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The structure and transport of neutral and charged °uids under nanoscopic con¯nement are

derived from the kinetic and microscopic perspective. As compared to lumped parameter

approaches, the strategy is to resolve the collision between particles for hard-core forces and to

use a mean ¯eld treatment for soft- and long-ranged forces. The numerical strategy adapts the
Lattice Boltzmann (LB) scheme to handle interatomic and electrostatic interactions.
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1. Introduction

Di®erent physical phenomena emerge at the nanoscale giving the opportunity to

unveil new phenomena and develop new branches of sciences and technologies going

under the name of Nanoscience and Nanotechnology, respectively.1–3 A large portion

of nanoscopic devices operate by the action of pressure gradients or electric ¯elds.

The latter is a very e®ective mean of transporting species and heat in tiny spaces. In

addition, a proper treatment of charged nano°uids is crucial in order to understand

the translocation of charged biomolecules, such as DNA, and the motion of the

accompanying electrolytes in narrow channels.4,5 This topic is currently attracting

considerable interest as a mean to perform fast genetic sequencing. At the same time,

a large scienti¯c community is devoted to studying the motion of charged biomole-

cules in cellular environments.
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As of today, an accurate theory for transport and structure under nonequilibrium

conditions is still missing. Under nanocon¯nement, the assumptions leading to the

standard macroscopic continuum description do not hold any longer, in fact when a

small number of molecules is enclosed in a very small volume the mean free path

becomes of the order of the interatomic distance and the linear size of the container.

In this scenario, one has to consider a microscopic description of matter. In fact,

while the knowledge of the bulk transport coe±cients is su±cient to study °uids

under standard homogeneous conditions, this is not the case when the separation

between the atomic scale and the scale of the phenomenon under investigation are

comparable.

In the last few years we have explored methods to study °uids under nanocon-

¯nement.6–9 Our treatment combines di®erent areas of liquid state theory, namely

kinetic and density functional theory (DFT) and their implementation as an e®ective

numerical method via the Lattice Boltzmann (LB) approach. The method focuses

on the evolution of the singlet distribution function by separating the long-lived

hydrodynamic modes from the fast kinetic ones and by invoking a coarse-graining

ansatz.

There are several bene¯ts stemming from the present approach: (i) the theory has

thermodynamic consistency and produces accurate interatomic density/velocity

correlations,16,17 (ii) the equations for the moments have the correct structure, as

compared with a dynamics that relies only on the free-energy landscape, (iii) the

approach provides analytic expressions from the transport coe±cients; (iii) the

numerical solution is stable and reliable and, as shown below, is more e±cient than

atomic simulations for systems with large disparity in concentrations.

2. From One-Component Fluid to Electrolytic Solutions

We consider the following kinetic equation for the distribution function fðr;v; tÞ
with a collision kernel which fully represents the nonlocal repulsive interactions

between hard spheres of diameter �:

@tf þ vi@if þ Fi

m

@

@vi
f ¼ �RET ½f; f�; ð1Þ

where

�RET ½f; f� ¼ �2
Z

dv2

Z
dk̂�ðk̂ � v12Þðk̂ � v12Þ½Gðr; r� k̂�;v0;v 0

2Þ

�Gðr; rþ k̂�;v;v2Þ�: ð2Þ

Gðr1; r2;v1;v2; tÞ ¼ g2ðr1; r2; tÞfðr1;v1; tÞfðr2;v2; tÞ is the approximate two-body

distribution function and the primed velocities are de¯ned by the relations v0 ¼
v� ðk̂ � v12Þk̂ and v 0

2 ¼ v2 þ ðk̂ � v12Þk̂, with v12 ¼ v1 � v2. G contains the con¯g-

urational pair correlation function g2ð½n�Þ that depends functionally on the density

and re°ects the Enskog treatment of correlations.
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The hydrodynamic ¯elds density, velocity and temperature are given by:

n
nu

3

2
nkBT

0
BB@

1
CCA ¼

Z
dv

1
v

mðv� uÞ2
2

0
BB@

1
CCAfðr;v; tÞ; ð3Þ

where kB is the Boltzmann constant, and the corresponding moments of the collision

operator are:

0

C

Q

0
@

1
A ¼

Z
dv

1

mðv� uÞ
mðv� uÞ2

2

0
BB@

1
CCA�ðr;v; tÞ: ð4Þ

In order to reduce the complexity of Eqs. (1) and (2) we separate the fast degrees of

freedom, which give a minor contribution to the observed properties, from the slow

hydrodynamic ones, which on the contrary are crucial.10 The collision operator is

projected onto the hydrodynamic subspace spanned by the functions f1;v; v2g and

onto the complementary kinetic subspace:

� ¼ Phydro�þ ðI � PhydroÞ� ð5Þ
with

Phydro� ¼ 1

kBT
�M ðv� uÞ �Cþ mðv� uÞ2

3kBT
� 1

� �
Q

� �
: ð6Þ

The second term is approximated as a BGK term18

ðI � PhydroÞ� ¼ �!0ðf � feqÞ; ð7Þ

where feq ¼ n½ m
2�kBT

�3=2expð� mðv�uÞ2
2kBT

Þ is the local equilibrium distribution and !0 is a

phenomenological collision frequency, chosen so as to reproduce the kinetic contri-

bution to the viscosity.

By applying these approximations to the complicated multidimensional integrals,

the interaction becomes:

�RET ’ �!0ðf � feqÞ þ feqðn;uÞ
nkBT

ðv� uÞ �Cþ mðv� uÞ2
3kBT

� 1

� �
Q

� �
ð8Þ

an enormous simpli¯cation with respect to (2) that satis¯es the correct balance

equations for n, u and T . While this term treats exactly the collisions for the

hydrodynamic modes, it approximates the nonhydrodynamic modes by means of the

BGK relaxation term that acts directly only on the kinetic modes. It is still unproven

that the scheme obeys an H-theorem, as compared to other approaches.11,12

An accurate analysis shows that Ciðr; tÞ comprises three types of forces, the

gradient of the nondissipative potential of mean force, a viscous force and a force due

to thermal variations. In the case of a multicomponent °uid a drag force is also
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present, which appears when two species have di®erent °uid velocities. The

decomposition is given by dissipative and nondissipative contributions:

C ¼ nðFmf þ Fviscous þ FT Þ; ð9Þ

where

F mf
i ðr; tÞ ¼ �kBT�

2

Z
dk̂kig2ðr; rþ �k; tÞnðrþ �k; tÞ; ð10Þ

F viscous
i ðr; tÞ

¼ 2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

�

r Z
dk̂kikjg2ðr; rþ �k; tÞnðrþ �k; tÞðujðrþ �kÞ � ujðrÞÞ; ð11Þ

F T
i ðr; tÞ ¼ � �2

2

Z
dk̂kig2ðr; rþ �k; tÞnðrþ �k; tÞkB½T ðrþ �k; tÞ � T ðr; tÞ�: ð12Þ

The e®ective ¯elds at position r depend on integrals of nðr; tÞ, uðr; tÞ and T ðr; tÞ on a

spherical surface of diameter � centered at r. Under equilibrium conditions Fmf is the

gradient of the potential of mean force, that is the gradient of excess over ideal part of

chemical potential Fmfðr; tÞ ¼ �r�excðr; tÞ. Being expressed as a thermodynamic

force, it relates to an underlying free energy, whose analytic form is ultimately

encoded by the form of g2. However, the viscous and thermal forces cannot be related

to an underlying free-energy. In this respect, the theory has full thermodynamic

consistency and describes forces which have entropic, depletion, electrostatic or Van

der Waals counterparts at equilibrium.19,20 The pair correlation function at contact

g2ðr; rþ �k̂; tjnÞ is conveniently given by the Fisher–Methfessel prescription, by

estimating the pair correlation of a homogeneous HS °uid at the density �nðrþr0
2 Þ

de¯ned by �nðr; tÞ ¼ 3
4��3

R
jr�r0 j<�dr

0nðrþ r0; tÞ.
In Eq. (8) there is no explicit reference to the transport coe±cients.

In fact, a detailed analysis shows that the kinetic system has the correct

equilibrium behavior and less trivial, self-consistent transport properties with respect

to simple BGK dynamics. Under homogeneous conditions, the viscosity is � ¼
1
!0
kBTnþ 4

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�kBT

p
n2�4g2ð�þÞ, the thermal conductivity is � ¼ ½52 1

m!0
nk2

BT þ
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�kBT

p
g2ð�þÞn2�4 kB

m � while the parameter !0, is interpreted as the collision

frequency between spheres of equal diameter � so that !0 ¼ n�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
.

Let us now illustrate the generalization to electrolytic solutions, being composed

of basically three species, a neutral solvent and two ionic species of opposite charges.

When studying the motion of charged biomolecules by electrophoretic forces,

the strength of entropic, coulombic and viscous forces arising from the electrolytic

environment need to be assessed with care.

The theoretical approach is suitably generalized to the multicomponent case, such

as two-component mixtures8,9 or ternary mixtures of positive and negative ions

immersed in a solvent of neutral particles. We label with the superscript 0 the

solvent and with � the electrolytes of valence z� ¼ �1. We assume the dielectric
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permittivity � to be constant everywhere. The collision operator is written as:X
�

�	�ðr;v; tÞ � �!0½f	ðr;v; tÞ � f eq;	
? ðr;v; tÞ�

þ feq;	ðr; tÞ
nkBT

� ðv� uðr; tÞÞ©	ðr;v; tÞ

� ez	

m
r ðrÞ � @

@v
f	ðr;v; tÞ;

where the distribution feq;	ðr;v; tÞ is the local equilibrium distribution of the species

	 and f eq;	
? ðr;v; tÞ is a local distribution modi¯ed as to give the correct di®usion

behavior of the mixture.8 The quantity ©	 represents the sum of the internal forces

of nonelectrostatic nature acting on species 	 of the type (10)–(12) plus a frictional

force between the ions and the solvent proportional to F�;drag ¼ �
�ðu� � uÞ with

� � 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mkBT

p
g0�n0�2 and g0� the bulk ion-solvent pair correlation function

evaluated at contact. Finally, the electric potential  satis¯es Poisson equation,

r2 ¼ � e
P

z	n	

� and the ionic currents are expressed in terms of the microscopic

parameters:

J� ¼ � 1


�
n�r�� � 1


�
ez�n�r þ n�u ð13Þ

that, used in conjunction with the continuity equation @tn
� þ r � J� ¼ 0; de facto

extends the Planck–Nernst–Poisson equation to the presence of convective13 and

thermodynamic forces.

3. Numerical Method

The kinetic equations described above are amenable to numerical solution within the

LB framework. The devised method has been applied to simulate simple °uids as well

as to mixtures of particles having unequal sizes, repulsive short-range hard-sphere

potentials and weak attractive long-range interactions.7,8 The approach was further

applied to electrolytic solutions in devices.6,7 While one can work out the case of

thermal currents via suitable high-order lattice schemes, we have preferred to work in

isothermal conditions for the sake of simplicity.

The method is an adaptation of the conventional LB to the presence of hard

sphere collisions. It relies on computing hard-core collisional forces and, for charged

°uids, to solve the Poisson equation. The inclusion of hard sphere collisions is based

on computing the surface integrals of Eqs. (10) and (11) via numerical quadratures.

To this aim, the mesh spacing �x must be chosen to be a fraction of the hard-sphere

diameter, typically � ¼ 4�x. The spatial quadratures provide Oð�x3Þ accuracy, while
this is su±cient for many purposes isotropic schemes can be included.14

The populations are evolved by a second-order accurate trapezoidal rule. In

addition, we compensate the harsh internal forces by auxiliary ¯elds, as detailed in

Ref. 15, in order to minimize parasitic currents. This approach is based on the use of
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an auxiliary set of populations and improves the accuracy and robustness of the

scheme, without altering the equations for the hydrodynamic ¯elds. A comparison at

equilibrium between the LB results and Molecular Dynamics (MD) data is shown in

Fig. 1 and illustrates the high accuracy of the present scheme. Being a microscopic

approach to °uids, one question regards if the numerical scheme is competitive with

atomic-based simulation techniques, such as MD, where in fact, one solves Newton

equations virtually without approximations. The answer comes from two crucial

facts: the ¯rst is the absence of noise in the deterministic LB scheme as compared to

the need for averaging in MD. While the e®ect of °uctuating forces in nanoscopic

systems is still the object of debate, the probabilistic nature of the Boltzmann ap-

proach is a strategic asset over the atomistic treatment. Second, the case of solutions

with large disparity in concentrations, as typical in electrolytic devices, is hardly

accessible to MD. In fact, the same averaging limitations arises when focusing on a

few important atoms in a sea of other particles.

In conclusion, separating hydrodynamic from nonhydrodynamic modes is a

strategic advantage to describe nano°uids and to understand the interplay between

structure and dynamics. While at ¯rst glance our kinetic equations resemble a

standard theory based on gradients of proper hydrodynamic ¯elds, in reality they

hold full thermodynamic consistency without being based on an underlying free-

energy model. The approach leads to a practical simulation method to study con¯ned

°uids under di®erent conditions.
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Fig. 1. (Color online) Density pro¯les as obtained from the electrokinetic LB method (continuous lines)

and MD simulations (dotted lines).
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