxÞ
@x

¼ 0; (14)

t
Da

@mðxÞ
@x

þ 2

t
n2ðxÞ �Dt

@2

@x2
n2ðxÞ þ 3

Da

t
@n3ðxÞ
@x

¼ 0 (15)

where we used eqn (13) to eliminate n0(x). In case A the closure
is n2(x) = 0, while in case B, in analogy with the pheno-
menological procedure followed in hydrodynamic treatments,

one assumes n3ðxÞ ¼ �
t
3

@n2ðxÞ
@x

. Both approximations predict

exponential solutions and for Da/Dt small enough a typical
length over which the moments vary scaling proportionally toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtt

Dt

Da þDt

r
. In the following, for the sake of simplicity, we

shall report only results concerning the so called screening
approximation (case A) first employed in reference16 in the
framework of the ABP model. The solution reads

n0ðxÞ ¼ nw � nMð Þ
cosh

x� L

l

� �

cosh
L

l

� � þ nM; (16)

where nw = n0(0) = n0(2L) and nM depends on the geometry of
the problem. The ‘‘polarization field’’ is given by:

mðxÞ ¼ mw

sinh
x� L

l

� �

cosh
L

l

� � ¼ Dt

l
nw � nMð Þ

sinh
x� L

l

� �

cosh
L

l

� � (17)

where

l2 ¼ Dtt
Dt

Da þDt
(18)

and mw is the polarization field at the wall.
Notice that if Dt = 0 the polarization field vanishes. The

comparison in Fig. 5 between the numerical n0(x) and the
analytic prediction displays a fair agreement if Dt is not too
small with respect to Da.

This result is consistent with the one obtained in ref. 16 for
the ABP model, confirming that AOUP is a useful approxi-
mation of ABP which captures all the physical aspect of the
accumulation near the walls also in the presence of thermal
noise. In addition, our study sheds some light on the closure
employed in the hydrodynamic-like approach, by considering
the description in terms of the particle velocity.

As a consequence of the simultaneous presence of two baths
(active and thermal), hvix is non-zero as shown in Fig. 6(c) for
different values of Dt: in a region close to the wall, hvix a 0 and
decays monotonically to 0. The decay length decreases as Dt

decreases until it disappears when Dt { Da and the thermal
noise becomes negligible. The role of thermal noise is not
trivial producing a non-monotonic behavior: in a thin space
region, close to the wall, hv2ix decreases reaching a minimum
and then increases until it reaches the limit value Da/t, as
shown in the Fig. 6(d). Such an effect can be accounted for
theoretically by going beyond the Gaussian closure n2 = 0, i.e. by
truncating the coupled system of eqn (11) at a higher level, but

Fig. 5 System with translational noise for different values of Dt, as shown
in the legend: comparison between n0(x) computed numerically (symbols)
and analytically from eqn (16) (solid lines) where l is the screening length
predicted by the eqn (18). Parameters: Da = t = 1, k = 10. For the sake of
clarity we applied to each curve a shift 0.05 with respect to the curve
below. In the inset we display a magnification of the region in the proximity
of the wall.
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for space reasons we do not include this possibility in the
present analysis.

4.2.1 Beyond the Gaussian approximation for systems
without thermal noise. Indeed, in the absence of translational
noise the screening approximation eqn (16) cannot be used
because the limit Dt - 0 is singular. We also find numerically
that in this limit hvix = 0 as expected. In Fig. 7(a) we observe that
for t = 1 and Da = 0.1 and 1 the second velocity moment hv2ix
grows until reaches the constant value Da/t, the quadratic
velocity moment of a uniform system. We can distinguish two
different behaviors in the interval [0, 2L]: a persistent region
where hv2ix a Da/t where the influence of the wall remains
important, and a far region characterized by hv2ix E Da/t which
basically is bulk-like. Only in the case Da = 10 the curve does not
saturate and there is no separation between the two regions,
since the persistence length

ffiffiffiffiffiffiffiffi
Dat
p

is comparable with L.

Let us go back to the theory and see that, when Dt = 0 and
n = 2, eqn (11) predicts that, being n1(x) = n0(x)hvix/(Da/t) = 0, the
profile n0(x) is simply related to n2(x) by

@n0ðxÞ
@x

þ 2
Da

t
@n2ðxÞ
@x

¼ 0:

Hence, the Gaussian approximation n2(x) = 0, which was
employed to derive to formula (16), fails when Dt = 0 because
it would predict a constant profile n0 in the force-free region:
this is consistent with the UCNA approximation, but not with
the numerical result. The breakdown of the Gaussian approxi-
mation can be further ascertained by checking the numerical
data against the following relations which hold for a Gaussian
distribution of velocities: hv2n+1ix = 0 and hv2nix = C2n,2hv2ix,
being C2n,2 the binomial coefficient. The numerical study of
the third and fourth moments of the velocity distribution, for
a system with Dt = 0, displays evident deviations from the
Gaussian predictions as illustrated in Fig. 7(b) where a non zero
third moment of the velocity is reported and Fig. 7(c) where the
distribution has a non-vanishing kurtosis. Having established
that the Gaussian closure, n2(x) = 0, is unfit to capture the
observed behavior, a possible remedy to such a deficiency could
be a higher order truncation of the series (9), taking into
account terms nn(x) with n = 4 in the Hermite expansion. Such
a procedure leads to a solution for the space-density resembling

eqn (16) with a screening length, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Dat=6

p
, proportional

to the persistence length and capturing the phenomenology
of the case Dt = 0. This possibility is briefly discussed in
Appendix B, for space reasons, whereas here we report the
following approximate factorization of the fifth moment of the
velocity in terms of lower moments that we found empirically
from our numerical data:

hv5ix B 10hv2ixhv3ix, (19)

where the factor 10 is a combinatorial factor which takes
into account the number of ways of factorizing the average, is
correct. As shown in Fig. 7(d) the comparison between the
numerical estimates of hv5ix and 10hv2ixhv3ix. corroborates the
validity of the hypothesis expressed by eqn (19). In Appendix B, we
present an argument supporting this factorization of the average.

5 Forces on the confining walls

We turn, now, to consider the mechanical properties of the
confined active system and derive a formula for the mechanical
pressure, Pwall, exerted on a harmonic wall by the active gas.
To achieve that, we use the following equation expressing the
mechanical balance condition between the pressure exerted
by the particles on the wall and the one exerted by the wall on
the N particles:

Pwall ¼ �N
ð0
�1

dxn0ðxÞf0ðxÞ; (20)

where the upper limit of the integral takes into account the fact
that the left wall potential vanishes for any x 4 0. Now, we

Fig. 6 Panel (a) shows the average value of the first moment of the
velocity hvix and the right panel its variance hv2ix for t = Da = 1, k = 10
and different values of Dt, as shown in the legend.

Fig. 7 Panel (a) and (b): The second and third moment of the velocity hv2ix
and hv3ix as a function of the position x for Dt = 0 and different values offfiffiffiffiffiffiffiffi
Dat
p

, as shown in the legend, and k = 10. In panel (c) we display the
comparison between hv4ix and the Gaussian closure 3hv2ix when t = Da = 1
and Dt = 0: the deviation from the Gaussian prediction hv3ix = 0 and
hv4ix = 3hv2ixhv2ix is evident. In panel (d) in the case t = Da = 1 and Dt = 0,
we compare the average hv5ix with the empirical closure 10hv2ixhv3ix.
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compute Pwall at the left wall by substituting f0(x) = kx and
obtain:

Pwall ¼ NnwDag
1

G
þ D

� �
sðG;DÞ; (21)

where Nnw represents the numerical density at the wall x = 0,

2L, the factor Dag
1

G
þ D

� �
has the dimensions of a temperature

and is the effective temperature of an active particle confined in
a harmonic trap.19,44 The last factor contained in the pressure
formula (21)

sðG;DÞ ¼ 1

1þ G� 1

1þ GD
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ GD

G� 1

r" # � 1;
(22)

is the result of two effects which can be observed when t
decreases: (a) the shift of the peak of the density distribution
towards more negative values of x and (b) its broadening. For
t = 0, being G = s(G,D) = 1, eqn (21) reduces to Nnw(Dag + Dtg)
which is the pressure of a suspension of Brownian particles
against a wall, so that (21) can be seen as the generalization to
the active case of the ideal gas formula.

5.1 The wall boundary conditions

In the pressure formula (21), the constant nw is yet undeter-
mined, and as we shall see below it can be fixed by specifying
the system set-up, i.e. its geometrical and physical properties.
By multiplying the FPE (5) by v and integrating with respect
to v and using the no particle flux condition

Da

t
n1ðxÞ ¼ Dt

@

@x
n0ðxÞ;

we obtain the following expression relating a total derivative to
the wall force:

@

@x

Da

t
þDt

t

� �
n0ðxÞ þ 2

Da
2

t2
n2ðxÞ �Dt

2 @
2

@x2
n0ðxÞ

�

�Dt

g
f00ðxÞn0ðxÞ

�
¼ �f

0ðxÞ
tg

n0ðxÞ:
(23)

We now integrate with respect to x eqn (23) between �N and %x
where %x 4 0:

tg
ðDa þDtÞ

t
n0ðxÞ þ 2

Da
2

t2
n2ðxÞ �Dt

2 @
2

@x2
n0ðxÞ

�

�Dtk

g
yð�xÞn0ðxÞÞ�x�1 ¼

Pwall

N
;

(24)

where we have taken into account eqn (20).
5.1.1 Semi-infinite system. Now, we restrict our analysis

to the case Dt not too small with respect to Da, thus excluding
the singular limit Dt = 0. In order to simplify the analysis, we
consider the limit %x c l, which allows us to assume that the
term n2(%x) E 0 and we evaluate the left-hand side of eqn (24)
using eqn (16) with the result:

Pwall = Dag(1 + D)NnM. (25)

Using the explicit representation of Pwall, eqn (21), we express
the probability density at the wall, nw, in terms of the prob-
ability density nM and of the parameters of the model:

nw ¼ nM
1þ D
1

G
þ D

1

sðG;DÞ: (26)

Let us remark that we always have nw 4 nM because both

factors
1þ D
1

G
þ D

and
1

sðG;DÞ are larger than 1 if t 4 0, so that the

wall density is higher than the density at midpoint and we may
argue that there is a positive surface excess. Only in the
Brownian limit t = 0 we obtain nw = nM for all values of k. If
now we take the limit of a semi-infinite system L -N, we have
n0(x) = (nw � nM)e�x/l + nM and we can make the identifications
r = NnM and rw = Nnw, where r and rw are the bulk and wall
numerical densities, respectively. Finally, using the condition
that Pbulk = Pwall, necessary in order to have mechanical
equilibrium, we identify the r.h.s. (25) with the bulk pressure,
Pbulk, of a uniform system at density r, i.e. Pbulk = Dag(1 + D)r.

5.1.2 Wall pressure in a slit system. We turn, now, to study
the pressure in a slit-like geometry with the purpose of under-
standing how the force acting between two parallel plates
immersed in a solution of active particles, depends on the wall
separation. To find the density at the wall, Nnw we must
compute n0(x) in the whole space, match the expression (8)
with (16) at each wall and finally normalize the profile. The
probability density profile n0(x) can be written as:

n0(x) = y(�x)nleft
0 (x) + y(�x)y(2L � x)nf

0(x) + y(2L � x)nright
0 (x),

(27)

where nleft(right)
0 (x), the probability density distribution with walls

located at 0(2L), is given by eqn (8) and nf
0(x) the density in the

free region [0, 2L] is given by eqn (16). From the normalization
of the probability distribution we have the condition:ð2L

0

dxnf0ðxÞ þ 2

ð0
�1

nleft0 ðxÞ ¼ 1; (28)

where the factor 2 in the last term takes into account the
symmetry of the two walls. After performing the integrals and
eliminating nM we obtain the relation:

1

nw
¼ 2ffiffiffi

p
p 2gDað1þ GDÞ

kG

� �1=2

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ GDÞ
G� 1

r !

þ 2l tanh
L

l

� �
þ 2

1

G
þ D

1þ D

�
L� l tanh

L

l

� �

1þ G� 1

1þ GD
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ GD

G� 1

r" #:

(29)

We point out that the first term takes into account the finite
width of the peak of n0(x) in the regions x r 0 and x Z 2L due
to the softness of the walls: it vanishes for all values of the
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remaining parameters when k -N. As a check we consider the
equilibrium limit t - 0

lim
t!0

Pwall ¼ NnwDag 1þ Dð Þ

lim
t!0

1

nw
¼ 2pDagð1þ DÞ

k

� �1=2

þ 2L � 2L

(30)

as expected, since it corresponds to the situation of an over-
damped passive system in contact with two independent white
noise sources. In the hard wall limit k - N and t = 0 we find

nw = 1/2L and Pwall ¼
N

2L
Dag 1þ Dð Þ, the ideal gas equation of state

corresponding to a system subjected to two white noise baths.

5.2 Effective force between plates and Casimir effect

Under the same hard-wall limit k -N, but with t 4 0 one can
see that there is an accumulation effect at the wall: in fact,
according to eqn (29) we have nw Z 1/2L. Finally, the wall
pressure can be computed inserting eqn (29) in eqn (21).
For the sake of simplicity, we write its expression in the limit
k - N but t finite:

Pwall ¼ Dag
N

2L

1þ Dð Þ

1þ l
L
tanh

L

l

� �
1

D
þ ð1þ DÞ3=2

D2

� �: (31)

In order to ascertain the activity induced force acting on
parallel plates, we must compare the pressures of two systems
having different sizes, L1 and L2, with L1 o L2 but the same

average density of each system, �r ¼ Ni

2Li
, is identical. Clearly,

the system with the smaller size according to eqn (31) will exert
the smaller pressure on the walls. We may conclude that two
parallel plates surrounded by a sea of active particles and
separated by a distance 2L will experience an effective attraction
according to eqn (31). Precisely, if L2 - N, but �r is fixed and
L1/l c 1 we have

P
ð1Þ
wall �P

ð2Þ
wall � �Dag�r

1þ Dð Þ
D

þ ð1þ DÞ5=2
D2

� �
l
L
: (32)

Thus, in the low-density regime we consider we find that the
force increases linearly the active power Da and depends
monotonically on plate separation in agreement with the
simulation results by Ni et al.32 and the theoretical prediction
of Vella et al.48 of a decay p1/L.

Such an effect can also be illustrated by the following
gedanken-experiment: let us consider a finite system and insert
a third hard wall C, identical to the first two, at an arbitrary
position y A (0,2L), in such a way that the average numerical
densities in the two resulting compartments are equal:
Nl/y = Nr/(2L � y) with Nl + Nr = N. According to the present

theory the pressure difference between the left and right
compartment is given by:

DP ¼ Dagð1þ DÞ Nl

y

1

1þ l
y
tanh

y

l

� � 1

D
þ ð1þ DÞ3=2

D2

� �
2
6664

� Nr

ð2L� yÞ
1

1þ l
2L� y

tanh
2L� y

l

� �
1

D
þ ð1þ DÞ3=2

D2

� �
3
7775:

(33)

Of course, for a Brownian system, if the average densities
in the left and in the right compartments are set to be
equal for any choice of the wall position y, i.e. if the condition
Nl = Ny/2L = Nr = N(2L � y)/2L is satisfied, the pressure
difference, DP vanishes.

The physical reason of such a phenomenon is strictly related
to the accumulation of active particles in front of a wall and
clearly emerges in the eqn (29): increasing L the constant nw

grows, meaning that more particles push on the wall and exert
a larger pressure.

On the other hand, our prediction suggests a completely
different situation in the active case which we show in the
Fig. 8. In particular DP 4 0 if y 4 L and DP o 0 if y o L: in
fact, the particles in the small compartment exert a smaller
pressure on the wall C than the one exerted by those in the
larger compartment, in spite of the fact that the numerical
densities are equal. For small separations 2L the approximation
n2(x) E 0 ceases to be correct and we do not expect that the
force obeys anymore the scaling L�1, however there is some
room for improvement, for instance, by employing higher order
closure approximations, such as including terms n3, n4 etc., but
in the present study we do not pursue such a possibility.

Fig. 8 Pressure difference between two compartments hosting two
active suspensions having the same average numeric density of particles.
Panel (a) corresponds to a system where the persistence time is fixed
and so the ratio between the active and thermal diffusion coefficient, but
the active power is varied. The largest active power corresponds to
the largest pressure difference. Panel (b): The active power is fixed,
but the persistence time t is varied. When t increases the pressure
difference increases as the system departs more and more from thermo-
dynamic equilibrium.
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6 Conclusions

To conclude, let us remark that the physical effect of activity
is twofold: (i) it determines a non-uniform density profile
because active particles accumulate near the wall and, in the
case of deformable boundaries, penetrate inside them; on the
contrary, a system of non-interacting Brownian particles in
the hard wall limit would not develop any density gradient;
(ii) the pressure exerted on the walls of a slit of width 2L by a
system of average density �r depends on the wall separation.
The second phenomenon is relevant when the confinement
length becomes comparable with the persistence length.
Hereafter, we summarize the main achievements of the
present work.

(1) We have extended the study of the AOUP to the case of
one one-dimensional non-interacting particles under confine-
ment, and, going beyond the UCNA approximation, we do not
integrate out the active noise but retain it as a ‘‘velocity’’
variable. By considering a simple parametrization of the bound-
ing potential, we have been able under reasonable approxima-
tions to derive simple expressions for the density profile and
polar field and eliminate some negative features of the UCNA
solution, such as its jumps in correspondence of discontinu-
ities of the potential, and its failure to account for polar order
near a boundary. Our treatment introduces a healing length
which produces smoother density profiles which have been
found in good agreement with the results of numerical
simulations.

(2) The moment method employed to approximate the non
equilibrium distribution function f (x,v) predicts an effective
force between two plates immersed in an active suspension,
similar to the force in the classical Casimir effect: indeed, the
attraction between the plates is due to the active particles,
which could represent active bacteria, while low-density
Brownian particles, i.e. colloidal particles, do not exert any
appreciable force on the plates. The possibility of generating
and controlling the force between immersed objects, for
instance by tuning the illumination of an active suspension
or modifying its concentration and/or temperature, is quite
interesting and offers an alternative to other techniques which
instead require the chemical modification of the surfaces.
Finally, the effective temperature of such suspensions, which
determines the intensity of such a force, can be higher than the
solvent temperature.49

Future work will concern the extension of the theory to
higher dimensions in order to treat active solution-mediated
interactions between inclusions of more general shape50 or
moving pistons.51 Including the interaction among the parti-
cles is also a challenge and we may expect that with increasing
density the excluded volume effects could lead to an effective
repulsion for some values of the plate separation.
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Appendix
A Stationary distribution for the harmonic oscillator in
the (x, v) variables

We know the full stationary solution of (5) for the harmonic
oscillator. It can be written as a double Gaussian with a velocity
distribution whose peak changes with x. This peak corresponds
to an x-dependent velocity, hvix, which is also the mean velocity
at fixed x.

fhðx; vÞ ¼ N exp � kx2

2Dag
G

1þ GD

� �
� exp

v� hvix
	 
2

2sv2

 !
(34)

with

hvix ¼ �
GD

1þ GD
k

g
x; sv2 ¼ �

Da

tG
1þ G2D
1þ GD

� �
(35)

Let us remark that fh(x,v) due to the presence of a non-
vanishing average velocity hvix = has the form of the distribu-
tion function of a system in local but not global equilibrium, in
contrast with the case D = 0.

B How to rationalize the non-Gaussian closure

As we can see from the structure of the solution in the potential
free-region the screening length vanishes when Dtt - 0 even
though Da remains fixed. In order to remove such a nonphysical
feature, we must consider carefully the limit Dt = 0. In this case,
the study hierarchy (11) becomes relatively simple and allows
to predict a non-vanishing decay length and sheds some light
on the form of the closure (19). We begin by writing explicitly
the hierarchy assuming n1(x) = 0 in this limit:

@n0ðxÞ
@x

þ 2
Da

t
@n2ðxÞ
@x

¼ 0 (36)

3
Da

t
@n3ðxÞ
@x

¼ �2
t
n2ðxÞ (37)

@n2ðxÞ
@x

þ 4
Da

t
@n4ðxÞ
@x

¼ �3
t
n3ðxÞ (38)

@n3ðxÞ
@x

þ 5
Da

t
@n5ðxÞ
@x

¼ �4
t
n4ðxÞ (39)

An option is to break the hierarchy by setting n5(x) = 0 and after
eliminating n4(x) we write

2

t
n2ðxÞ þ 3va

2 @n3ðxÞ
@x

¼ 0 (40)

@n2ðxÞ
@x

þ 3

t
n3ðxÞ � va

2t
@2n3ðxÞ
@x2

¼ 0 (41)

We obtain a closed set of linear differential equations that can
be solved by combinations of exponentials of the form e�mx,
with m determined by a simple algebraic equation. We find

m2 ¼ 6

5

1

Dat
and the profile is given by n0(x) = A cosh(mx) + C. We

now try to verify the working hypothesis (19). Using the Hermite

expansion (9) when n1 = 0 and va
2 ¼ Da

t
we obtain the relations:
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n0(x)hv2ix = 2va
4n2(x) + va

2n0(x) (42)

n0(x)hv3ix = 6va
6n3(x) (43)

n0(x)hv4ix = 24va
8n4(x) + 12va

6n2(x) + 3va
4n0(x) (44)

n0(x)hv5ix = 60va
8n3(x) + 120va

10n5(x). (45)

Since we have assumed n5 = we obtain the equality:

hv5ix = 10va
2hv3ix (46)

Such a relation is compatible with eqn (19) only in the
regime when hv2ix can be replaced the constant factor va

2 in
eqn (46). This is possible if the space dependent average

hv2ix � va
2 ¼ 2va

4n2ðxÞ
n0ðxÞ

� 0, i.e. in a regime of small t.

The empirical relation (19) instead is consistent with the

choice n5ðxÞ ¼
n3ðxÞn2ðxÞ

n0ðxÞ
. However, the substitution of such a

relation into eqn (45) leads to a closed set of non-linear
equations which cannot be solved by simple analytic methods.
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