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Frequency-control of protein translocation across
an oscillating nanopore

Fabio Cecconi, *a Muhammad Adnan Shahzad,b

Umberto Marini Bettolo Marconib and Angelo Vulpianicd

The translocation of a lipid binding protein (LBP) is studied using a phenomenological coarse-grained

computational model that simplifies both chain and pore geometry. We investigated via molecular

dynamics the interplay between transport and unfolding in the presence of a nanopore whose section

oscillates periodically in time with a frequency o, a motion often referred to as the radial breathing

mode (RBM). We found that the LPB when mechanically pulled into the vibrating nanopore exhibits a

translocation dynamics that in some frequency range is accelerated and shows a frequency locking to

the pore dynamics. The main effect of pore vibrations is the suppression of stalling events of the

translocation dynamics, hence, proper frequency tuning allows both regularization and control of the

overall transport process. Finally, the interpretation of the simulation results is easily achieved by

resorting to a first passage theory of elementary driven-diffusion processes.

1 Introduction

Various biological and technological reasons require the study
of the translocation of macromolecules across nanopores under
conditions that vary cyclically in time.

A biological example can be found in the action of certain
proteases (ClpXP), which upon transforming the energy of ATP
hydrolysis into mechanical force unfold and translocate poly-
peptides into the associated nanopores where they are eventually
degraded. The translocation occurs in cycles composed of a dwell
phase, during which the polypeptide is at rest, and a burst phase,
in which the polypeptide is pulled.1

Nanopores in thin and flexible membranes, like graphene
layers, are not rigid and their thermal fluctuations may have a
non-negligible impact on the translocation dynamics of long
molecules.2 According to normal mode analysis (NMA) and
principal component (PCA) analysis, it is customary to decompose
fluctuations of the membrane either in normal or principal modes
to reveal the most important movements. Then, in a mechanical
view of the system, the role of each mode can be studied separately
and the analysis is restricted to the modes with the largest
contributions to the atomic mean square displacement (MSD).
In a nutshell, the procedure amounts to applying a periodic
deformation (a mode) to the pore contour.

On the experimental and technological side, time modulation
of translocation processes can arise from spontaneous or induced
variations in laboratory conditions. For instance, the use of
alternating electrical sources finds applications in pulsed voltage
driven experiments3–5 or pulsed-field gel electrophoresis.6

Other laboratory experiments7,8 proved that deformation of nano-
pores by an applied stress allows the control of DNA translocation
speed. On this basis, a sequence of compressions and releases of
nanopores is expected to yield a cyclical behaviour of macro-
molecule transport. This technique is a promising method for
controlling the translocation process by means of a periodic
modulation of mechanical stress and constitutes a viable alternative
to methods based on tuning electrolyte salt concentration, viscosity
or electrical voltages.

Apart from the obvious biological and technological interest,
the theoretical interpretation of translocation experiments in
time-modulated environments is particularly challenging as it
involves different approaches of statistical physics, ranging
from, biopolymer modelling, to transport theory, to methods
of stochastic processes.

Several computational and theoretical studies that addressed
the effects of modulated driving on translocation have mainly
focused on simple unstructured polymers. In this context, some
authors considered periodic pulling fields,9–11 others, instead,
constant field and the modulation of the environment: nano-
channels12–14 or solvent.15 Recently, the effects of concomitant
time variations of field and channel have been theoretically
analyzed in ref. 16.

The most relevant contribution emerging from these studies
is the discovery of a noise induced phenomenology in polymer
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translocation akin to stochastic resonance (SR)17 and resonant
activation (RA),18,19 according to which the average translocation
time as a function of the frequency of the external force presents
a non-monotonic behaviour characterised by a sequence of minima
and peaks.9,12,20 As remarked by several authors, the RA can be
observed in environments that undergo either oscillatory or random
fluctuations.

Inspired by these works, we set out to study the generic effect
of a pure radial vibration of a cylindrical nanopore on the transloca-
tion properties of protein-like structures, by implementing a simple
coarse-grained model that correctly describes the secondary motives
and compactness of the protein to be imported. In the following
sections, we borrow the acronym RBM (radial breathing mode) from
the carbon nanotube literature21 for indicating the radial periodic
expansion–contraction of the pore.

We focus on a molecule belonging to the lipid binding
protein (LBP) family that shares a simple barrel-like fold. Such
proteins can reversibly and non-covalently associate with lipids,
favouring the solubility of lipids in water and facilitating their
transport between tissues. Regardless of its function, the LBP
has been selected for its barrel topology that results in a clear
sequential breaking of secondary motifs upon mechanical pulling
by the C-terminus. Moreover, the barrel constitutes a symmetric
and compact core which can easily give rise to stalled translocation
dynamics when imported in a narrow pore.

In this paper, only steric-like interactions between the pore
and the protein are taken into account; the RBM determines
the modulation of steric hindrance to protein passage that
virtually resembles a cycle of ‘‘open-closed’’ pore states. Our
primary purpose is to understand how the RBM modifies the
RA mechanism when simple polymers are replaced by polypeptide
chains with a well-defined compact geometrical structure. Indeed,
the natural tendency of proteins to fold into globular compact
states is expected to interfere with both entrance and translocation
in nano-confined geometries leading to an irregular transport
behaviour. The greater complexity with respect to linear polymers
is ascribable to the following main reasons: (a) transport of proteins
in narrow pores requires partial or full chain denaturation, as a
consequence, unfolding and transport are often coupled. In the
literature, this coupling is generally referred to as co-translocational
unfolding;22–26 (b) the geometrical properties of protein chains
are known to influence the translocation kinetics. Indeed, some
structural elements or blocks, either for robustness or compactness,
contribute to stall the process in dynamical intermediates, one is
thus allowed to coin the term structure-dependent translocation;
(c) multiple-strand translocation occurs when a passing protein
allocates simultaneously multiple strands inside the channel, in
contrast to the single-file mode where the passage occurs strand
by strand. The multiple-strand passage represents one of the main
factors slowing down the translocation.

In this respect, it is natural to wonder how the scenario
described in (a), (b) and (c) modifies upon pore RBM oscillations.
In particular, three issues can be specifically addressed by our
simplified mechanical model.

The first concerns the general response of the LPB translocation
dynamics to the pore mechanical action, to what extent the

translocation and pore dynamics are resonant. Another issue
refers to how certain pore vibrations might affect the presence
and the impact of possible translocation intermediate states on
the dynamics.22,24,27,28

Finally, we wonder if the RBM of the channel is able to
trigger or accelerate the translocation dynamics in analogy with
the results of ref. 29 on knotted proteins.

We will start by analysing the LBP translocation across a
static pore which has to be considered as the reference case.
Simulations show that the translocation dynamics is characterised
by a major stall event occurring when the last residue of the
secondary structure involving strands S1 (segment 46–52), S2
(segment 56–63) and S3 (segment 67–72) reaches the pore
entrance. A stall is the trapping of molecule conformations
into on-pathway intermediate states that are considered long-
lived when compared to the whole translocation duration.
Furthermore, the persistence of this block inside the pore leads
also to translocation events that are not single-file.

Then, we study how the LBP translocation gets modified
when the pore undergoes RBM with frequency o. Three regimes
are observed. At low frequency, long stalls are not suppressed
but their duration is reduced, overall, the translocation process
remains slower than that of the static case.

At intermediate frequency, stalling events are significantly
suppressed with a consequent speeding up of translocation
with respect to the static pore.

Finally, in the high frequency regime, we find a further
improvement in translocation efficiency accompanied by a
modulation of the LPB dynamics with the pore vibration; a
clear indication that pore oscillations couple to LPB transport
dynamics. Beyond this range, the protein dynamics is no longer
able to lock to the force applied by the pore. Even in the absence
of an obvious locking between pore and protein dynamics, we
observe, above a certain frequency threshold, a translocation
speeding up with respect to the static pore, basically due to the
mechanism of stall suppression.

The paper is organised as follows: in Section 2, we briefly
summarise the computational model used to simulate LBP
translocations in a narrow pore. In Section 3, we illustrate and
discuss the results in the case of a static pore and we extend the
analysis to a fluctuating pore.

2 Computational model

We implemented a coarse-grained representation of both protein
and pore, where the pore is simplified to a confining channel
with soft walls and the LBP chain, whose atomic coordinates are
downloaded from the Protein Data Bank (pdbid: 2MM330), is
reduced to a sequence of point-like beads which spatially coincide
with the Ca carbons of the protein backbone. Despite this great
simplification, the protein-like nature of the LBP structure is
preserved when modelling the intrachain interactions via a
Gō-type force field proposed by Clementi et al.31 that takes into
account in a realistic manner the secondary-structure content
(helices and beta-sheets) of a protein chain. This characteristic
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is crucial in the present study model, as we are interested in
quantifying how the tendency of the macromolecule to maintain
its globular native conformation reflects in the translocation
dynamics.

In their approach, the force field acting on the N beads is
defined by four potential-energy terms:

FGo ¼
XN�1
i¼1

Vp ri;iþ1
� �

þ
XN�2
i¼1

Vy yið Þ þ
XN�3
i¼1

Vj jið Þ þ
X

i; j�iþ3
Vnb rij
� �

The peptide term, Vp, that enforces chain connectivity, is a stiff
harmonic potential allowing only small oscillations of the bond
lengths around their equilibrium values

Vp ri;iþ1
� �

¼ kp

2
ri;iþ1 � Ri;iþ1
� �2

where ri,i+1 and Ri,i+1 are the distances between beads i and j in
the current and native conformations, respectively. The spring
constant is kp = 103e/dp

2, with e setting the energy scale and dp =
3.8 Å is the average distance between two consecutive residues.

Likewise, the bending potential Vy allows only small fluctuations
of the bending angles yi around their native values Yi

Vy yið Þ ¼
ky

2
yi �Yið Þ2

where ky = 20e rad�2. The native secondary structure is primarily
enforced by the dihedral potential Vf. Each dihedral angle,
identified by four consecutive beads, contributes to the
potential with the terms

Vf(fi) = k(1)
j [1 � cos(ji � Fi)] + k(3)

j [1 � cos 3(ji � Fi)]

where Fi denotes the value of the i-th angle in the native
structure, k(1)

j = e and k(3)
j = 0.5e.

Finally, the long-range potential Vnb which favors the for-
mation of the correct native tertiary structure by promoting
attractive interactions is the two-body function,

Vnb rij
� �

¼ e

5
Rij

rij

� �12

� 6
Rij

rij

� �10

Rij � Rc

10

3

s
rij

� �12

Rij 4Rc:

8>>>><
>>>>:

Therefore, the interaction between amino acids i–j is attractive
when their distance in the native structure, Rij, is below a
certain cutoff, Rc = 7.0 Å in this work, otherwise the amino
acids repel each other via a soft–core interaction with s = 5 Å. It
means that the system gains energy as much as a pair of beads
involved in a native contact is close to its native configuration.

A unique parameter e sets the energy scale of the force field;
the other parameters introduced above are the typical ones
used in similar Gō-type approaches, see e.g. ref. 31–33.

Langevin thermostated dynamics evolves the position ri of
the i = 1,. . .,N amino acids

Maar̈i = �g:ri � rri
(FGō + Vpore) + FN + Zi. (1)

where Maa denotes the average amino acid mass of the protein
chain, Zi is a random force with zero average and correlation

hZi,m(0)Zi,n(t)i = 2gkBTdm,nd(t), with m,n = x, y, z and kB is
Boltzmann’s constant. Vpore indicates the channel potential
defined below and FN is the constant pulling force, acting only
on the C-terminus (last bead), that drives the chain into the
nanopore.

The simulation implements dimensionless quantities, such
that energy is expressed in units e, mass in units Maa, and
length in units s. Consequently, the temperature, time and

force are measured in units: e/kB and tu ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Maa=e

p
, fu = e/s,

respectively. Dynamics (1) is integrated via a stochastic leap-frog
algorithm (ref. 34, p. 251), with a time step Dt = 0.0025tu and
g = 0.25/tu, at a temperature T = 0.3e/kB. To convert the code
units into physical ones, we simulated the thermal denaturation
of the LBP structure with a set of equilibrium MD runs at
increasing temperature. The data, combined and analysed via
the multiple histogram method,35 yielded a folding temperature
Tf = 0.72 which corresponds to an experimental denaturation
temperature of 348 K.36 The matching between simulated and
experimental temperatures sets the energy scale to the value
e C 1.0 kcal mol�1. In addition, since the total molecular mass
of the 127 amino acids of LPB is 14.26 kDa, we obtain an average
mass Maa C 1.86 � 10�25 kg, hence, the unit time scale is
tu C 2.6 ps and force fu = 13.73 pN.

We model the nanopore through which the protein is
transported as a confining cylindrical region centered along
the x-axis (translocation direction) with length L and time
dependent radius Rp(t), Fig. 1. The confinement is obtained
via a potential of cylindrical symmetry simulating a hole in a
soft wall

Vpðr; tÞ ¼ e
r2 � 1
� �a

if r4 1

0 if r � 1

(
(2)

where r = (y2 + z2)/Rp
2(t). The parameter a controls the stiffness

of the confinement. We are interested in the case where Rp(t) =
R0[1 + d sin(ot)] oscillates around the static value Rp, with a
sinusoidal law of frequency o, and amplitude d. A repulsive
force, Fw(x), orthogonal to planes x = 0, x = L and vanishing for

Fig. 1 Cartoon of the setup employed in our molecular dynamic simulations.
The LPB backbone chain extracted from the file 2MM3.pdb30 is prepared at
the channel entrance, and vertical walls represent the membrane whose
impenetrability is guaranteed by the repulsive force {Fw(x),0,0} normal to the
walls. The arrow indicates the pulling direction from the cis to the trans side.
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y2 + z2 o Rp
2, mimics the presence of the impenetrable

membrane where the pore is inserted

FwðxÞ ¼

� elx

xþ c
x � 0

0 0oxoL

e�lðx�LÞ

x� Lþ c
x � L

8>>>>>><
>>>>>>:

with c = 10�4 Å being the regularisation cutoff to avoid overflow
near the walls. In this work, we choose a = 3 and amplitude
d = 0.3. The pore length L = 100 Å and radius R0 = 10 Å are taken
from aHL structural data.37 Since R0 is smaller than the
gyration radius of the folded LBP structure, full translocations
imply partial or complete unfolding.

For facilitating the entrance of the chain into the nanopore,
an inert linker of five extra beads was added to the N-terminus
of the LPB; this linker extends the free tail protruding from the
globule that has to be pulled.

The importing mechanism that drives the protein into the
pore is simplified to a constant pulling force (F, 0, 0) acting only
on the N-terminus bead (rN) in such a way that the pulled
terminus is constrained to slide along the pore axis for all time,
i.e., yN(t) = zN(t) = 0.

3 Results

We import the LBP from left to right inside the pore, and
simulations are run until the whole chain lies outside the
channel, on the cis-side.

The initial conformation of each translocation run is obtained
by equilibrating the chain at code temperature T = 0.3 (T C 1501 K)
and F = 0, while the pulling terminus is kept at the position
xN =�1, yN = 0, zN = 0, near the entrance of the static pore (o = d = 0).

Once the translocation run is completed, a new run is restarted
from a different thermalised initial condition, the procedure is
repeated until robust statistics of translocation events are collected.

Even for a coarse-grained description of the protein dynamics,
the conformation space is still very high-dimensional to allow a
concise representation of the translocation. It is thus convenient to
‘‘project’’ the system trajectories onto an effective (or collective)
coordinate that is a function of the amino acid positions.

A suitable choice suggested by Polson et al.38 is the collective
variable

Q ¼ 1

N

XN
i¼1

g xið Þ (3)

defined by the piecewise function

gðxÞ ¼

0 if xo 0

x=L if 0 � xoL

1 if x � 1

8>>><
>>>:

The value Q = 0 corresponds to the whole protein on the
cis-side, while Q = 1 to a successful translocation.

Along with Q, we also monitor the number of LBP residues
that during the translocation lie on the cis-side of the pore:

NcisðtÞ ¼ N �
XN
i¼1

YðxiÞ; (4)

with Y(s) being the unitary step function. This quantity, during
a translocation event, starts from the maximal value Ncis = N
and decreases to zero. Even if Ncis is not a good progress
coordinate, as the state Ncis = 0 does not entail yet completed
translocation events, it allows locating the position of the
stalling points along the chain because stalls manifest as plateaus
in the Ncis time course.

An important physical quantity for translocation processes
is the passage time, i.e. the time the molecule takes to cross the
pore. If we assume that the LBP is prepared at t = 0 on the pore
entrance (cis-side), the first-passage time is the first time at
which the molecule lies outside the pore exit (trans-side), and it
can be easily defined in terms of Q:

tFP ¼ min
0o t�Tw

ftjQðtÞ ¼ 1g

where Tw is the observation time window. As the statistics of tFP

can be easily measured in experiments, it is important to
predict the dependence of tFP on the system parameters such
as the chain length, type of driving force, pore fluctuations, etc.

A reference theoretical framework for the statistical analysis
of tFP assumes Q to be a random process governed by a driven
Brownian motion39–42

_Q ¼ m0F þ
ffiffiffiffiffiffiffiffiffi
2D0

p
xðtÞ (5)

where m0F accounts for average drift determined by the pulling

mechanism and
ffiffiffiffiffiffiffiffiffi
2D0

p
xðtÞ embodies both thermal and environ-

ment fluctuations. A successful translocation event requires that
a trajectory of Q(t) is released at Q(0) = 0 (cis) and terminated
when Q(t) = 1 (trans).

The statistics of tFP associated with eqn (5) is well known
since the works by Schrödinger and Smoluchovski43–45 and it is
characterized by the inverse Gaussian distribution.46 However,
for practical purposes explained below, it is more convenient to
employ the cumulative distribution function (CDF) of the
inverse Gaussian distribution that reads

FIGðtÞ ¼
1

2
f

L� m0Ft
2
ffiffiffiffiffiffiffiffi
D0t
p

� �
þ em0FL=D0f

Lþ m0Ft
2
ffiffiffiffiffiffiffiffi
D0t
p

� �� �

where f(u) = Erfc(u) is the complementary error function.47

3.1 Static pore

We begin our analysis from the case of a static pore, d = o = 0,
when the translocation dynamics of the LPB presents the
interesting feature of a stalled event, for which the translocation
progress is not uniform in time, but gets jammed when certain
chain segments approach the pore entrance. These stalling
points are associated with specific LBP conformations that are
particularly difficult to unravel. To some extent, they behave as
‘‘temporary knots’’ of the chain29,48,49 contributing to a remark-
able transport slowdown.
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Stalling events that are particularly persistent are to be
considered intermediates of translocation, as they are statistically
robust to imprint an unmistakable multistep signature on
observables in experiments23,50–53 and simulations.22,24,27,28

We run M = 3600 successful LPB translocations, each
with a duration tm, leading to a mean translocation time

t0 ¼
PM
m¼1

tm=M ¼ 8279:2tu ¼ 21525:9 ps. In the following sections,

the time will be rescaled with t0. In such simulations, the signature
of stalled dynamics becomes evident by looking at the time
behaviour of the two averages hQ(t)i and hNcis(t)i taken over an
ensemble, Fig. 2. Both indicators show early variations which are
then followed by long stationary phases before reaching their
absorbing state (Ncis = 0, Q = 1). To analyse separately the short
and long time behaviours, it is convenient to split hQ(t)i and hNcis(t)i
into fast and slow components. We define slow translocations as
those which are completed in a time t 4 Tcut = 1.08 � 104tu. While
the fast components (dashed lines) saturate soon to the expected
values in a monotonic way, the slow components follow the fast
ones for a while, and then deviate toward a flat stationary noisy
behaviour corresponding to the stalled state with Ncis C 54.

We compute the fraction of time the LPB chain spends in a
state with a given Ncis; this quantity is defined by the histogram

H Ncisð Þ ¼ 1

TM

XM
m¼1

ðtm
0

dt d Ncis �NcisðtÞ½ �

where the sum runs over the M translocations and

TM ¼
PM
m¼1

tm ¼Mt0.

Likewise, we split H(Ncis) into fast and slow components,
Fig. 3. The histogram of fast events is practically flat indicating
that each chain conformation is uniformly visited. In contrast,
the slow component presents a narrow and pronounced peak
emerging from the background with Ncis = 54, confirming that

the LBP chain spends a relevant amount of time in the state
with bead 54 at the pore entrance. With reference to the LBP
native structure topology, Fig. 4, one can deduce that stalling at
site 54 lies just after the end of S3 (segment 46–53), suggesting
that S3 along with two other strands, S1 (segment 4–12) and S2
(segment 36–43), forms a block that is structurally robust, likely
involving also the participation of the two helices A2 (13–22)
and A2 (25–35). The persistence of such a block causes the
jamming of the protein; moreover, it often squeezes into the
pore and translocates as a single unit. In other translocation
runs, instead, the block breaks down allowing a true single-file
passage of the molecule. To complete the characterization of the
LPB translocation dynamics, we analyzed the statistics of trans-
location time by computing the empirical CDF over a sample of
M successful translocations occurring at times {t1,. . .,tM},

FMðtÞ ¼
1

M

XM
k¼1

y t� tkð Þ;

where y(s) denotes the unitary step function. The advantage of
the CDF over the histogram lies in its independence of binning,

Fig. 2 Time course of hNcis(t)iS,F and hQ(t)iS,F where the subscripts denote
that the averages are restricted to the ensemble of fast and slow translocations
for a total of M = 3600 independent runs. Slow translocations are
characterised by intermediates (stalls) that contribute with a noisy plateau
to the mean time behaviour (gray bands). In the lower panel, the value
hNcis(t)iS C 54 indicates a stalling point of the LPB due to a persistence of
the intra-chain interactions that stabilise the block of strands S1 (4–12), S2
(46–53) and S3 (46–53), see Fig. 4.

Fig. 3 Visiting frequency (histogram) of states Ncis during each translocation
run. The occurrence frequency is split into ‘‘fast’’ and ‘‘slow’’ components as
it is computed over fast and slow translocation sets.

Fig. 4 Topology of the LBP native structure, the arrows and cylinders represent
the strands and helices, respectively. The red cross marks the stalling site, 54,
located just after the end of strand S3 (46–53), which with strands S1 (4–12) and
S2 (36–43) forms the core of a stable block, weakly involving helices A2 (13–22)
and A2 (25–35). The protein is pulled from the C-terminus (red dot).
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so it is not affected by the chosen discretization. Fig. 5 displays
the comparison between the expected and the empirical CDF for
LPB translocations. The values of parameters D0 and m0 have
been obtained from the maximum likelihood estimation (MLE),

m0 ¼
1

Fhti; D0 ¼
1

2

1

t

	 

� 1

hti

� �
(6)

where angular brackets stand for the arithmetic average over M
independent realizations hxi = (x1 + x2 + xM)/M. The inset of
Fig. 5 shows the empirical CDF of slow translocations that is
consistent with the CDF = 1 � exp[�l(t � Tcut)] of an exponential
probabilistic law.

In conclusion, the comparison of the CDFs indicates that
fast translocations contribute to the inverse Gaussian bulk of
the time distribution, whereas, a few slow translocations are
responsible for the slow exponential decay of the long-time tail.

In the next section, we study how the above transport
scenario characterised by stalling points is modified when the
pore section undergoes periodic fluctuations.

3.2 Oscillating pore

We repeated the translocation runs at different frequencies o of
the radius modulation to assess how the pore dynamics affects
both the LBP mechanical denaturation and the subsequent
transport. In particular, it is interesting to analyse the robust-
ness of the RA scenario9,12,20,54 when translocation dynamics is
affected by the presence of extreme events like stalls.

We begin by plotting in Fig. 6 the dependence of the mean
translocation time t on the frequency of pore vibration. Data are
rescaled with the static mean translocation time, t0 = 21525.9 ps,
i.e. t/t0 vs. ot0. The horizontal lines mark the translocation time
for the static pore with radius: Rmax = 13 Å, R0 = 10 Å, for
comparison.

We observe different translocation regimes (labelled A, B, and C)
resulting in a non-monotonic behaviour of the translocation

time versus the forcing frequency, in analogy with the translocation
of structureless polymers.9,10,12

In region A (ot0 o 10�2), the average translocation time is
close to, but larger than, the static value, t(o) 4 t0, indicating a
moderate slowing down of translocations with respect to the
still pore. In the intermediate regime (10�2 o ot o oRt0),
region B, t(o) o t0 and it decreases with o. In this range,
vibrations speed up the transport dynamics with respect to the
static case; moreover, the acceleration improves by increasing o
until it reaches an optimal value at oRt0.

Finally, in regime C, t(o) attains a maximum which yet lies
below t0, whereby translocations are still improved by the RBM
dynamics.

To verify that the plot of Fig. 6 is consistent with RA,18 we
studied the two-state dynamics defined by the Langevin equa-
tion

_Q ¼ m0F � m0
@V

@Q
þ

ffiffiffiffiffiffiffiffiffi
2D0

p
xðtÞ (7)

obtained by adding to eqn (5) a force term derived from the
time dependent potential

VðQ; tÞ ¼ V0 f ðotÞ
4

Q2ðQ� 1Þ2 (8)

which represents a ‘‘caricature’’ of a translocation free-energy
landscape where, presumably, a barrier separates two minima:
Q = 0 (cis) and Q = 1 (trans). The amplitude V0 is multiplied by

f (ot) = 1 + h sin(ot + f) (9)

to account for barrier oscillations Vb(t) = V0 f (ot)/64. The phase
f is an extra parameter necessary to fit the model to the pore

Fig. 5 Empirical CDF, FM(t), of translocation times associated with fast
events (dots) compared with FIG (t) (dashed line). Parameters D0 = 1.56 �
10�6 and m0 = 6.9 � 10�5 are obtained by the Maximum likelihood values
of the inverse Gaussian, eqn (6). Inset: Empirical CDF of the translocation
times of slow events characterized by stalls. The points are the simulation
data and the dashed line is the CDF of an exponential distribution with
l = 7.3 � 10�5 and Tcut C 1.08 � 104.

Fig. 6 Upper panel: Dependence of the mean translocation time t on the
frequency at a force F = 2.0fu = 27.46 pN. Rescaling with t0 makes the
data dimensionless. Three translocation regimes can be identified corres-
ponding to regions A, B, and C in the o-range. Apart from region A, the
RBM of the pore generally reduces the translocation time and the transport
across the nanopore is speeded up by oscillations. The lower panel shows
the behaviour of eqn (10) as a function of the rescaled o. The first value at
which hsin(ot)i = 0, marked by the thick vertical line, identifies the resonant
frequency oR at which t(o) attains its minimum.
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RBM: opening translates into barrier lowering, while pore
shrinking corresponds to increasing the barrier.

We integrated numerically eqn (7) via a second order stochastic
Runge–Kutta algorithm55 and computed the average first-arrival
time to the state Q = 1 from Q(0) = 0, over a set of 104 trajectories.
Fig. 7 shows the mean first-arrival time as a function of o. The
qualitative similarity between plots in Fig. 7 and Fig. 6 suggests
that RA is verified and that translocation of the LPB across a
vibrating channel can be idealised as a transition to an absorbing
state over an oscillating barrier. Both plots in agreement with RA
exhibit a minimum of t(o) at a certain ‘‘resonant’’ or ‘‘optimal’’
frequency oR, separating regions A and B, at which the fastest
translocations are expected to be observed.

A simple physical argument suggests that LPB translocations
are greatly favoured as long as they are completed in a time
interval Dt such that the pore stays ‘‘open’’: R0[1 + d sin(oDt)] 4 R0,
corresponding to the inequality, 0 o oDt o p. Therefore, the
optimal frequency oR at which translocations are faster is bounded
in the range, o0/2 o oR o p/t(Rmax), where t(Rmax) denotes the
mean translocation for a static pore at maximal radius Rmax =
R0(1 + d), indicated by the lowest horizontal line in Fig. 6. To
verify this conclusion, in the lower panel of the same figure, we
report the average

dhsinðotÞi ¼ 1

M

XM
i¼1

R tið Þ � R0

R0
; (10)

over M translocation times ti, estimating the typical radius
oscillation at the end of translocations at each o. It is apparent
that by following the bold vertical line, that the first zero of
hsin(ot)i coincides with the resonant frequency oR at which t(o)
attains its minimum. This confirms that at the resonant condition,
oRt C p, the luckiest translocations occur in the half-cycle of the
RBM, in which the pore offers minimal hindrance to the transport.

It is instructive to gain further insight into the physics of RA
by adapting to our case the phenomenological approach to
stochastic resonance by McNamara and Wiesenfeld.56 It amounts

to writing a rate equation for the activated kinetics of model (7)
with the help of the well-known Kramers formula57

k ¼ O0Ob

2pg
exp �bVbf g:

Where g is the solvent viscosity, and O0 and Ob are the angular
frequencies (curvatures) at the bottom and at the top of the
barrier of the tilted potential, W(Q,t) = V(Q,t) � FQ. As it is shown
in Appendix A, Kramers theory gives, for a weak external field F,
the rate expression

k(ot) C ae�e sin(ot+f)[1 + c sin(ot + f)]; (e = bV0h/64)
(11)

to the first order in F/V0. The constant c and the factor a are
defined in the Appendix.

Eqn (11) represents the lowest term of the Kramers escape-rate
modulated by a unimodal potential vibration, high order terms in
the expansion contribute with higher harmonics. This analytical
approach remains physically meaningful as long as barrier
oscillations are not too fast (adiabatic regime) with respect to
the relaxation dynamics in the well: the adiabatic regime requires
o { O0, a condition certainly verified by the case in Fig. 7.

The rate-theory in Appendix A shows that eqn (11) leads to
the analytical expression

tðoÞ ¼
Ð 2p
0 dx exp �YðxÞ=of g

o 1� exp �2pkeff=oð Þ½ � (12)

for the average translocation time, with

YðxÞ ¼
ðx
0

du kðuÞ:

being the integral of the rate (11) and

keff ¼
1

T

ðT
0

dt kðotÞ ¼ Yð2pÞ
2p

(13)

being the average rate over a period of vibration. The resonant
frequency oR is the minimum of t(o). As discussed in Appendix A,
this minimum is close to the value o*pkeff at which the argument
of the exponential at denominator in eqn (12) equals 1/2.

At low frequency, the escape from the barrier is basically
determined by the frozen value of k(0) (barrier height) that is
selected by the initial condition of the dynamics, whereas at
high frequency, the escape is determined by the average rate
(barrier) keff. The resonant minimum basically separates these
two regimes.

In summary, the basic condition for the emergence of RA is
an escape process modulated by the time periodic rate. It is
reasonable to assume that a similar situation occurs in the LBP
translocation.

Now it interesting to investigate the effect of channel fluctuations
on the persistence of the stalling events. This can be achieved
by measuring how much the trajectories of Ncis experience the
influence of the pore frequency. Fig. 8 reports the time course
of the average Ncis over 3600 runs, at different values of o. We
recall that Ncis is particularly useful for identifying stalled
dynamics.

Fig. 7 Two-state model with a fluctuating barrier. First arrival time of
trajectories started at Q = 0 and absorbed at Q = 1, obtained by
a numerical integration of eqn (7) with parameters D0 = 1, F = 0.001,
V0 = 8 � 64, h = 0.3, and f = 0. The plot and frequency regions A, B, and C
are consistent with Fig. 6.

PCCP Paper



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 11260--11272 | 11267

From the main panel of Fig. 8, we observe that in the
frequency range C (as defined in Fig. 6), pore vibrations transfer
to the translocation dynamics, indeed hNcis(t)i develops an
oscillating decay to zero with the pore frequency. The locking
between pore and protein pulled-dynamics is expected, because if
the pore is maximally closed, the protein dynamics is hindered
and temporary stalled. In this condition, Ncis statistically assumes
the same value, leading to equally spaced peaks in the plots.
However, the decay without oscillations shown by the red-dashed
curve, obtained at a frequency just below the region C, proves
that such a frequency locking is restricted to the frequency region
C. The oscillation of the thick-black curve, corresponding to a
frequency just above region C, is almost imperceptible because
the protein dynamics does not respond to such fast pore
oscillations.

However, it should be remarked that the absence of an
evident frequency locking does not imply a translocation
dynamics which is not sensitive to the force applied by the
pore. Indeed, the plots of hNcis(t)i in the inset of Fig. 8 show that
the duration of stalls soon reduces as the pore vibrates even at
low frequency, and by increasing o the duration is further
decreased until it vanishes above a certain frequency threshold.
We stress that the shortening of the stall duration does not
necessarily imply an average speeding up of translocations, in
particular, region A of Fig. 6 is just characterised by translocations
with t(o) 4 t0 notwithstanding the stall depression. If stalls are
regarded as extreme events, their reduction is crucial in order to
regularise the translocation dynamics according to the principle
that suppression of extreme events generally makes a process
more predictable and controllable.58

The data suggest that a specific cycle of expansions and
compressions of the channel may either control or even facilitate

the translocation of proteins across it. The result can be
summarised by the statement: ‘‘tuned RBM of a nanopore
catalyses pulled translocation of globular proteins’’. As shown
in ref. 22 and 29, an analogous catalytic effect can be achieved by
the modulation of the pulling force that unfolds and translocates
polypeptide chains and proteins.

In region C (Fig. 6), we observe that the PdF of translocation
time develops a multi-peaked structure reflecting the pore
cycles, see Fig. 9. The minima and maxima of the PdF correspond
to maximally open and closed states of the pore, respectively.
Outside region C, this PdF modulation either vanishes or becomes
undetectable.

Again a simple approach that can explain the multi-peaked
structure of the translocation time PdF is based on the first
passage theory (FPTh) for a biased diffusion of Q described by
the Smoluchowski equation

@P

@t
¼ �m0F

@P

@Q
þD0 f ðotÞ

@2P

@Q2
(14)

where f (ot) is defined in eqn (9), m0 and D0 denote static mobility
and diffusivity, respectively. In eqn (14), instead of taking a
periodic pulling force, as done in other contexts,9,11 we preferred
to consider a systematic drift m0F, while shifting the modulation to
the diffusion coefficient D0 f (ot). This approach is more consistent
with the coarse-grained molecular model implemented in our
simulations and described in Section 2, where the sinusoidal
oscillation of the pore applies cyclic transversal compressions on
the passing chain leading to a kind of ‘‘freezing’’ of the transversal
degrees of freedom. This has been roughly taken into account by a
noise with an oscillating variance. The solution to eqn (14) is
specified by the initial P(Q,0) = d(Q) and boundary conditions,

Jð0; tÞ ¼ m0FPð0; tÞ �D0 f ðotÞ
@P

@Q

����
0

¼ 0

Pð1; tÞ ¼ 0;

the first equation is a no-flux condition which guarantees that Q(t)
cannot be less than zero, by definition. The second prescribes that
the trajectories are absorbed as soon as Q(t) = 1.

Fig. 8 Main panel: Modulated evolutions of hNcis(t)i with the pore frequency
as a consequence of the transmission of pore oscillations to translocation
dynamics. This oscillating decay of hNcis(t)i is well distinguishable only in the
frequency range coincident with region C of Fig. 6. The modulation is soon
lost at frequencies just below region C, see the steady decay of the red-
dashed curve, and it becomes imperceptible at frequencies just above
region C, see the black-thick curve. The inset shows the stall suppression in
translocations at pulling F = 27.46 pN (F = 2.0 code units) when increasing
the oscillation frequency of the pore section, the dashed arrows indicate
the increase of o. It is apparent how the plateau length of hNcisi reduces
when o increases, until vanishing when o - o0.

Fig. 9 Comparison of the PdF of the translocation times for o B 20o0 to
the corresponding analytical PdF (16) with parameters m0 = 7.33 � 10�5,
D0 B 1.012 � 10�6, h = 0.60 and f = �10.
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The fundamental quantity in the FPTh is the survival prob-
ability of Q(t)

SðtÞ ¼
ð1
0

dQPðQ; tÞ

where P(Q,t) is the solution of eqn (14) satisfying both boundary
and initial conditions. S(t) is the probability that at time t the
process Q(t) is not yet absorbed by the boundary Q = 1,
accordingly, 1 � S(t) is the probability that Q(t) exits [0,1].
Hence, the exit time distribution is c(t) = d(1 � S(t))/dt, that is

cðtÞ ¼ �dS
dt
¼ �

ð1
0

dQ
@PðQ; tÞ

@t

Using eqn (14), we show that c(t) is related to probability flux
evaluated at the boundary, Q = 1,

cðtÞ ¼ Jð1; tÞ ¼ D0f ðotÞ
@P

@Q

����
Q¼1

(15)

therefore, the final result reads

cðtÞ ¼ 1þ h cosðotþ fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D0D3ðtÞ

p exp � 1� m0Ftð Þ2

4D0DðtÞ

( )
: (16)

where D(t) = t � (h/o)[cos(ot + f) � cos(f)] is obtained by
integrating f (ot) over time, (see eqn (27)). The derivation of this
theoretical distribution is outlined in Appendix B by using the
method of images to fulfil the boundary conditions. However, it is
important to warn that formula (16) constitutes only a reasonable
approximation of the true solution; indeed as discussed by Molini
et al.59 and in Appendix B, the image method, when applied to the
Smoluchowski equations with time dependent coefficients,
requires a rigorous proportionality between drift and diffusion; a
condition which is not verified in eqn (14). In addition, we
assumed the further simplification of a strong enough drift that
soon pushes the trajectories away from the Q = 0-boundary, so that
the no-flux condition is automatically implemented.

Despite the approximation, formula (16) can be considered a
good fitting model, that, upon tuning the parameters m0, D0, h,
and f, is able to reproduce and explain quite naturally the
essential features of the simulated PdF, including the peculiar
peaked structure as shown in Fig. 9 where function (16) fits well
the histogram of LBP translocation times.

4 Conclusions

We investigated the translocation process of a protein belonging
to the family of lipid binding proteins across a nanopore via
coarse-grained molecular dynamic simulations that simplify
both pore and chain. In our phenomenological model, the
protein is described as a chain of beads interacting via a Gō-like
force field which is known to guarantee the correct formation of
the secondary structure by rewarding those interactions that
stabilise the geometry of the native state. The presence of a
constant driving force mimics the average effect of the biological
importing mechanism into a nanopore (cylinder) whose cross
section varies periodically in time simulating the effect of the

radial breathing mode (RBM) induced by a cyclically varying
environment.

Our study differs from previous ones9–15 that focused on
bead–spring polymers, for it investigates the translocation of a
protein-like chain. The translocation of proteins is known to
strongly deviate from that of polymers as their compactness
presents much more resistance to the passage through narrow
paths. This important feature, generally known as ‘‘structure-
dependent translocation’’, makes the transport of proteins in
nanopores a complex phenomenon still difficult to both model
and predict.

The lipid binding protein (LBP) does not make an exception.
Indeed, our MD simulations of its pulled translocation into a
static pore, performed by the coarse-grained model, exhibit the
typical intermittency of a process that is dominated by a few
extreme stalled events. More specifically, the chain gets temporarily
stuck in metastable conformations that are hardly unravelled and
depend on the LBP’s arrangement in its own native state.

We repeated the same simulations with a pore undergoing a
radial vibration (radial breathing mode (RBM)) to study the
dependence of the average translocation time t on the RBM
frequency o. The comparison with the static case proved that
the RBM reduces the duration of stalling events until it makes
them disappear above a certain frequency threshold.

It is interesting to note that there exists a low frequency
range, where the translocation process is slowed down by the
RBM of the pore, despite a reduction of the stalling periods.
The suppression of stalling duration, even if it does not always
bring an accelerated transport, is crucial to ‘‘regularise’’ the
process by suppressing extreme events.

In other regimes, frequency locking occurs between the RBM
and translocation dynamics; the translocation observable develops
oscillations with the pore frequency and the distribution of
translocation time shows a succession of peaks strictly reflecting
such a locking.

Appendix
A Rate equation

In this appendix, we derive escape rate (12) by applying Kramers’
theory to the tilted bistable potential (8)

WðQ; tÞ ¼ AðtÞ
4

Q2ðQ� 1Þ2 � FQ: (17)

According to Kramers,57 the rate at which the Brownian dynamics
leaves the left well of W(Q,t) upon crossing the barrier reads

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 00 Q0ð ÞjW 00 Qbð Þj

p
2pg

exp �bVbf g:

where b = (kBT)�1, g is the solvent viscosity, and W00(Q0) and
W00(Qb) are the second derivatives of potential (17) evaluated at
the bottom of the well Q0 and at the top of the barrier Qb,
respectively. Even in this simple framework, the rate formula
becomes quite involved for a full analytical approach. The
expression simplifies considerably in the limit of a weak field
by retaining terms to the first order in F/A. The weak field shifts
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the well and barrier from the unperturbed positions Q0 = 0,
Qb = 1/2 to Q0 C 2(F/A), Qb C 1/2 � 4(F/A); moreover, it
decreases the barrier height from Vb = A/64 - A/64 � 0.5(F/A).
A further expansion of k in F/A yields the result

kðotÞ � a
1þ c sinðotþ fÞ

t0
e�e sinðotþfÞ (18)

with constants c = h/(1 � 6F/V0), e = bV0h/64, and

t0 ¼
4pg

ffiffiffi
2
p

V0 � 6F
eb V0=64�F=2ð ÞÞ

being the static escape time in the Kramers approximation. As a
consequence of barrier oscillations, the rate k(ot) becomes
a periodic function with period T = 2p/o. The factor a =
t0
�1 exp[e sin(f)]/[1 + c sin(f)] ensures that the limit o - 0

recovers the static value k(0) = 1/t0.
The kinetics of barrier crossing in oscillating potential (8)

can be described by the rate equation

dS

dt
¼ �kðotÞS; (19)

for the probability S(t) that at time t the process still occupies
the Q0 well, S(t) is also called the survival probability of the
Q0-state. In the formulation of our problem, eqn (19) contains
only the loss contribution, as the molecule is removed after
each successful translocation and re-injected from the cis-side
(impossibility of back-transitions).

The integration of eqn (19), with the initial condition
S(0) = 1, leads to the solution

SðtÞ ¼ exp �
ðt
0

du kðouÞ
� �

;

which describes a decay to zero as translocation proceeds. The
quantity 1 � S(t) is the probability that a molecule has crossed
the boundary at time t and is removed, so the distribution of
exit times is given by c(t) = �S0(t); accordingly the mean exit
(translocation) time is soon obtained from c(t) and reads,

tðoÞ ¼
ð1
0

dt SðtÞ ¼
ð1
0

dt

o
exp �

ðt
0

du

o
kðuÞ

� �
;

after an integration by part and a change of variables.
To take advantage of the periodicity of k(u), the integral can

be split into a series of integrals over the period, corresponding
to intervals [2pn, 2pn + 2p],

tðoÞ ¼ 1

o

X1
n¼0

ð2p
0

dx exp �1

o

ð2pnþx
0

du kðuÞ
� �

where we applied the change of variable t = 2pn + x. Thanks to
periodicity, we can refold the integration onto the cell [0,2p]
and the argument of the exponential is recast as

n

ð2p
0

du kðuÞ þ
ðx
0

du kðuÞ

with a final result

tðoÞ ¼ 1

o

X1
n¼0

e�nYð2pÞ=o
ð2p
0

dt exp �1

o

ðt
0

du kðuÞ
� �

:

According to the formula of a geometric-series sum, it becomes

tðoÞ ¼
Ð 2p
0 dx exp �YðxÞ=of g

o 1� exp �Yð2pÞ=o½ �ð Þ (20)

where the function Y(x) is the integral of rate (18)

YðxÞ ¼
ðx
0

dx kðxÞ;

and Y(2p) = 2pa[I0(e) � hI1(e)], with I0(x) and I1(x) being the
modified Bessel function of the first kind for n = 0 and 1,
respectively.60 Expression (20) has the advantage of making the
o-dependence of t explicit providing the very final expression of
the average translocation time ready to be used in numeric
computations and qualitative analysis.

The first observation stems from the two limiting behaviours:
o- 0 (quasi-static barrier) yields t(0) = t0, while, for o large (fast
oscillations), we have t(N) = Y(2p) = 2pkeff

�1, where

keff ¼
ee sinðfÞ

t0½1þ h sinðfÞ� I0ðeÞ � hI1ðeÞ½ � (21)

corresponds to the average of rate (18) over one oscillation period
T, therefore we can re-write

tðoÞ ¼ o�1

1� exp �2p keff=o½ �

ð2p
0

dx exp �YðxÞ
o

� �
(22)

which is exactly eqn (12) of Section 3.2. The function t(o) develops
a minimum at a ‘‘resonant’’ frequency oR (see Fig. 10) that can be
computed by solving numerically the equation @ot = 0, full dots in
Fig. 10.

However, to arrive at an analytical expression useful for
qualitative analysis, we can observe that oR is close to the
crossover point o* determined by the condition 2p keff/o* C 1/2
for the exponential in the denominator of eqn (22).

o� ¼ o0
ee sinðfÞ

2½1þ c sinðfÞ� I0ðeÞ � hI1ðeÞ½ �: (23)

This value can be considered a rough yet reasonable estimate of
oR, as shown in Fig. 10, open circles.

B Toy model

This appendix shows the derivation of formula (16) for the
translocation time PdF.

The collective coordinate Q is supposed to follow the driven-
diffusion dynamics39–42

_Q ¼ m0F þ
ffiffiffiffiffiffiffiffiffi
2D0

p
ZðtÞ (24)

Z indicates a Gaussian noise, with hZ(t)i = 0 and autocorrelation
hZ(t)Z(s)i = f (ot)d(t � s) according to eqn (9), and m0 and D0, are
the mobility and diffusivity of Q when f (ot) = 1, respectively.
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The solution to the stochastic differential equation eqn (24)
with the initial condition Q(0) = 0 is

QðtÞ ¼ m0Ftþ
ffiffiffiffiffiffiffiffiffi
2D0

p ðt
0

ds ZðsÞ (25)

This defines a Gaussian process with average and spreading

hQðtÞi ¼ m0Ft

QðtÞ � hQðtÞi½ �2
D E

¼ 2D0DðtÞ
(26)

where thanks to the d-correlation property of the noise, we have

DðtÞ ¼
ðt
0

ds f ðosÞ: (27)

From solution (25), it is easy to derive the coefficients

lim
h!0

hQðtþ hÞ �QðtÞi
h

¼ m0F

lim
h!0

Qðtþ hÞ �QðtÞ½ �2
D E

2h
¼ D0f ðotÞ

(28)

of the corresponding Smoluchowski equation

@P

@t
¼ �m0F

@P

@Q
þD0 f ðotÞ

@2P

@Q2
; (29)

which admits the fundamental solution

GðQ; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0DðtÞ

p exp � Q� m0Ftð Þ2

4D0DðtÞ

( )

satisfying the initial condition G(Q,0) = d(Q).
G(Q,t) is easily obtained via the change of variables x = Q �

m0Ft and t = D(t) that transforms eqn (29) into an equation with
constant diffusivity, no drift but the same initial condition.

As discussed in Section 3.2, the PdF of translocation time
can be derived from the first passage theory (FPTh) of the
process Q(t) by assuming the initial condition P(Q,0) = d(Q), a

no-flux boundary at Q = 0, J(0,t) = [m0FP � D0f (ot)qQP]0 = 0 and
an absorbing boundary at Q = 1, P(1,t) = 0.

The exact solution to this problem is not available as it is
not separable; in addition, the boundaries introduce further
complications. However, a meaningful approximation can still
be obtained by assuming that the drift is strong enough to
induce a swift displacement of the process from the 0-boundary,
hence, the effect of the impenetrable barrier at Q = 0 becomes
negligible and, in a first approximation, it can be shifted to
Q = �N.

The other boundary instead is fulfilled trying to ‘‘extend’’
the method of images to the case of time-dependent diffusion
coefficients, as shown in ref. 59. Accordingly, we attempt the
solution

P(Q,t) C G(Q,t) � wG(Q � 2,t) (30)

originating from the new initial condition P(Q,0) = d(Q) + wd(Q� 2),
where the extra term represents an auxiliary symmetric source
(the image) with respect to the boundary Q = 1.

The coefficient w is to be determined by imposing the
boundary condition P(1,t) = 0 and leading to w = G(1,t)/G(�1,t) =
exp{m0Ft/[D0D(t)]}.

In eqn (30), we did not use the ‘‘=’’ to stress that it is only a
‘‘pseudo’’-solution, this can be verified immediately by plug-
ging it back to eqn (29).

When the approximate solution P(Q,t) is plugged into
eqn (15) and in the following ones we obtain the final analytical
form (16) for the translocation time PdF.

Since the theoretical distribution (16) is not exact for model
(24), it is important to test its accuracy against the true PdF of
exit times that can be computed by a direct numerical integration
of eqn (24). Fig. 11 shows the reasonable match of c(t) with the
histogram of first exit times from the boundary Q = 1, obtained
by a numerical integration of eqn (24). The different curves
show that the accuracy is improved by choosing an optimal
value of h.

Fig. 10 Plot of t(o) from eqn (22), computed for the same parameters of
Fig. 7, giving e = 2.4, at 5 values of the phase: f = 2.57 + n� 0.2, n = 1, . . ., 5.
The curves clearly show the resonant minimum as expected from a RA
process. The full circles mark the true minima and the open circles
represent the corresponding values of o*, eqn (23), which can be con-
sidered a rough estimate of the resonant frequency.

Fig. 11 Test of the toy model: comparison of the translocation time PdF
shaded region is the histogram of the first exit time at the boundary Q = 1
with the corresponding theoretical PdF (16) from the simple driven-
diffusion model with parameters: m0 = 1, D0 = 1, F = 0.05, h = 0.60 and
f = 0. The different lines represent the plots of (16) at different values of h
showing that this parameter can be adjusted to obtain an optimal match of
the approximated theory and simulations data.
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