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The phase equilibria of a lattice gas confined between two parallel walls are investigated in 

mean-held approximation. Only a finite number of the first-order layering transitions, characteristic 

of the adsorption isotherms O(F) for a strongly attractive substrate, survive when the wall- 

separation H is finite. The sequence is truncated at chemical potential p < P,~, by the onset of 

capillary condensation where 0 jumps to a large value corresponding to a densely occupied ‘liquid’ 

state. Confinement shifts the bulk first-order transition to smaller p. For weaker wall potentials 

first-order prewetting transitions, between thick and thin adsorbed films, are observed but these 

are in competition with capillary condensation. The resulting phase diagram, plotted using the 

variables 1 /H, F and T, exhibits a prewetting surface bounded by a line of triple points where thick 

films, thin films and ‘liquid’ all coexist, and by a line of prewetting critical points. The factors that 

influence the extent of this surface are discussed. Results for the lines of coexistence between 

‘liquid’ and ‘gas’ states and for the location of capillary critical points, where such lines terminate, 

are presented. These are similar to results obtained from earlier density functional calculations for 

continuum fluids. 

1. Introduction 

ln this paper we investigate the phase equilibria of a fluid confined by two 

identical, adsorbing parallel walls separated by a finite distance H, but unboun- 

ded in the x-y directions. The fluid, which is in contact with a reservoir at fixed 

chemical potential Al. and temperature T, is represented by a lattice-gas model 

with nearest-neighbour interactions. Wall-fluid interactions are represented by 

an external potential V(z) that varies only the .z direction, normal to the walls. 

We are concerned with the influence of confinement on both bulk and surface 

phase transitions. One of the effects of confining the fluid with attractive walls 
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is to shift the bulk first-order (liquid-gas) transition to smaller values of p. If 

bulk coexistence occurs at p = P,;,~ for T < T,. the bulk critical temperature, 

coexistence will occur in the confined system at TV < P,:,~, with ( p,;,, - p) cc 1 /H 
for large H. This phenomenon, whereby a fluid that is an undersaturated gas in 

bulk condenses to a ‘liquid’ in a confined system, is termed capillary condensa- 

tion (see Evans et al.‘) and references therein). For sufficiently small H the 

lines of coexistence of ‘gas’ and ‘liquid’ configurations terminate at capillary 

critical points’). These can be viewed as ‘shifted’ bulk critical points; the shifts 

arise from the reduction in the net amount of fluid-fluid attraction and from 

the increase in wall-fluid attraction as H is reduced. Confinement also modifies 

the various phase diagrams that characterize adsorption at a single substrate. 

When H is finite the system can no longer exhibit a roughening or a wetting 

transition since both are associated with the interface between two coexisting 

bulk phases (p = p,;,,). However, finite size does not preclude those surface 

phase transitions which occur for an undersaturated bulk. These include the 

first-order layering transitions, in which the amount adsorbed, 0, increases with 

Al. in vertical steps as successive layers of adsorbed gas are deposited on the 

substrate (e.g. de Oliveira and Griffiths’), and the pre-wetting or thick-thin 

film transition of Cahn’) and Ebner and Saam’). The latter occurs, for a single 

wall (H = J;), at temperatures above a first order wetting transition. Suppose 

such a wetting transition occurs at a point (p,, T,\), with p,,, = p,,,( T,,,), in the 

p-T plane. Then for T,,, s T < T, macroscopically thick films of liquid develop 

at the wall-gas interface when p(T) = I_L,,,~(T); this is complete wetting 

(0 = m). A line of first order prcwetting transitions extends away from ( p,+, T,") 
into the single phase ‘gas’ region - see fig. 1. The coverage 6, jumps discontin- 

uously at a prewetting transition so that distinct thick and thin films coexist on 

the prewetting line. This line terminates in the prewetting critical point 

( pPwc. T,c), where the films become identical, and lies close to bulk cocxis- 

tence. i.e. F_,(T,,) - pLpac is rather small. When H is large but finite we still 

expect to find prewetting and layering transitions but since these are now in 

competition with capillary condensation new features can arise. 

Our present study was motivated by earlier calculations (Evans and Marini 

Bettolo Marconi”) based on a simple density-functional treatment of a con- 

tinuum fluid. Our results suggested that the phase equilibria of a confined fluid 

could be surprisingly rich, especially in the prewetting region. In particular we 

found a prewetting surface in the space defined by variables (1 /H. T, /..L) that 

was bounded by a line of triple points, where thick films, thin films, and 

capillary condensed ‘liquid’ all coexist, and by a line of prewetting critical 

points. The extent to which such a feature could be regarded as generic was not 

clear from this work. Moreover we were unable to obtain detailed numerical 

results for the prewetting surface since even for very large H prewetting 
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gas Liquid 

Fig. 1. A schematic iu. -T phase diagram for a semi-infinite system (H = 0~) exhibiting a first-order 

wetting transition at (F,,,, T,). The dashed line is the prewetting line ppW(T) where thick and thin 

films coexist. The solid line is the bulk gas-liquid coexistence line p = P_~(T). (In the lattice-gas 

model the bulk coexistence line is vertical: /*,,, = constant.) 

occurred between metastable thick and thin films, ‘liquid’ being the stable state 
of the fluid. The present work was undertaken in an attempt to improve our 
understanding of the competition between prewetting and capillary condensa- 
tion. Although somewhat less realistic for fluids than the density functional 
treatments, the lattice-gas model is more amenable to numerical investiga- 
tion -- at least in the mean-field approximation we employ here. There is a 
further advantage in that the single-wall (H = M) version is well studied so we 
can make use of earlier (Ebner6,7)) results for this case. 

Our paper is arranged as follows: in section 2 we describe the model and the 
procedure used to determine its (mean-field) solutions. Results of calculations 
of coverage isotherms for different strengths of wall potential are given in 
section 3. The relevant phase diagrams are also presented in this section. We 
conclude, in section 4, by comparing the present results with those from earlier 
density functional calculations and with a discussion of their possible relevance 
for computer simulations of adsorption. 

2. The model and the method of solution 

We consider a lattice gas consisting of N layers confined between two parallel 
planar walls. The lattice is in contact with a reservoir of particles at tempera- 
ture T. Each lattice site can be occupied by at most one particle. For simplicity 
we assume nearest-neighbour interparticle interactions with potential - E 
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(e > 0). The total potential felt by a particle in layer j due to wall-particle 

interactions is 

v, = w, + w,, , ., 1 (1) 

where W,, the potential due to a single wall, is taken to be independent of x 

and y, i.e. W, = W(z,) with z the distance from the wall. The Hamiltonian is 

then 

where u,~ = 1 if the kth site in the jth layer is occupied and a/k = 0 if it is 

empty. In the first term of (2) the sum is over all nearest neighbour pairs of 

sites. The mean-field solution is obtained by minimizing the grand potential 

functional 6 (see de Oliveira and Griffiths’), where 

d/L”= i {k,T( 1 p, n Pj + (1 - Pj) Ml - P,)) - (P - V,)P, 
j=l 

(3) 

w.r.t. the average occupancies {pl, p2,. . . , pN}. Here L” is the number of 

sites in a single layer. Each site has a nearest neighbours in the same layer and 

b nearest neighbours in an adjacent layer. fi can be rewritten in a more 

symmetrical fashion by defining p. = pN+ l = 0; the last term in (3) is then 

-;bE C;“=, P,(P,-, + p, + , ). The resulting Euler-Lagrange equations are the 

coupled set 

m, = tanh 
i 

& [PI- V, + ~F(UWZ, + bmj-1 + bm,+,)I) 1 
R (4) 

where j = 1,2, . . , N, p’ = F + ~E(U + 2b) and we have found it convenient 

to define new variables m, = 2pj - 1 (m,, = mN+, = -1). In our calculations we 

employed the same single wall potentials as Ebner’), 

with parameters chosen to model argon adsorbed on a solid xenon substrate 
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when the strength parameter CY = 1: CT,., = 3.735 A, qJk, = 160 K and n,,,c~i = 

0.846. The h.c.p. lattice was located so that the first layer falls in the minimum 

of IV(z), i.e. at z1 = ( g)“6~w, and the nearest-neighbour distance was taken to 

be 2”h~ with c = 3.405 A, the atomic diameter of argon. E/kg = 120 K. By 

varying (Y one can explore the consequences of increasing or decreasing the 

strength of the attractive substrate potential relative to the attractive interpar- 

title potential; this is particularly useful where one is attempting to ascertain 

what phase equilibria might occur. 

The bulk lattice gas has a symmetrical coexistence curve p,(T) = 1 - p,(T) 

with chemical potential pu,,, = -&f/2, independent of temperature T. Here 

f= a + 26 is the coordination number of the lattice. In mean field approxima- 

tion the occupancy of the ‘gas’ phase, p,(T), satisfies 

(4P, - 2)(ln[p,/(l - P,)])~’ = TIT, 

and the bulk critical point is given by p, = i and kBTc = &f/4. Thus p,;,, = pL, = 

-2kIsTc. For the h.c.p. structure a = 6, b = 3 and f= 12 so that k,T, = 3~. 
Eqs. (4) were solved numerically using an iterative procedure. An algorithm 

of Ng8) was employed to obtain faster convergence. Provided one is not too 

close to a critical point or to the limit of metastability the procedure is very 

efficient and often convergence is obtained after 5-10 iterations. For a given p, 

T and N it is often possible to find several solutions corresponding to various 

minima of fi. The solution with the lowest value of fi gives the equilibrium 

occupancy profile pi; the others can be identified with distinct metastable 

states. When two distinct solutions have equal fi they coexist. 

We restrict our consideration to T < T, and to states for which p(T) < 
psat(T). The ‘fluid’ is then a gas in bulk with an occupancy P,, = p,,(p, T). A 

convenient measure of the coverage or adsorption is 

8= 4 2 (p,-p& (7) 
/=I 

In the limit N--+x 13 reduces to the quantity introduced previously by de 

Oliveira and Griffiths2) for adsorption at a single wall. It is useful to measure 

the degree of undersaturation of the gas at fixed T in terms of the ratio 

(8) 

where p,( pS,,) is the occupancy of the bulk gas at coexistence. (sat = 1 at 

coexistence). 
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3. Results of calculations 

Calculations were performed for different values of the parameter (Y. For 

(Y = 3, corresponding to a strongly attractive wall potential, the coverage 

isotherms have the same form as those obtained by Ebner’) and by de Oliveira 

and Griffiths’) except at large values of sat where condensation to a densely 

occupied ‘liquid’ state occurs for finite N. A typical low-temperature isotherm 

is shown in fig. 2. As sat increases the coverage increases from zero in 

monolayer steps until sat - 0.975 when 19 jumps from approximately 7 to 50 

layers. For larger sat a sequence of layering transitions, in which the coverage 

increases by amounts of approximately one layer, occur but these now corres- 

pond to transitions between metastable states; the equilibrium configuration is 
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Fig. 2. Coverage isotherm for a strong wall potential (a = 3). T/T< = 0.45 and N = 100. The short 

vertical portions represent the jump id 0 at first order layering transitions. The dashed vertical lines 

refer to transitions between states that are metastable w.r.t. the ‘liquid’ configuration. The 
sequence of such transitions continues as sat--, 1 but is not shown here. 
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that in which the lattice is densely occupied, i.e. ‘liquid’. In the N = x case the 

sequence of layering transitions appears to be infinite for sufficiently attractive 

wall potentials (de Oliveira and Griffiths’), and 0 + m as sat -+ 1 ( p + ps,,) so 

that complete wetting occurs for all 0 < T < T,. The effect of the finite size is 

to truncate the sequence of layering transitions. Our result shows that this is 

not a small effect; although N is very large (100) only 6 stable layering 

transitions survive before capillary condensation occurs. For smaller N even 

fewer stable layering transitions survive. 

The majority of our calculations were performed for a = 0.85. This choice 

was dictated by the work of Ebner6) who investigated the identical model for 

N = m. (Ebner mimics the semi-infinite system by requiring his p, to be equal to 

the bulk gas occupancy pb for i > 30.) For this intermediate strength wall 

potential Ebner finds the transition from partial to complete wetting occurs at 

T,l T, = 0.45. 0 remains finite as p + pS,, for T < T,, whereas it diverges in 

the same limit for T w d T < T,. The accompanying pre-wetting or thick-thin 

film transition has its critical point at TJT, = 0.82. As p increases along an 

isotherm with T, < T < T,,, 6’ first jumps from a value characteristic of a 

partially filled monolayer to a value corresponding to several layers; this is the 

signature of the prewetting transition. On further increasing I_L 8 grows 

continuously and then increases discontinuously by amounts corresponding to 

the addition of one layer. The lower the temperature, the larger is the initial 

discontinuity in 8; the latter becomes infinite at T = T,. For T > T,, there is no 

prewetting. The purpose of our present calculations was to determine how 

these phase transitions are modified in a lattice of finite size. 

Coverage isotherms are plotted in figs. 3-5. For N b 18 it is still possible to 

observe the prewetting transition between stable thick and thin films. This is 

illustrated in fig. 3 for T/T, = 0.70. In both systems, N = 100 and N = 50, the 

transition appears to be identical to that obtained by Ebner6). In the larger 

system we observe a jump of 0 on the stable thick film branch and this is the 

remnant of the first layering transition calculated by Ebner. Condensation to 

‘liquid’ occurs shortly afterwards so that the higher layering transitions found in 

the 1V = 30 system become transitions between metastable states for finite N. 

When N is reduced to 50 (fig. 3b) the thick film is stable over a much smaller 

range of sat and condensation occurs before the remnant of the first layering 

transition; this now occurs on the metastable portion. Note that the metastable 

‘liquid’ persists to large undersaturations; we have not attempted to determine 

accurately the limits of metastability. The coverage 8 on the stable ‘liquid’ 

branch in the N = 100 system is almost exactly twice as large as that in the 

N = SO system. This follows from the definition (7) and the fact that the pj are 

nearly constant throughout the lattice on the ‘liquid’ branch. 

On increasing T the discontinuity in /3 at the prewetting transition is reduced 
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Fig. 3. Coverage isotherms for (Y = 0.8.5 and TIT, = 0.70, exhibiting both prewetting and capillary 

condensation. Note the break in the vertical scale; the jump in 0 is much larger at condensation. 

(a) iV= IO0 and (b) N = SO. The inset in (b) shows the quantity w = -fl/2k,TLL’ for the various 

phases. For a given sat the stable phase is that with the lowest grand potential R. i.e. largest w. 

until it disappears at T = T,c. In fig. 4 we plot 0 for T = 0.825T,, which is very 

slightly above T,,. The ‘kink’ in 8 near sat = 0.88 characterizes the prewetting 

critical point. Note that the ‘gas’ branch of the isotherm remains the same for 

different N. Reducing N simply reduces the value of sat at which condensation 

to the ‘liquid’ occurs, causing more of the ‘gas’ branch to become metastable. 

This is illustrated further in fig. 5 where we plot 0(sat) for T = 0.9T,(> T5c) and 

for several values of N. For N > 12 the ‘gas’ branch is independent of N and is 

essentially identical to the N = 00 result. For 4 < N s 12 there are differences, 

especially in the metastable portions. As N is reduced the discontinuity in 0 

associated with capillary condensation is reduced until, eventually, it disap- 

pears near N = 4. The isotherm at N = 4 is very close to a capillary critical 

point. For smaller N t) increases monotonically with sat; a full discussion of the 

definition and genesis of capillary critical points is given by Evans et al.‘) and 

later we return to further results for these. 

The prewetting coexistence curves, T versus 0, that we calculate for N = 100 

and N = 50 are indistinguishable from that given in fig. 5 of Ebner’). What 

emerges in our present work is the competition between prewetting and 
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Fig. 3 (continued). 

capillary condensation. Both are first-order transitions. The location (measured 

by sat) of the former is quite insensitive to N, at fixed T, whereas the location 

of the latter depends strongly on N. Following our earlier work we plot, in fig. 

6, our results in terms of three variables: l/N, T and sat. The prewetting 

surface (shaded) is bounded in the 1 /N = 0 plane by the normal prewetting line 

AB of the semi-infinite system and by a line of surface critical points BC. Since 

the surface critical temperature T,, is not significantly affected by the size of 
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Fig. 4. Coverage isotherms for cy = 0.85 and T/7‘< = 0.825, close to the prewetting critical point T,‘. 
(a) N = SO. The inset shows w for ‘liquid’ and ‘gas’ solutions near condensation. (b) N = 18 and 
N = 32. The ‘gas’ branch is the same for both N. 

the lattice this surface is almost vertical. It intersects the surface formed by the 

lines of capillary condensation (dashed) in a line of triple points CA. To the 

right of the prewetting surface ABC (sat- 1) and inside the condensation 

surface ‘gas’ configurations with thick films are stable, while to the left of ABC 

(smaller sat) thin films are stable. At a triple point three distinct fluid phases 
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have equal grand potential and coexist; two of the phases are ‘gas’ with thick 

and thin films, respectively, and the other is the condensed ‘liquid’. Examples of 

the occupancy profiles pi for two triple point states (marked with open circles in 

fig. 6) are shown in fig. 7. As T is reduced towards T, the prewetting surface 

shrinks to zero; prewetting occurs closer to saturation, driving the triple point 

line to smaller values of l/N. For a maximum lattice size N one can only 

observe that portion of the prewetting surface that lies above its intersection 

with the horizontal plane 1 /N = constant*. The critical end point C corres- 

ponds to N = 14. Note that the lines of capillary condensation continue to 

* For very small l/N and sat--, 1 layering transitions can occur. We have not attempted to 

incorporate these into fig. 6. 



198 E. BRUNO et al. 

12.0 

11.0 

6 

1o.c 

9.0 

8.0 

70 

CO 

5.0 

d.0 

3.0 

2.0 

1.0 

N = 50 

0 
u? 

bl: 32 

N= 2L 

4 
N 

N ~18 _--- 

N=8 

Fig. 5. Coverage isotherms for 01 = 0.85 and TIT, = 0.90 and various N. The vertical portions 

represent the jump in 0 at condensation. The isotherm for N = 4 is slightly supercritical. 

larger values of 1 lN and smaller values of sat, terminating eventually in 

capillary critical points; this is shown explicitly for TIT, = 0.9. The resulting 

line of critical points T,,(N), curve (a) in fig. 6, terminates at the bulk critical 

temperature T=(m) = T, and at T,(l) = $ Tc for N = 1. The dotted curve (b) is 

the projection of this line onto the plane l/N = 0. In fig. 8 we plot T,(N) 

versus N for CY = 0.85 and for a weaker wall-potential with CY = 0.5. For N > 6 
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Fig. 6. Phase diagram for (Y = 0.85. Only a portion of the condensation surface is shown (dashed 

lines). This surface terminates in curve (a), the line of capillary critical points. The prewetting 

surface ABC (shaded) lies inside the condensation surface and is bounded by the prewetting line 

AB in the l/N = 0 plane, a line of triple points AC and a line of prewetting critical points BC. 

Other features are explained in the text. 

the critical temperatures appear to be insensitive to the choice of (Y. The 

log--log plot in the inset shows that AT = (T, - T,(N)) lT, decreases as N-“, 

with x - 1.7, for 2 c N s 8. A slower decrease occurs for 8 s N 4 12 but then a 

more rapid decay ensues for larger N corresponding to x > 2. We should note, 

however, that for the larger values of N T,(N) lies very close to T, so it is 

difficult in numerical work to determine precisely where the discontinuity in 

the coverage isotherm disappears. Hence there are considerable inaccuracies in 

our estimates of ln(AT) for larger N. Our results do not extend to sufficiently 

large N to test the prediction of Nakanishi and Fisher”), based on scaling 

arguments for an Ising model with short-ranged (contact) wall-potentials, that 
AT-N-“” as N-m. Here v is the correlation length exponent so that in 

mean-field approximation AT - Ne2. Nakanishi and Fisher’s own numerical 

results appear to support this prediction. 

Also shown in fig. 8 are the results for T,(N) obtained from a simple slab 
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Fig. 7. Occupancy profiles p, for two triple point states. (a) u = 0.85, 7’17“ = 0.75, sat = 0.920 and 

N = 21. (b) (Y = 0.85. T/Tc = 0.70, sat = 0.941 and N = 29. Only the portion of each profile near a 

single wall is shown. The numbers in brackets refer to the reduced grand potential w of the 

appropriate phase. 

approximation. We digress a little to describe this. By choosing simple 

parametrized forms for the occupancy profile pi explicit expressions for the 

grand potential fi can be derived that can then be minimized w.r.t. the 

appropriate parameters to obtain equilibrium profiles. The crudest parametri- 

zation setsp,=fiforj=l,2 ,..., N, i.e. the profile is taken to be constant 

throughout the lattice. From (3) it follows that 

where fN = a + 2b( 1 - 1 /N) =f‘- 2blN, is an effective coordination number 

and p,l, = p - v,%, is an effective chemical potential, with v,,, = N-’ C:=, V,, the 

mean wall-fluid potential. Eq. (9) has the same form as the grand potential of 

a homogeneous lattice gas with occupancy 6, but with ‘shifted’ chemical 

potential and coordination number. Thus, within this parametrization the 

phase equilibria of the confined fluid can be obtained directly from that of the 

bulk fluid. The occupancy of the confined fluid at its critical point, where 

confined ‘liquid’ and ‘gas’ solutions become identical, is 

p,(N) = p, = : . (1Oa) 

while 
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(1 ~ 112N). The results for a = 0.85 are plotted on a logarithmic scale in the inset; the straight line 

corresponds to the slab approximation. 

(lob) 

Thus the capillary critical density p,(N) and temperature T,(N) are indepen- 

dent of p, in this approximation. The corresponding chemical potential is 
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P:(N) = - &f,i2 = -2k,T,(N), from which it follows that 

where pu, = p.,(x). The dotted curve in fig. 8 denotes the results of (lob) for 

h.c.p., i.e. T,(N)IT, = (1 - 112N) or AT= 112N. Evidently the slab approxi- 

mation does provide some insight into what factors determine the locus of 

critical points. N = 1 is a special case since this corresponds to a two- 

dimensional lattice gas in a constant external potential V,. The latter simply 

shifts the chemical potential so that coexistence occurs at p = ~~~(1) = V, - 

&f,/2, where f, = u, is the coordination number of the two-dimensional lattice. 

The critical temperature T,(l) is that of the two-dimensional lattice and 

P,(l) = P,,,(l). S’ mce the slab approximation is consistent with this argument 

(lob) yields the correct mean-field result for N = 1: T,( 1) = $ T,. For N = 2, 

p, = p2 and the slab approximation again yields the correct mean field result 

T,(2) = i T,. However, at large N, where T,(N)+ Tc, the approximation 

p, = i for all j seems to be completely inadequate and the results agree poorly 

with those of the full calculation. 

It is instructive to enquire if the same approximation can account for 

capillary condensation. Within this scheme coexistence of the confined ‘liquid’ 

and ‘gas’ configurations, characterized by distinct occupancies p,(N) and p,(N), 

is determined by (6) with pg replaced by P, and T, replaced by T,(N). 
Coexistence occurs when p,b = -2k,T,(N), i.e. at a chemical potential p,,(N) 

which is independent of T and which satisfies 

_ 
l-L,(N) - &.,t = pc(N) ~ pc = V,,, + $ kBTc . (11) 

(The last step follows from (lot).) In fig. 9 we plot Ap,, = ( P,,~ - p_(N)) 
against N for TIT, = 0.75 and (Y = 0.85. The condensation line predicted by 

(11) is in qualitative agreement with the results of the full calculation but 

overestimates Ap,,,. Also plotted in fig. 9 are the results obtained from the 

Kelvin equation for capillary condensation. For sufficiently large N and 

sufficiently small ( p,;,, - II) the grand potential of a ‘gas’ configuration, 0,/ L2, 
can be approximated by -pN + 2yw,, where p is the pressure of the bulk ‘gas’ 

at chemical potential p and 3/w, is the (single) wall-gas interfacial tension. The 

latter is defined* as the surface excess grand potential y evaluated at p = p,,, 

and N=x. The corresponding quantity for a ‘liquid’ configuration under the 

same conditions, is L!,l L2 = -p:N + 2y,,, where p: is the pressure of the 

metastable bulk liquid at the same value of p and Ye, is the wall-liquid 

* Note that the pressure p and the excess grand potential y = lim,+,(G!/L’ + pN) hoth acquire 

the dimensions of energy in this convention. 
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Fig. 9. Capillary coexistence (Ap_, N) diagram for a = 0.85 and TIT, = 0.75, a complete wetting 
situation. The crosses are the results of the full calculations, the solid curve is the slab 

approximation (11) and the dashed curve is the result of the Kelvin equation (12). The 

condensation line ends in a capillary critical point at N = 2, i.e. T = T,(2). For T > T<(2) there is 

no condensation for N = 2. For T,(2) > T > T,(l) = T,/2 condensation occurs for N = 2 but not 

for N = 1. Note the change in scales at N = 10. For N >21 condensation occurs after the 

prewetting transition - see text. 

interfacial tension. Coexistence of ‘liquid’ and ‘gas’ occurs when 0, = R,, or 

when the pressure satisfies 

P -p: = 2cYwg - xvl)lN. 

Expanding both pressures about psat, truncating at first-order in p - P,,~, and 
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using the Gibbs-Duhem relation, we find condensation occurs when 

AP,,, = ~*,a, - P,<,(N) = 2h,v, - r,v,)/N~, - P,> 

= 2Yig cos @/VP, ~ P,) ? (12) 

where we have used Young’s equation, Y~,~ = yW, + -y,g cos 0, to introduce the 
contact angle 0 for the single planar wall. Eq. (12) is a version of the Kelvin 

equation; it is strictly valid in the limit N + 30. Further details of its derivation 

and discussion of its limitations for continuum fluids are given in our earlier 

papers’.“‘). Th e interfacial tensions yWyw, and h, were calculated by setting 

N = 100 so that interference effects between the two walls were negligible. 

From fig. 9 it is clear that eq. (12) underestimates Ap.,,,. This is consistent with 

earlier results (Evans et al.‘.“‘.” )) for a complete wetting situation (0 = 0); the 

Kelvin equation usually overestimates the condensation pressure. One might 

expect that the presence of wetting films on the walls would always tend to 

raise Apcu,, above the Kelvin value since the effective wall separation is reduced 

by a multiple of the thickness of the wetting film”‘.“). Indeed for T = 0.9T, > 

T,, we find that the Kelvin equation underestimates Apt,,, by 40% for N = SO 

and by much larger amounts for smaller N. For T = 0.75T, < T,c the situation 

is somewhat more complex. Prewetting occurs as a transition between stable 

thin and thick films for N 3 21. Thus for N > 21 the condensation is of the type 

found in fig. 3, i.e. from a thick film to a ‘liquid’. Under these circumstances it 

is appropriate to approximate the interfacial contribution to QJ L7 by 2-yW,. 

taking yWy,, = y,\, + x~. For N < 21, however, condensation occurs from the thin 

film to ‘liquid’ and‘ it is not appropriate to make this approximation. One 

should employ rather the grand potential corresponding to the thin film. This 

procedure leads to larger values of Ap,,, but these remain below the results of 

the full calculations. 

In a partial wetting situation (0 > 0) corresponding to T < T,, the Kelvin 

equation for continuum fluids was found (Evans et al.‘,“)) to remain accurate 

down to wall separations of about 10 molecular diameters. Here we find 

equivalent conclusions for the lattice gas. As an example we plot in fig. 10 ApL,,, 

versus N for TIT, = 0.75, the same temperature as fig. 9, but for a weaker 

wall-potential with (Y = 0.70. The contact angle 0 is now about 44” and (12) 

provides an accurate fit to the numerical results for N 3 4. The slab approxima- 

tion (11) gives an equally good fit and has the extra merit of yielding the 

correct mean-field critical point which is at N = 2 for this particular tem- 

perature. 

Finally, we consider in fig. 11 Ap.,,, versus N for (Y = 0.70 and a temperature 

T = 0.35 TV, below the two-dimensional critical temperature Tc( 1) = 4 T,. The 

Kelvin equation is very accurate for N 3 5 and the slab approximation (11) 
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FGg. 10. As in fig. 9 but now for a = 0.70 and TIT< = 0.75, a partial wetting situation. 

gives an excellent fit to the numerical results for all N. Condensation now 

occurs in all cases, even for N = 1. The striking feature is the decrease in Ap,, 

between N = 2 and N = 1. This is not an artefact of the slab approximation 

since eq. (11) yields the correct (mean-field) results for both these cases. For 

the parameters of our model V, = v, = -1.66czk,T, and v, = -0.99ak,T, and 

(11) implies that for cx > 0.74, p,,( 1) < p.,,(2), i.e. Ap.,, increases monotonically 

with decreasing N. However, for weaker wall-potentials (Y < 0.74, (11) predicts 

p,,( 1) > ~~~(2) and we find the behaviour shown in fig. 11. Moreover for 
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Fig. 11. As in figs. Y and 10 but now for LY = 0.70 and T/TL = 0.35. Condensation occurs at N = I: 

this is not a critical point in this case. The inset shows the results on an expanded scale. 

0.5 S CY s 0.6 Apu,, is positive for N = 2 but negative for N = 1 *. Capillary 

condensation from an undersaturated ‘gas’ to a ‘liquid’ occurs for the two layer 

lattice but capillary evaporation from a supersaturated ‘liquid’ to a ‘gas’ occurs 

for the single layer. For cx s 0.5 Ap,, is negative for N = 2 and N = 1. 

Eventually one reaches a situation, at sufficiently small ~~(~0.45) and TIT,, 

* From the exact results Gus, = V, ~ efi/2 and p,,,(m) = CL,,%, = - Ff/2 it follows that, for N = I. 

“CL,,, = -3~ - V, in the h.c.p. lattice. Thus, for the present parameters we obtain the exact result 

a/.~“( 1) = 34 1.66~~ - 1). which changes sign at a = 0.6. 
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where Ap.,, is negative for all N. This corresponds to a contact angle 0 > 

7r/2 .- see (12). 

4. Discussion 

It is instructive to compare our results with those obtained from the earlier 

mean-field density functional calculations for continuum fluids. While the gross 

features of the phase equilibria are the same for the lattice gas model as the 

continuum fluid there are some important quantitative differences. We focus 

first on the prewetting surface in fig. 6. It extends to larger values of 

l/N( = 1 lH) than those estimated in ref. 5. In both cases the location of the 

prewetting line dj~,,(N) = ( psat - p,,(H)) is insensitive to H and can be 

approximated by App,(a). Moreover, for large N, Ap,, is given reasonably 

accurately by the Kelvin equation so that, for fixed T, the separation Htriple, at 

which the condensation surface intersects the prewetting surface, is determined 

by 

A/J,,(~) = ‘P,,(H) “2~g’Htripic(~r - P,) 9 

i.e. 

Htriple =h~‘b, - P,)&~,P) (13) 

with an equivalent result for Ntrlple. In the present case p,/p,,, is about 0.88 at a 

prewetting critical point (T,,l T, = 0.82), Ap.,,, I- 0.046&T, and (13) predicts 

Ntripls - 14, which is close to the calculated value. The density functional 

results of Evans and Marini Bettolo Marconi’) for a Yukawa fluid confined by 

two hard walls with attractive exponential tails gave p,,lpsat = 0.95 for TJ T, = 

0.645 and Appwc = O.O33k,T,. Thus the prewetting line was much closer to 

saturation than the present. Since y,JkRTc was much larger than the corres- 

ponding quantity for the lattice gas (by a factor of 4, or so) Htnple was 

estimated5) to be -70 molecular diameters at the prewetting critical point. 

Given that the prewetting line was also much shorter in temperature ((T,, - 

T,)IT, = 0.065 rather than the present value of 0.37) it is clear that the 

prewetting surface for the continuum fluid was very much smaller than that 

shown in fig. 6 for the lattice gas model. For the fluid it is necessary to go to 

very large separations, H > 70 diameters, before prewetting can be observed 

between stable thick and thin films, whereas for the present lattice gas 

prewetting can be observed for N b 1.5 when T- T,,. Will this be true in 

general? The parameters of the present model were chosen to give a very 

‘strong’ first-order wetting transition at a low temperature. Other choices of 

parameters and potential functions can produce ‘weaker’ transitions with 
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shorter prewetting lines. Recent lattice gas calculations by Sen and Ebner”) 

show that the location of the prewetting line depends strongly on the relative 

ranges of the wall-fluid and fluid-fluid potentials. For many (realistic) choices 

of potentials they find short lines, (T,, - T,)/ T, s 0.1, that are close to 

saturation, 0.01 > AppwL/k,T, > 0.001, in both mean-field and Monte-Carlo 

treatments. If these estimates are used in (13) they imply very large values for 

Ntrlplc and, hence, extremely small prewetting surfaces, similar to those we 

described above for the continuum fluid. These observations have repercus- 

sions for computer simulations of confined fluids, to which we return later. We 

note that the profiles displayed in fig. 7 for two states, on, or extremely close 

to, the triple point line are remarkably similar to the density profiles calculated 

for a near-triple point state of a continuum fluid confined in a cylindrical 
pore - see fig. 10 of Evans et al.” ). The decrease of p, near the walls for both 

the ‘liquid’ and the thick film appears to be a general feature of such states. 

The line of capillary critical points plotted in fig. X is similar in shape to that 

obtained by Evans et al.‘). If we identify their parameter A- ‘, the common 

range of exponential wall-fluid and Yukawa fluid-fluid potentials, with the 

lattice spacing we find that for large N T,(N)/T, decreases less rapidly with 

decreasing N in the present case. However, comparison of the corresponding 

slab approximation, eq. (61) of ref. 1, with (lob) indicates the difficulties 

involved in comparing results from the different models; the former predicts 

T,(H) /T, - 1 - l/AH, whereas T,(N)/T, - 1 - 112N for the lattice gas. 

Our results for the condensation line Ap,,,(N) warrant further comment. As 

both the Kelvin equation (12) and the slab approximation (11) fail to incor- 

porate the thick wetting films that develop at the walls in a complete wetting 
situation’.‘““’ ) we cannot expect these approximations to provide a quantita- 

tive description of condensation for T > T,,,. In a partial wetting situation, 

T < T,, both approximations remain reliable down to small values of N. just as 

was found for continuum fluids”“). The lattice gas model differs from the 

theory employed in our earlier’.5.“) calculations in that it incorporates explicit- 

ly two-dimensional liquid-gas condensation when N = 1; for T 2 T,(l) there is 

no condensation for N = 1 whereas for T < T,( 1) there is. Such a feature is 

absent from density functional theories which employ local density approxima- 

tions for short-ranged (hard-sphere) correlations (see Evans et al.“)) and can 

only be incorporated by means of non-local theories (Tarazona et al.“)). The 

present prediction that dp,,, may be a non-monotonic function of N (at small 

N) for weak wall-potentials is rather interesting and one which could be tested 

by simulation or by the more sophisticated density functional approaches. 

Our solutions are strictly mean-field solutions. To what extent could fluctua- 

tion corrections modify our conclusions‘? One obvious defect of the mean-field 

approximation is its failure to describe a roughening transition. It is well 
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accepted that for strongly attractive wall-fluid potentials the sequence of 

layering transitions has critical temperatures which approach the roughening 

temperature T, as N+ 0~ (e.g. Ebner’)) and that T,(l) < T, < T,. Mean-field 

approximation gives an infinite sequence with critical points approaching the 

limit T, as N-+m, i.e. it implies a roughening temperature equal to the bulk 

critical temperature. For finite N the sequence is truncated by capillary 

condensation and there is no roughening. Consequently we can expect the 

mean-field results to be qualitatively correct. For weaker wall-fluid potentials 

Ebner’) has argued that T, can be larger than T,. This implies that layering 

transitions would not be observed after prewetting as p is increased towards 

EL sat and Ebner’s Monte Carlo calculations support this view*. By contrast 

mean-field approximation yields a sequence of layering transitions after pre- 

wetting since T, = T,. When N is finite we once again truncate the sequence 

but, for sufficiently large N, some layering transitions will remain as shown in 

fig. 3. It follows that such transitions are probably artefacts of the mean-field 

approximation. Our general conclusions concerning the existence of a line of 

triple points and the form of the prewetting surface should remain valid, 

qualitatively if not quantitatively, in a more rigorous approach. In this context 

computer simulations could play a valuable role. Our results suggest that for 

favourable choices of wall-fluid potential, such as the one chosen here, stable 

prewetting and the accompanying triple point states could be observed in grand 

canonical Monte Carlo simulations of a confined lattice gas without necessitat- 

ing prohibitively large wall separations H #. These observations also have 

relevance for those adsorption experiments that search for prewetting - see 

Evans and Marini Bettolo Marconi’). The competition between prewetting and 

capillary condensation that is described here could, in principle, be monitored 

in adsorption measurements performed on an (ideal) porous solid with pores of 

an appropriate size. Pore geometry and pore connectivity then become 

relevant however - Evans et al.“). For small N, where two-dimensional-like 

condensation occurs, the effects of fluctuations will become increasingly impor- 

tant and we must expect substantial corrections to the present results, especial- 

ly for the numerical values of the capillary critical temperatures T,(N). 

* See also the discussion by Pandit et a1.15). 

’ Since computer simulations of continuum fluids are usually performed using two identical 
parallel walls with separations H much less than the values of H,c+ estimated here, we would not 
expect to see stable prewetting transitions in grand canonical simulations of the type reported by 

Lane et al.‘“). Indeed prewetting does not appear to have been observed in any simulations of 
continuum fluids. 
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