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ABSTRACT
We study a system of non-interacting active particles, propelled by colored noises, characterized by an activity time τ, and
confined by a double-well potential. A straightforward application of this system is the problem of barrier crossing of active
particles, which has been studied only in the limit of small activity. When τ is sufficiently large, equilibrium-like approximations
break down in the barrier crossing region. In the model under investigation, it emerges as a sort of “negative temperature” region,
and numerical simulations confirm the presence of non-convex local velocity distributions. We propose, in the limit of large τ,
approximate equations for the typical trajectories which successfully predict many aspects of the numerical results. The local
breakdown of detailed balance and its relation with a recent definition of non-equilibrium heat exchange is also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080537

I. INTRODUCTION
Recently, there has been an upsurge of interest towards

active matter, namely, systems of particles able to convert
energy from the environment into directed persistent motion.
Examples range from bacterial colonies, spermatozoa to Janus
self-propelled particles.1–4 The propulsion mechanism is real-
ized in different ways: living systems exploit metabolic pro-
cesses in order to move, while artificial particles immersed in a
solvent exploit a chemical reaction catalyzed on their surface.
Among the various models introduced to describe the behav-
ior of active systems, the so-called active Ornstein-Uhlenbeck
particle (AOUP) model5 occupies an important place because
it allows with a minimal set of ingredients to reproduce some
characteristic features of self-propelling systems and provides
a direct and useful bridge towards the world of colloidal par-
ticles. In practice, the AOUP is designed to account for the
persistence of the trajectories by means of a random Gaus-
sian forcing term, which is identified with the active force.
Such a forcing is assumed to have a finite correlation time

τ > 0, identified with the persistence time, and a finite ampli-
tude which is a measure of the degree of activity of the system.
In spite of the fact that a more realistic modeling of active
systems requires the description of the self-propulsion in
terms of non-Gaussian active stochastic processes such as the
active Brownian particle (ABP) model,6,7 a great deal of explicit
analytical results has been possible by the use of AOUP.8
The model is able to reproduce interesting phenomena such
as the accumulation of active particles near purely repul-
sive boundaries and the motility induced phase separation
(MIPS).9–13

Interestingly, there exists a series of results concern-
ing the steady state behavior of the AOUP model which have
been obtained by applying an adiabatic approximation [the
so-called unified colored noise approximation (UCNA)10,14]
to the governing equation for the probability distribution
function (PDF). The important outcome of this approximation
is the possibility of writing explicitly the stationary probability
distribution function (PDF) in principle for any type of
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potential of convex type, i.e., for all potentials whose Hessian
is positive definite. The UCNA explains the accumulation and
aggregation phenomena in terms of a decreased potential-
dependent effective mobility of the particles. If the convex-
ity condition is not fulfilled one can still use the UCNA for
sufficiently small values of τ, but when the effective mobil-
ity becomes negative, the approximation ceases to be valid.
On the other hand, one may ask the following question: how
does an active system subject to colored noise behaves in
the presence of a non-convex potential? The question might
seem academic, but on the contrary, this is a situation that
certainly occurs in practice: apart from the cases of some
power law confining potentials or inverse power law purely
repulsive potentials, the forces experienced by active par-
ticles might be associated with non-convex potentials, cor-
responding to attractive interactions. Another paradigmatic
example is an active particle crossing a barrier, i.e., in the
presence of a bistable potential. This example has been stud-
ied in the recent literature but only in the limit of small
activity.15

In Sec. II, we present the AOUP model in the case of a sin-
gle particle and recall the main results concerning the steady
distribution function which have been obtained in the frame-
work of the UCNA. In Sec. III, we illustrate the phenomenology
of the AOUP in the presence of a bistable potential when the
amplitude of the active force and the persistence time are
large. One observes that basically, there exist three different
spatial regions: the majority of the particles belong to the first
two regions located around one of the two minima, and the
remaining particles occupy the third region, the one between
the minima. Interestingly, the velocity distribution function in
the first two regions has a Gaussian form, whereas in the third
region the velocity distribution acquires a bimodal shape. In
Sec. IV, we present a theoretical analysis of the model and
explain the bimodal behavior, and in Sec. V, we briefly discuss
the connection between the form of the distribution function
and the energetics of the model. Finally, in Sec. VI, we draw
the conclusions.

II. THE ACTIVE ORNSTEIN-UHLENBECK MODEL
We consider an assembly of non-interacting active par-

ticles in the presence of a confining potential, U. The motion
of the particles due to the combined action of the determin-
istic and active forces is described by means of the AOUP
dynamics, in which the orientations of the particles are not
explicitly considered and the active force is represented by
an Ornstein-Uhlenbeck process. In two and three dimensions,
the AOUP is known to capture the same type of phenomenol-
ogy as the ABP, which is considered to be a more realistic mod-
eling of active particles. Nevertheless, the AOUP has gained
relevance not only because it is the simplest model sharing
with ABP the same two-time autocorrelations and free diffu-
sion16 but also because it is more convenient for theoretical
analysis.

In one dimension, the AOUP self-propulsion mecha-
nism is assimilated to a colored noise, fa, and the governing

equations read

γẋ = F(x) + fa + γ
√

2Dtξ , (1a)

τ ḟa = −fa +
√

2Daη, (1b)

where ξ and η are white noises, δ-correlated in time, and
have unit variance and zero mean. It is easy to see that the
self-propulsion force, which is an internal degree of free-
dom converting energy into motion, is such that 〈fa(t)fa(t′)〉
= Da/τ exp(−|t − t′ |/τ). We fix the ratio Da/τ, in order to
keep constant the average self-propulsion velocity of one

particle,
√
〈(fa)2〉 =

√
Da/τ. Hereafter, we consider the limit

of strong activity and consequently in Eq. (1a) we drop
the last term, representing the contribution due to thermal
fluctuations.

Experimental studies of bacterial colonies have shown
that Da can be much larger than Dt. For instance, Da of active
bacteria in pure water is about 100 µm2/s, whereas the diffu-
sion coefficient of dead bacteria is approximately ≈0.3 µm2/s.
In this and other cases, the contribution due to the diffusion
due to the thermal agitation of the solvent is at least ten times
smaller than the one due to the activity.17 F(x) = −U′(x) is the
deterministic force, U the external potential, and the prime
indicates the spatial derivative. As previously shown in Ref. 18,
a dimensionless parameter, ν, measures how far from equilib-
rium the system is: ν is the ratio between the persistence time
of the trajectory and the relaxation time due to the external

force ν = τ
U
′′

(l)
γ , where l is the typical length of the poten-

tial, for instance the effective width of the confining potential.
In other words, when ν . 1, the relaxation time of the active
force is smaller than the typical time over which a significant
change of the microswimmer position, due to the potential,
occurs. When ν � 1, the system (1) can be mapped into an
overdamped passive system with diffusion Da and potential
U, whose behavior is well understood. Indeed, in this case,
the activity plays just the role of an effective temperature, or
in other words, the distribution is Maxwell-Boltzmann with
temperature γDa. Therefore, we restrict our study to the case
ν ≥ O(1), with the aim of studying a far from the equilibrium
regime.

In order to make progress, it is useful to map Eq. (1) onto
a Markovian system, transforming from the original variables
(x, fa) to the new pair (x, v), where v = ẋ. This change of coordi-
nates19 maps the original overdamped dynamics with colored
noise onto the underdamped dynamics of a fictitious passive
particle immersed in a solvent of spatially varying viscosity.
The simultaneous action of deterministic and active forces
produces a frictional force −γv Γ(x)/τ,20 which is given by

Γ(x) = 1 +
τ

γ
U′′(x) , (2)

where the double prime symbol stands for second spatial
derivative. The transformed dynamics reads
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ẋ = v, (3)

v̇ = −
Γ(x)
τ

v +
F(x)
τγ

+
√

2Da

τ
η. (4)

The statistical properties of the system are described by the
probability distribution p(x, v, t) which obeys the following
Kramers-Fokker-Planck equation:

∂p(x, v, t)
∂t

+ v
∂p(x, v, t)

∂x
+
F(x)
τγ

∂p(x, v, t)
∂v

=
1
τ

∂

∂v

(
Da

τ

∂

∂v
+ Γ(x)v

)
p(x, v, t). (5)

Neither the non-equilibrium dynamics associated with
Eqs. (3) and (4) nor that described by Eq. (5) are easy to solve
even in the stationary state. Up to now, the only known general
analytical results for the stationary PDF have been obtained by
an expansion in power of

√
τ, i.e., when ν � 1.11,21 In addition,

some approximation schemes have been developed, mainly
the so-called UCNA approximation14 (or the Fox approxima-
tion16,22). Basically, the UCNA consists in an adiabatic elimina-
tion of the inertial term10 in Eq. (4), or equivalently in reducing
the Kramers-Fokker-Planck equation Eq. (5) to a Fokker-
Planck equation for the positional degrees of freedom only.
Such a transformation, similar in the spirit to the reduction
from the Kramers to the Smoluchowski representation of the
dynamics,23 leads to an equation which is solved under the
additional assumption of zero currents in the steady state. It
has been pointed out11 that in deriving the UCNA approxima-
tion, one invokes the detailed balance (DB) condition, which
states that in equilibrium each elementary process is equili-
brated by its reverse process. Not surprisingly, the resulting
steady state UCNA probability distribution function, ρucna(x)
is strikingly similar to a Maxwell-Boltzmann distribution, with
an effective Hamiltonian which depends on the derivatives
of the potential. Notwithstanding this approximation which
maps a truly non-equilibrium to an equilibrium-like system, in
the multidimensional and interacting case, the UCNA success-
fully predicts some important features of active particles, such
as the clustering near an obstacle, the tendency of the parti-
cles to aggregate, and the mobility reduction as the density
increases. On the other hand, there is one caveat which lim-
its the application of UCNA to general systems, and this is the
condition of positivity of the Hessian of the interaction poten-
tial. When this condition is not fulfilled, as we will see later,
the UCNA breaks down. First, however, we briefly review the
basic facts of the UCNA approximation.

The steady UCNA configurational distribution,24 ρucna(x),
can be interpreted as the marginal distribution of a PDF,
pa(x, v), which approximates the exact time-independent solu-
tion of Eq. (5). This approximation can be written as

pa(x, v) ≈ ρucna(x)
√

τγ

2πθ(x)
exp(−

τγv2

2θ(x)
), (6)

where we introduced the local “temperature”

θ(x) =
Daγ

1 + τ
γU
′′(x)

(7)

and

ρucna(x) ∝ exp(−
H(x)
Daγ

) , (8)

H(x) being an effective configurational Hamiltonian

H(x) = U(x) +
τ

γ
U′(x)2 − γDa ln

(
1 +

τ

γ
U′′(x)

)
. (9)

Hereafter, with the symbol 〈vn(x)〉 we shall indicate the condi-
tional average of the quantity vn at fixed x, i.e., 〈vn |x〉.

Consistently with the UCNA approach, the local variance
of the velocity, 〈v2(x)〉, at a fixed x is approximated by the
following formula:

〈v2(x)〉 ≈
θ(x)
τγ
=

Da
τ

1 + τ
γU
′′(x)

. (10)

Since θ(x) depends on the shape of the potential, it is posi-
tion dependent and is constant only for linear and quadratic
potentials.21

In principle, when τ � 1, there are no a priori reasons
to consider pa(x, v) as a good approximation, with the excep-
tion of quadratic potentials where it is even exact. How-
ever, in a recent numerical study18 it was shown that for
more general potentials, the whole configurational space can
be classified in different regions according to the follow-
ing criterion: regions where approximation (6) works, which
we name “equilibrium-like regions” (ER), and the remain-
ing “non-equilibrium regions” (NER) where the approxima-
tion breaks down. Within the equilibrium-like regions, the
detailed balance condition is locally satisfied and the local
heat flux approximately vanishes. In Ref. 18, a single-well con-
fining non quadratic potential has been considered: it was
found that the peak of the configurational distribution does
not necessarily coincide with the minimum of the confin-
ing potential. Interestingly, the two symmetric accumulation
regions (for a 1D system), far from the potential minimum,
are ER.

III. PHENOMENOLOGY OF AN ACTIVE PARTICLE
IN A DOUBLE WELL POTENTIAL

In this section, we study Eqs. (3) and (4) in the presence of
a non-convex potential. Let us consider the following double-
well potential:

U(x) = b
x4

4
− a

x2

2
, (11)

which has been intensively studied in the past in the case of
passive brownian particles.25 The escape time of a bistable
potential well in a thermal environment is an important prob-
lem in physics and chemistry that has been evaluated in vari-
ous ways. Chemical reactions are a typical example which has
motivated many studies. Kramers, in his seminal paper,26 eval-
uated the stationary escape rate in the high friction regime
dominated by a spatial diffusion process.

At equilibrium, the basic phenomenology (at low temper-
ature) is that the particles jump at a random time from one
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well to another with a mean time given by Kramers’ formula.27
The same type of problem but with a colored noise replacing
the white noise of Kramers’ treatment was tackled in Ref. 15:
the authors proposed a generalization of the Kramers for-
mula in the near-equilibrium regime (ν � 1) and found that the
escape rate could be derived in terms of an effective potential
similar to (9).

In contrast with the assumption of a small current
adopted in Kramers’ approximation, we consider a regime
where the current is large and the system is far-from-
equilibrium. Therefore, it is clear from Eq. (5) that in addition
to the rich phenomenology determined by the existence of
two stable minima, one should also observe important effects
due to the position-dependent effective friction, Γ(x). In fact,
if U(x) is non-convex and ν is sufficiently large, Γ(x) defined in
Eq. (2) becomes negative whenever U′′(x) < − γ/τ and cannot
be considered a friction anymore. In other words, −Γ(x)v/τ
instead of acting as a damping force represents an acceler-
ation forward and in this case Γ−1 can be interpreted as a
negative mobility. In the following, we explore the physical
consequences of it.

Based upon the above considerations, we dub “NTR”
(Negative Temperatures Region) the zone where the effective
friction Γ(x) < 0 is negative. We define τc as the critical value
of τ such that for τ ≥ τc, the friction Γ(x) ≤ 0 is negative for
some values of x,

τc = −minx

(
γ

U′′(x)

)
. (12)

In the case of the potential (11), the critical value is τc =
γ
b and

the system exhibits a sort of bifurcation depending on τ: if
τ < τc, the temperature θ(x) of the system is positive every-
where, while for τ ≥ τc the temperature becomes negative in
some region located around the maximum of the potential. We
determine the size of the interval, (−xN, xN), where θ(x) ≤ 0 by
considering the solutions of Eq. (12) with τc replaced by a fixed
value of τ

|xN | = U′′−1(−
γ

τ
),

where U′′−1 is the inverse function of the second derivative
of U(x). Intuitively, increasing τ corresponds to enlarge the
NTR, until a saturation length is reached. In particular, for our
potential choice we obtain

lim
τ→∞

|xN | = lim
τ→∞

√
b

3a
(1 −

γ

τb
) =

√
b

3a
. (13)

Thus for large τ, xN coincides with the binodal line [the locus
of U′′(x) = 0], associated with the potential U(x).

It is interesting to mention that in equilibrium statisti-
cal mechanics, one may find absolute negative temperatures
in the study of some Hamiltonian models, for instance a sys-
tem of heavy rotators immersed in a bath of light rotators.28,29
In these Hamiltonian systems, the occurrence of an abso-
lute negative temperature is a consequence of the form of
the kinetic part of the Hamiltonian which is not the standard
quadratic function of momenta but rather a periodic function
of them. This unusual fact does not rule out the possibility of

formulating in a consistent way a Langevin equation for the
slow variables of the problem, in this case the momenta of the
heavy particles. The occurrence of a negative temperature in
the Langevin effective equation is related to the sign change
of the Stokes Force.30

Hereafter, we present some results obtained by solving
numerically the stochastic differential equations (3) and (4),
and the Euler-Maruyama algorithm.31 Let us start showing in
the top panel Fig. 1 the marginal space density, ρ(x). One may
observe that the shape of the spatial distribution is qualita-
tively similar to the one we would find in the case of passive
Brownian particles: two high density regions appear near the
side minima. Considering the profile ρ(x), the most relevant
difference with respect to a Brownian system is represented
by the shift of the peaks with respect to the location of the
potential minima. The shift can be estimated by imposing the
balance between the deterministic force, F(x), and the active
force, fa, which we roughly approximate as ∼ ±γ

√
Da/τ, taking

the plus sign for particles belonging to the left minimum and
the minus to those belonging to the right one. This approx-
imate treatment of fa works better in the regime of large ν,
whereas in the small τ regime the active force has to be con-
sidered as a white noise, as discussed in Sec. II, and therefore
does not contribute to the force balance. For the potential (11),

FIG. 1. Upper panel: The marginal distribution ρ(x) (black curve) and potential
(red curve) for a = b = 10. In the inset, we zoom ρ(x) near its left maximum. The
variance of the self-propulsion force is Da/τ = 102 and τ = 10. The positions of
the peaks of the density ρ(x) are shifted with respect to the minima of the potential
(11) and correspond fairly well to the roots of (14). Lower panel: conditional velocity
distribution, p(v |x), for three positions, x = −1.2, −0.5, 0. from the left to the right,
respectively. In the vicinity of the two peaks of ρ(x) at x = ±1.2, the distribution is
unimodal p(v |x). At x = ±0.5, a lateral shoulder appears as a clear indication of
the onset of bimodality in the velocity distribution. Finally, at the symmetric point
x = 0, the bimodality of p(v |x) is fully developed and the particles form two distin-
guishable populations: one of particles propagating towards the right and the other
towards the left.
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the two peaks are given by the real solutions of the following
equation:

− ax3 + bx = γ

√
Da

τ
[Θ(−x) − Θ(x)], (14)

where Θ(x) is the Heaviside step function. For x > 0, we take
the largest root, while for x < 0 we take the most negative
root, and these roughly correspond to the maxima of the PDF.
One can see that the distance between the positions of the two
maxima increases with the ratio Da/τ, which is in agreement
with Eq. (14).

Now, we focus our analysis on the very active regime
where Da/τ is large enough so that we have frequent jumps
between wells. On the contrary, when Da/τ is too small the
jumps are rare. A criterion to determine this threshold value
is to impose the condition that the mean amplitude of the
active force, γ

√
Da/τ, exceeds the maximal value of the repul-

sive force F(x) in a region contained between the minimum and
the central maximum of the potential.

As we said above, the overall structure of ρ(x) is not too
dissimilar from the one we would observe in a thermal sys-
tem, but if we scrutinize the system using a different indicator,
i.e., the conditional probability of the system’s “velocity,” p(v |x)
= p(x, v)/ρ(x), the peculiarity of the active system becomes
evident. In the bottom panels of Fig. 1, we plot the numerical
data representing the conditional probability of the system’s
“velocity,” p(v |x) for three different typical positions, x: at the
ρ-peak position, at the position of the maximum of the poten-
tial, and at the intermediate point between them (left, right,
and middle panel, respectively). In the bottom left panel of
Fig. 1, the conditional velocity distribution displays a single
peak: such a form is consistent with the distribution Eq. (6)
and corresponds with the existence of a positive local kinetic
temperature which is well reproduced by θ(x) given by (10).
We classify such a behavior as equilibrium-like and dub these
regions of phase-space as ER. We define as “non-equilibrium
regions” (NER) the zones which are not ER. In particular, the
NTR defined above is contained in the NER since the study
of the p(v |x) shows clear non-equilibrium features. Indeed, for
those values of x where Γ(x) becomes negative, the observed

scenario is now more intriguing because the conditional dis-
tribution p(v |x) displays bimodality: in the bottom center panel
for x = −0.5, the main peak is shifted from v = 0 to a posi-
tive value v ≈ 5 and is accompanied by the emergence of a
second lower peak centered at negative v ≈ −10 (and vice-
versa on the other side). Such an unbalanced shape of the
p(v |x) distribution disappears for x = 0 where the two peaks
are symmetric (see bottom right panel). The p(v |x) shown in
the central and right panels is not consistent with Eq. (6) and
cannot be accounted for by a Maxwell-type distribution.

In the two panels of Fig. 2, we display two phase-space
snapshot configurations in the plane (x, v) for two different
choices of τ (τ = 1, 10). In order to sample configurations cor-
responding to the same strength of the active force, we used
the same ratio Da/τ = 102. Both snapshots reveal an inter-
esting phenomenology which confirms the previous observa-
tions and helps us to gain some insight: particles spend most
of their life in the equilibrium-like regions, but sometimes
visit the NTR region. When this occurs, the particles experi-
ence an acceleration, due to the negative mobility 1/Γ(x) < 0,
towards the opposite ER region. Finally, when the particles
have crossed the NTR and reached the opposite side, Γ(x)
returns to positive values and the motion becomes damped
again with a concomitant restoring of the local Gaussian
velocity distribution.

The (x, v) scatter plot reveals the presence of two lanes
(one in the in the upper half-plane and the other in the lower
half) of representative points in the NTR connecting the two
darker regions. If τ increases, the two lanes become thinner
along the v direction, as clearly shown in the right panel of
Fig. 2. Let us also remark that a larger value of the persis-
tence time, τ, determines a stronger selection mechanism of
the velocities of the particles which successfully escape from
one well to the other.

Such a picture is also confirmed by Fig. 3 where we report
the values v(t) and x(t) for a single particle trajectory: in cor-
respondence of the instant when the particle changes well, its
velocity rapidly grows, a scenario which has not a Brownian
analog and is peculiar of the active dynamics. In particular, v(t)
reveals pronounced spikes at the crossing barrier time, whose

FIG. 2. We show the snapshots repre-
senting the phase-points in the (x, v)-
plane for two different choices of the per-
sistence time τ: left panel τ = 1 and right
panel τ = 10. The remaining parameters
are Da/τ = 102 and a = b = 10. Each point
represents the state of one system at a
given instant. We simulated a collection
of N = 103 particles. The vertical dashed
curves are only a guide to the eye.
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FIG. 3. In the upper left and right panels,
we show the evolution of the position,
x(t), for τ = 1 and τ = 10, respectively.
In the lower panels, we display the cor-
responding velocities. The values of the
remaining parameters are Da/τ = 102

and a = b = 10.

height are consistently larger than the typical equilibrium-
like fluctuation, predicted by UCNA. The shape of the spikes
resembles a deterministic trajectory and thus does not seem
particularly affected by the random force, as shown in the
inset of Fig. 3.

Summarizing, we have found regions characterized by
“local” negative temperatures: when a particle enters one of
these regions, it becomes too energetic to remain there and
thus has to leave it to enter again an ER, where Γ(x) becomes
again positive. This feed-back mechanism explains why the
mean velocity does not grow indefinitely.

IV. ANALYSIS OF THE NEGATIVE TEMPERATURE
REGION

As shown in Figs. 1 and 2, an active particle spends the
most of its life in the regions where the potential U(x) is con-
vex. Under such condition, the UCNA approach is expected to
work and this fact is confirmed by the observation that the
numerical p(v |x) is well reproduced by a Gaussian with tem-
perature θ(x) given by Eq. (10). However, this approximation
is not uniformly valid in space, as the presence of two peaks
in p(v |x) of Fig. 1 and the form of the snapshots of Fig. 2 have
shown. To remedy this situation, in the present section, we
attempt to formulate in alternative to the UCNA a theoretical
explanation of the observed behavior in the region (−xN, xN),
i.e., where Γ(x) < 0.

Hereafter, we propose a theoretical interpretation of
the numerical findings illustrated above and is based on the

analysis of the behavior of the slow variables of the system in
this unstable region. We choose as slow variables the average
velocity of the particles and velocity variance at fixed x (i.e.,
conditional averages) and determine their evolution. Since in
the stationarity state the average velocity at a fixed arbitrary
position vanishes, i.e., 〈v(x)〉 = ∫ dvvp(x, v)/∫ dvp(x, v) = 0, it
is crucial to study separately the population of the particles
going from the left well to the right one (the upper lane in
Fig. 2), from those performing the opposite path.

To identify these two populations, we define p+(x, v)
(p−(x, v)) as the unnormalized PDF of the particles whose
dynamics starts from the left (right) well. In practice, we com-
pute p± counting the particles in the two lanes of Fig. 2 and
normalizing them with the total number of particles. In this
way, summing over the two populations we recover the total
distribution

p(x, v) = p+(x, v) + p−(x, v).

The functional form of p± in the NTR will be investigated in the
present section. Accordingly, we define the first conditional
velocity moment with respect to p±(x, v)

〈v(x)〉± =
∫ p±(x, v)vdv

∫ p±(x, v)dv
.

Now, averaging Eq. (4) with respect to p±(x, v)/∫ dvp±(x, v),
we obtain

d
dt
〈v(x)〉± = −

1
τ

(
1 +

τ

γ
U′′(x)

)
〈v(x)〉± −

U′(x)
γτ

. (15)
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In the region, where Γ(x) < 0, the absolute value of the aver-
age 〈v(x)〉± grows exponentially in time before dropping to zero
again, as one can observe qualitatively the inset of top-right
panel of Fig. 3. In order to determine 〈v(x)〉±, we specialize
the treatment to the regime γτ � 1, where some approxima-
tions are possible, and we can neglect the last term in the
right-hand side of Eq. (15). This regime is the most interest-
ing for the present study since it is just the activity domi-
nated regime. The integration of Eq. (15) is performed taking
into account that the conditional averages 〈v(x)〉± are explicit
functions of x and t so that the operator d/dt is the total
derivative,

d/dt = ∂t + v∂x ≈ ∂t + 〈v(x)〉±∂x .

We integrate Eq. (15) and obtain

〈v(x)〉± = 〈v(x0)〉± −
U′(x)
γ

+
U′(x0)
γ

+ O
(

1
τ

)
, (16)

where the lower limit of integration x0 is given by −xN if the
initial configuration starts in the left sector and the particle
propagates from the left towards the right, while we choose
x0 = xN in the opposite case. Such an equation expresses
the conservation of the average self-propulsion since 〈fa(x±)〉
= γ〈v(x)〉± + U′(x) = ±const for x ∈ (−xN, xN). Since we are
considering τ � 1, the microswimmers able to reach the
NTR are the fraction of particles with self-propulsion, fa,
large enough to reach the point x0, as discussed in Sec. III.
Moreover, until this fraction of particles reaches the oppo-
site well, their self-propulsion will maintain a nearly constant
value.

Let us, now, consider the equation of evolution for the
slow variable 〈v2(x)〉±. To this purpose, we multiply by v Eq. (4)
and apply the Ito calculus32 and obtain

vdv = −
Γ(x)
τ

v2dt + v

√
2Da

τ
dw − v

U′(x)
τγ

dt, (17)

where dw is the Wiener process associated with the white
noise, η. By taking the average, 〈·〉±, we write an equation for
〈v2(x)〉±, which depends on 〈v(x)〉±

d
dt
〈v2(x)〉± = 〈v(x)〉±

d〈v2(x)〉±
dx

= −2
Γ(x)
τ
〈v2(x)〉±

− 2〈v(x)〉±
U′(x)
τγ

+ 2
Da

τ2
, (18)

where again in the first equality d/dt is the total derivative.
Such an equation, in the case of vanishing currents (〈v(x)〉± = 0)
and positive temperature, is in agreement with the UCNA pre-
diction because we have the simple result 〈v2(x)〉± = Da

τΓ(x) ,
which is nothing but formula (10). In the more interesting case
of non-vanishing currents, Eq. (18) is an inhomogeneous first
order differential equation for the observables 〈v2(x)〉± and can
be integrated through the formula

〈v2(x)〉± = 〈v2(x0)〉±e
− ∫

x
x0

dx′g(x′) + e− ∫
x
x0

dx′g(x′)
∫ x

x0

dx′T(x′)e∫
x′
x0

dx′′g(x′′),

(19)

where g(x) = 2 Γ(x)
τ〈v(x)〉±

, T(x) = 2Da
τ2〈v(x)〉±

, and the term U′(x)
τγ = O(1/τ)

has been neglected. In the limit τ � 1, we obtain∫
dxg(x) =

∫
dx

2Γ(x)
(τ〈v(x)〉±)

≈ −2 ln 〈v(x)〉± + O(1/τ) (20)

so that the solution of the inhomogeneous first order ordinary
differential equation (18) simply reads

〈v2(x)〉± ≈ 〈v2(x0)〉±

(
〈v(x)〉±
〈v(x0)〉±

)2

+ (〈v(x)〉±)2
∫ x

x0

dx′
2Da

τ2(〈v(x′)〉±)3
.

(21)

Finally, since the last term in the right-hand side of Eq. (21) is
negligible, being O(Da/τ2), the variances ∆±(x) ≡ 〈(v−〈v(x)〉±)2〉±
can be approximated as

∆±(x) ≈ (〈v(x)〉±)2
∆±(x0)

(〈v(x0)〉±)2
. (22)

Equation (22) establishes a simple approximate relation
between the variances, ∆±(x), and the first conditional veloc-
ity moments, 〈v(x)〉±, which holds in the regime τ � 1. We
can roughly estimate the velocity variance at x0 as ∆±(x0)
≈ Da/(τΓ(x0)) ∼ Da/(τ2U′′(x0)) and explain why at fixed Da/τ
the lanes in the scatter plot of Fig. 2 become thinner as τ
increases.

Let us consider now the phase-space distribution, p(x, v)
in the central region: using the above results, we see that it can
be approximated as the sum of two Gaussians, representing
the left and the right population, respectively,

p(x, v) ≈N *.
,
ρ+(x)

√
1

2π∆+(x)
exp*

,
−

(v − 〈v(x)〉+)2

2∆+(x)
+
-

+ ρ−(x)

√
1

2π∆−(x)
exp*

,
−

(v − 〈v(x)〉−)2

2∆−(x)
+
-

+/
-
, (23)

N being the normalization of the whole distribution. The form
of (23) reproduces the structures observed in the lower panels
of Fig. 1, and clearly, the presence of the double peak in the
velocity distribution is the signature of a departure from the
global equilibrium condition.

The theoretical predictions for 〈v(x)〉± and 〈v2(x)〉± are
tested against the respective numerical measures as shown in
the left and right panel of Fig. 4, respectively. In particular, the
study of 〈v(x)〉+ obtained from data with the prediction (16) dis-
plays a good agreement in the NTR region, which confirms the
present theory. Notice that Eq. (16) does not hold in the region
where Γ(x) > 0 and 〈v(x)〉± ≈ 0, which is instead well described
by the UCNA approximation.

The variance of the left population, ∆(x)+ = 〈v2(x)〉+ −
[〈v(x)〉+]2, shown in the right panel of Fig. (4), increases mono-
tonically with x. In particular, the variance reveals a good
agreement with the UCNA prediction in the regions where Γ(x)
> 0. As x tends from the left to −xN, the space point where Γ(x)
= 0, the variance calculated with the UCNA diverges, in clear
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FIG. 4. Left Panel: 〈v(x)〉+ computed from data (red points) and from the theoretical prediction (black line) of Eq. (16) with the initial value, 〈v(x0)〉+ = 1.5, obtained from the
numerical data values data in correspondence of τ = 10. Right Panel: Variance ∆+(x) computed from data (points) and from the theoretical prediction, respectively: in the left
sector (Γ > 0), the continuous lines represent the UCNA theoretical value for τ = 10 and 20. In the central region (Γ < 0), the continuous lines represent the prediction of
Eq. (22). The remaining parameters are Da/τ = 102, a = b = 10.

disagreement with the numerical findings of Fig. 4. However, if
we consider the NTR region, the agreement between data and
the theoretical Eq. (22) is pretty good, confirming the validity
of the approach.

V. ENERGETICS
We conclude with a brief discussion of the energetics of

the model. Following the methods of Ref. 21, we define the local
heat flux, q̇(x, t), as the energy flux transferred from the active
bath (represented by the Gaussian colored noise) to the par-
ticles. There it was shown that such a flux can be expressed
as

q̇(x, t) = −
Γ(x)

τρ(x, t)

∫
dv

[
τγv2p(x, v, t) + θ(x)v

∂

∂v
p(x, v, t)

]

= −
1
τ

Daγ

θ(x)

[
τγ〈v2(x)〉 − θ(x)

]
(24)

and that the entropy production towards the surrounding
medium reads

ṡm(x, t) =
q̇(x, t)
θ(x)

. (25)

It was also demonstrated that the total entropy production of
the medium Ṡm(t) = ∫ dxρ(x, t)ṡm(x, t) and the total heat flux are
related through a generalised Clausius inequality21

Ṡm(t) =
∫

dxρ(x, t)
1
θ(x)

q̇(x, t) ≤ 0. (26)

Such an expression for the entropy production of the AOUP is
consistent with the results of Refs. 11 and 33–35.

Let us discuss the behavior of q̇(x, t) in the steady state, as
shown in Fig. 5. We can identify two symmetric space regions,
occurring at Γ(x) > 0, where q̇(x) [or equivalently ṡm(x)] is
almost zero. These zones coincide with the “equilibrium-like
regions” (ER) defined in Sec. III, a nomenclature which is well
justified also from a stochastic thermodynamic approach. To
be precise, in this region q̇(x) is not exactly zero but assumes

very small negative values because in the last equality of
Eq. (24), we have 〈v2(x)〉 ≥ θ (x)/τγ and thus the contribution
to Ṡm is negative. On the other hands, we call “non-equilibrium
space region” (NER) those zones where q̇(x) is large. In particu-
lar, the NTR region, introduced in Sec. III, is strictly contained
in the NER, displaying large q̇(x), which assumes positive val-
ues. Indeed, both terms −θ (x) and 〈v2(x)〉 contained in the last
equality in Eq. (24) have the same positive sign. As shown in
Fig. 5, q̇(x) grows as τ increases. Indeed, evaluating the regime
τ � 1 in Eq. (24) in the NTR, q̇(x) ≈ −Γ(x)〈v(x)〉 ∼ τ |U

′′

(x) |〈v2(x)〉,
showing the occurrence of an explicit τ dependence. Despite
θ(x) approach to infinity for Γ(x) = 0, in this special case, q̇(x)
is finite and positive and ṡm(x) becomes zero. We outline that
the correct sign of the inequality (26) is realized because ρ(x)
is very small in the NER and large in the ER.

Finally, we discuss the connection between the form of
the distribution functions and the detailed balance condition.

FIG. 5. Plot of the heat flux, q̇, defined by Eq. (24) as a function of the position for
two different values of τ = 10, 20 and Da/τ = 102. Notice that q̇ is quite small and
negative in the equilibrium-like region and large and positive in the negative tem-
perature region. The main contribution to the entropy production stems from the
equilibrium like region because the majority of the particles sit there. The remaining
parameters are a = b = 10.
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We have mentioned that in order to derive the UCNA steady
state distribution, one has to assume the vanishing of all cur-
rents, which is a form to say that the detailed balance condi-
tion holds. However, considering the AOUP, one sees that the
detailed balance condition holds and the entropy production
vanishes only in the case of linear or quadratic potentials. For
more general potentials, the DB does not hold. Now, we argue
that in the ER, the local entropy production (25) is nearly van-
ishing, while in the NER (and, in particular, in the NTR) the
local entropy production is large. In the first case, a local ver-
sion of the detailed balance appears to be satisfied, whereas
in the second case it is strongly violated. This picture is con-
sistent with Fig. 1: the Gaussian form of the p(v |v) distribution
shown in panel (b) of Fig. 1 indicates that the detailed balance
condition is satisfied locally in the ER, whereas in the NTR
[panels (c) and (d)] the presence of two peaks clearly shows
a breakdown of such a condition.

VI. CONCLUSION
Some comments are in order: we have studied an active

Ornstein-Uhlenbeck particle in the presence of a bistable
potential and found that for sufficiently large values of the per-
sistence time τ, the space accessible to the particle can clas-
sified into regions where the sign of the friction function Γ(x)
is either positive or negative, which we named equilibrium-
like regions (ER) and nonequilibrium regions (NER), respec-
tively. In the ER, characterized by a small entropy produc-
tion and by the absence of currents, the statistical proper-
ties of the system are captured fairly well by an extended
UCNA approximation which predicts a steady state unimodal
distribution function p(x, v) of the Maxwell-Boltzmann type.
On the contrary, the NER is characterized by the bimodality
of the velocity distribution, by larger values of the entropy
production and by a strong departure from the detailed bal-
ance condition. Our theory, which is valid in the limit of
large τ, successfully explains the dependence of the local
currents 〈v(x)〉± and velocity moment 〈v2(x)〉± on the control
parameters.

We envisage an interesting application of our study: by
employing a non-convex potential, we may find a veloc-
ity selection mechanism which allows us to produce parti-
cles with a particular velocity. The selection becomes more
efficient as the persistence time at fixed propulsion speed
increases. Moreover, this “device” gives the possibility of pro-
ducing active particles with a super speed, |vs |, some order of
magnitude larger than the typical velocity of particles in the
potential-free region. Clearly, this effect could be amplified by
choosing the potential in such a way that Γ(x) becomes more
negative. It is worth to mention the fact that the presence of
negative mobility regions36 is even more severe in two and
three dimensions where it naturally occurs for instance near a
concave surface.12 In this case, the mobility is a tensor and its
tangential components may become negative when the curva-
ture radius is small. Another important issue is the case where
the particles are mutually interacting via some pair potential:
the mobility matrix even for small persistence can display neg-

ative eigenvalues in such a way that the UCNA is not applicable
in all regions. It would be interesting to explore if these mul-
tidimensional cases could be treated using concepts similar to
those exploited in the present work.
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