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Abstract. Using the cluster Bethe lattice method and the quasi-spin model for itinerant 
magnetism, we show that in a one-band model there is no metallic-antiferromagnetic phase 
for a half-filled band at T = 0. 

In a recent paper published in this Journal, one of us (Brouers 1982) has discussed the 
influence of magnetic short-range order and electronic charge transfer on the value of 
the Curie temperature. In that paper basedon the Bethe cluster approximation (Brouers 
et a1 1973, Kittler and Falicov 1976) three ‘order parameters’ were introduced, the 
concentration of up moments, the magnetic short- and long-range order. With this 
description, the discussion of the phase diagram in the U/B-n plane, where U is the 
intra-atomic Coulomb interaction, B the half-bandwidth and n the number of electrons 
per atom, is more general than in previous works (Roth 1978, Liu 1978, Moran-Lopez 
et a1 1981). In particular, it was shown that the introduction of magnetic short-range can 
reduce substantially the Curie temperature and that charge transfer between sites with 
up and down moments cannot be discarded. 

In this Letter we want to comment on the possibility of obtaining in this model a 
metallic-antiferromagnetic phase for a band filling corresponding to one electron per 
atom. Such a phase has been observed in V203. 

Cyrot and Lacour-Gayet (1972), using the coherent potential approximation, 
obtained two critical values for U/B, u u  and UI. For ratios smaller than uAF, the local 
moment is zero and the system is metallic and non-magnetic. For intermediate values 
uu < U < UI, the system becomes antiferromagnetic. There is no gap in the electron 
spectrum and the system remains metallic. For ratios larger than UI the system becomes 
an antiferromagnetic insulator. However, this behaviour does not agree with Brinkman 
and Rice’s (1970) theory which, on the basis of Gutmiller’s (1965) approach, states that 
no antiferromagnetic metallic state can exist in this model. 

In the calculations of Roth (1978) which correspond to the same model, the ground 
state is always antiferromagnetic for any value of UIB. In the paper of Liu (1978), the 
published phase diagram does not allow a definite conclusion. These two authors did 
not discuss the metal-insulator transition. 

As, moreover, a general theorem indicates that in this one-band model the appear- 
ance of two sublattices and the appearance of an insulating gap should occur simulta- 
neously we have used the formalism described in Brouers (1982) to understand the 
contradictions between these various results. 
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We start from the single-band Hubbard Hamiltonian 

H =  x'ti,ci+oC,,+ U x n i t n i ~ .  
i , j ,  0 i 

where tii is the hopping integral, U is the Coulomb repulsion, the sum on i and j is over 
the lattice sites, and i and j are nearest neighbours. The sum on ais over the spin states 
of the electrons. The number of nearest neighbours of a given site is denoted by Z. Here 
we have taken 2 = 12. 

The unrestricted Hartree-Fock Hamiltonian can be written 

H W =  i.j,o Z ti,c>jo+ U C ( n i l ) n i r  i + U Z ( n i r ) n i i  + U C ( n i r ) ( n i i ) .  (2) 

We use the alloy analogy considered by Schrieffer (1970) and Cyrot and Lacour-Gayet 
(1972). We view the system as an Ising alloy AzB1-x,  the A sites being occupied by up 
(+) moments and the B sites by down (-) moments. If one wants to describe antiferro- 
magnetic states, one has to introduce two sublattices cuand f i .  In the antiferromagnetic 
state, ail the sites CY are occupied by A atoms with up momentm? and the f i  sites by B 
atoms with a down moment m!! = - my. 

The interactions corresponding to an up spin are therefore 

U(n?l) with probabilityp? = x + 1q 
U(ntL) with probability pf = x - fq 

U(n!?) with probabilityp: = 1 - x - hq 

U(n!?t) with probabilityp! = 1 - x + 1q 
and similar expressions for a down spin. Here q is the long-range order defined by 

O d q d 2 X  i f x s f  

0 d q d 2(1 - x) if x L 1. 

(3) 

The eight quantities ( n q f  ( .1 )) have been determined self-consistently and the local 
moments can then be calculated. We have solved this problem on a Cayley tree. The 
absence of closed loops allows us to express the local Green's function in the form of a 
continuous fraction which can be easily written in a closed form (Brouers 1982). The 
local Green's functions are given by 

G?? = ( z  - U(n? 1) - ZY@+t?%T!?!$ - Z?hYcT!'!)-l etc (4) 

( 5 )  

with the transfer matrices given by 

TY! = t";B,(z - U(n7 c )  - (ZY% - l)fY@+T!?! - (Z'$!- - ~)CYP-T!!'?+T)-~ etc 

Z ? t  = @YQpS)Z. 

The pair probabilities are defined by 

p:!+ = x2 + x(1 - x)a 

py- = x( l  - x)(l - a) + 1q 
PE@+ = x ( l  - x)(l - U) - fq 

p e  = (1 - x)Z+ x( l  - x)a. (7) 

If we define the partial densities of states 
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the Fermi level is determined by the condition 

L927 

(9) 

where n is the electron occupation number 
consistently solving the eight equations 

EF 
n Q t p t ( l )  + -) 

UT) = - ( n q $  >. 

= J-, &?!'"'(E) dE 

the local moments being 

The total energy is given by 

and the quantities are determined self- 

(10) 

Coulomb repulsion UIB 

Figure 1. Absolute value of the local moment and density of states at Fermi level against 
UIB. The dotted line corresponds to an imaginary part of and the full line to lo-%. 

The results for a half-filled band (n  = 1) are summarised in figures 1 and 2. An 
antiferromagnetic solution occurs for U = 0.28, the units being half the bandwidth 
2 a t .  The absolute value of the local moment increases monotonically to the value 1 
in the atomic limit. For U = 0.28 the density of states drops to zero. We have noticed 
that this sudden decrease, related to the appearance of a gap in the density of states, 
depends strongly on the presence in the denominator of the Green function of a small 
imaginary part which is generally introduced in the self-consistent numerical calculations 
to improve the convergence. The dotted line corresponds to an imaginary part of 10-2t 
and the full line to 10-3t. 

Using the cluster Bethe lattice method and the quasi-spin model for itinerant mag- 
netism, we have found that for a half-filled band an antiferromagnetic solution occurs 
for a finite value of the interatomic Coulomb interaction U = 0.28 B where B is the 
half-bandwidth. Simultaneously the system undergoes a metal-insulator transition. 

This result does not agree with Cyrot and Lacour-Gayet's conclusions. The fact that 
in their CPA calculation the two transitions do not appear simultaneously is probably due 
to the introduction in the numerical calculation of a small imaginary self-energy. 
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Figure 2. Density of states corresponding to up and down spin on the (Y sublattice. - 
g!$,gC!r;----g$r,gC!'. U/B=O.4;n$T =0.555;nZL =0.445;m? =0.11  = - (mC!l. 
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