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The translocation process of a globular protein (ubiquitin) across a cylindrical nanopore is studied via molecular
dynamics simulations. The ubiquitin is described by a native-centric model on a CR carbon backbone to
investigate the influence of protein-like structural properties on the translocation mechanism. A thermodynamical
and kinetic characterization of the process is obtained by studying the statistics of blockage times, the mobility,
and the translocation probability as a function of the pulling force F acting in the pore. The transport dynamics
occurs when the force exceeds a threshold Fc depending on a free-energy barrier that ubiquitin has to overcome
in order to slide along the channel. Such a barrier results from competition of the unfolding energy and the
entropy associated with the confinement effects of the pore. We implement appropriate umbrella sampling
simulations to compute the free-energy profile as a function of the position of the ubiquitin center of mass
inside of the channel (reaction coordinate). This free energy is then used to construct a phenomenological
drift-diffusion model in the reaction coordinate which explains and reproduces the behavior of the observables
during the translocation.

1. Introduction

Several molecular processes in living organisms involve the
continuous and swift delivery of chemical compounds from
production sites to target compartments where they are eventu-
ally utilized. Such a transport of biomolecules among inter- or
intracellular compartments is known as translocation.1,2 The
understanding of this kind of molecular transfer would clarify
the preferential mechanisms through which cells interact with
their environment by exchanging metabolites and transmitting
chemical signals or genetic information.3,4 A translocation
process that has been fascinating researchers for almost 40 years
concerns the transport of proteins along channels (pores) opened
in cellular membranes.5 Its undoubted relevance stems also from
the fact that often proteins cross the endoplasmatic reticulum
(ER) in eukaryotes or plasma membrane in prokaryotes to
complete the biosynthesis stage.4

The interest in the subject has recently increased also thanks
to the possibility to insert artificial R-hemolysin into a lipid
bilayer, which allowed accurate voltage-driven translocation
experiments of polynucleotide segments,6,7 peptides,8 and,
recently also, proteins.9 These experiments have shown that
R-hemolysin channels, solid-state nanopores,10 and carbon
nanotubes11 under appropriate conditions can work as sequenc-
ing devices as they are capable of characterizing and discrimi-
nating polynucleotide molecules.12

Several studies, since the pioneering work by Blobel and
collaborators,13 have highlighted the crucial role of membrane
pores to understand and characterize the various import/export

mechanisms of proteins. Proteins, to cross the membranes, use
specialized pores which have been designed by evolution to
assist and control the process.3,14,15 The typical size of these
pores is on the order of nanometers, and during the transport,
proteins remain partially unfolded and refold often with the aid
of chaperons and enzymes only when delivered to the trans side
of the pore5,16

In the past few years, thorough experimental, computational,
and theoretical efforts have produced remarkable advances in
understanding the principles of protein translocation. However,
this subject still represents a challenge in molecular biology
due to the enormous complexity of translocation machinery,
the variety of systems, and the presence of several concurrent
factors (e.g., chaperones).

Theoretical investigations on protein translocation comprise
computational approaches and mathematical modeling. The
latter, mainly based on statistical mechanical principles, attempt
a phenomenological description of biopolymer translocation as
diffusion over energy barriers by assuming elementary “ad hoc”
polymer-pore interactions. This approach reveals to be par-
ticularly suitable to describe the properties of processes
characterized by a low degree of chemical details, such as
translocation of unstructured biopolymers or homopolymers.17-19

Simulations at atomic resolution20-22 of both proteins and
membrane pores, although very informative on molecular details,
explore time scales too short with respect to real translocation
times.

The present work combines molecular dynamics simulations
and theoretical methods to describe the translocation of a
globular protein (ubiquitin) by taking into account its structural
properties and network of internal interactions. To cut down
on the computational load and increase the statistics of events,
we resort to a coarse-grained representation of the protein and
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the pore as well. Ubiquitin is modeled via a Goj-like force field
on the CR carbon backbone, which offers a realistic description
as it incorporates the minimal structural properties of protein-
like molecules. In this phenomenological approach, the ubiquitin
translocation process is simulated as the passage of a protein-
like polymer through a pore with a simple geometrical shape
(Figure 1). These simplifications allow the entire translocation
process to be simulated in a accessible CPU time and with an
approximation which retains the unaltered physical essence of
the problem.

It is important to note that although ubiquitin is not a protein
that is generally imported, we have chosen it for its well-defined
topology of secondary structure, because its folding pathway
has been well characterized by a variety of methods,23-25 and
also for a comparison to previous theoretical works.26 Specif-
ically, the issue we address concerns the role of entropic barriers
associated with the translocation of proteins across narrow pores.
The sudden confinement experienced by polymers when passing
a narrow path determines a great conformational entropy
reduction leading to the appearance of free-energy barriers
opposing translocation. The case of proteins is further compli-
cated with respect to unstructured polymers27,28 by their natural
resistance to unfolding and propensity to refold.

In our study, we followed an approach similar to that
suggested by Makarov and co-workers,26 but at variance with
that work, we considered a Goj-like protein model of ubiquitin
and finite-length pores. The finite length implies that three
dynamical stages can be identified during translocation; (i) a
slow process places an initial monomer at the entrance of the
channel; in our simulation, this stage is neglected as the
N-terminus of ubiquitin is positioned such that translocation
starts with no delay; (ii) in the second stage, the protein unfolds
and attempts to insert a stable nucleus of residues inside of the
channel; (iii) the third stage involves the final escape of the
molecule from the channel with consequent refolding. Notice
that stages (ii) and (iii) cannot be ignored as they give non-
negligible contribution to the full description of the biological
process.

From MD simulations combined with the umbrella sampling
method,29 we computed the translocation free-energy profiles
as a function of appropriate reaction coordinates, the ubiquitin
center of mass along the channel. This technique, as discussed
in the methods section, is particularly useful in sampling
conformations of a system around energy barriers. The simula-
tions are done in the presence of an artificial biasing potential
(umbrella or window potential), forcing the system dynamics
to explore, with a certain accuracy, the set of unstable
conformations. The effect of the umbrella potential is removed
from the Boltzmann weight by processing data through ap-
propriate debiasing algorithms.30 We employ the free-energy
profile to build up a one-dimensional mathematical model based
on the Smoluchowski equation. In this framework, we show

that the simulation results on ubiquitin translocation along a
cylindrical channel can be interpreted and reformulated as a first-
passage problem31,32 for the motion of an effective particle
performing driven-diffusion over a free-energy profile in one
dimension.

Although both the structure and the role of membrane pores
are enormously more complex, this simple idealization contains
enough information to characterize the main physical phenom-
enology of translocation of partially unfolded proteins, in
agreement with the principal experiments.12

2. Model of Protein Translocation and Simulation

Methods

In this section, we present the model for the translocation of
ubiquitin through a membrane pore and discuss its essential
features.

The pore through which the protein is imported is modeled
by a potential with cylindrical symmetry around the x-axis
(translocation direction)

where V0 ) ε, ψ(y,z) ) [(y2
+ z2)/Rp

2]q; L and Rp define the
pore length and radius, respectively. The parameter q tunes the
potential (soft wall) stiffness, and R modulates the soft step-
like profile in the x-direction; the larger the R, the steeper the
step. In this work, we considered q ) 1 and R = 3 Å2. A
constant force F collinear to the cylinder and acting only at the
interior of the pore mimics, on average, the importation
mechanism. Thus, the pore-protein interaction, apart from the
homogeneous pulling force, reduces to a simple confinement
effect in a cylindrical region of section πRp

2 and length L. Since
the parameter Rp is chosen to be smaller than the folded ubiquitin
gyration radius, the transversal section of the pore allows
translocation to occur only in a quasi-linear conformation.

The ubiquitin is described by its backbone of CR carbons only,
each residue is identified by the corresponding CR atom, and
the protein is assimilated to a chain of beads centered on CR

positions. The interactions among the residues are assigned by
promoting the formation of those native interactions stabilizing
the 76 residue long PDB structure (1UBI), according to classical
Goj-like approaches. The force field, as proposed by Clementi
et al.,33 is defined by the potential

where rij is the distance between CR i and j, θi is the bending
angle identified by the three consecutive CR’s i - 1, i, and i +

1, and φi is the dihedral angle defined by the two planes formed
by four consecutive CR’s i - 2, i - 1, i, and i + 1. The capital
symbols are the corresponding quantities in the native confor-
mation. This force field assumes that successive beads along
the chain are connected by harmonic springs kh/2(ri,i+1 - Ri,i+1)2,
mimicking the virtual peptide bonds. These springs maintain
the chain connectivity and allow small fluctuations of consecu-
tive CR distances, ri,i+1, around their native values Ri,i+1. Angular

Figure 1. Sketch of the geometrical setup used to simulate the
translocation of the ubiquitin through the pore. The arrow represents
the pulling homogeneous force acting on the last bead still inside of
the pore, and the dashed line is the potential across the channel.

Vp(x, y, z) ) V0ψ(y, z)[1 - tanh(Rx(x - L))] (1)

Vtot ) ∑
i)1

N-1 kh

2
(ri,i+1 - Ri,i+1)

2
+ ∑

i)2

N-1 kθ

2
(θi - Θi)

2
+

∑
i)3

N-2

kφ

(1)[1 - cos(φi - Φi)] + kφ

(3)[1 - cos 3(φi - Φi)] +

∑
i,j>i+2

Vnb(rij) (2)
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potentials in θ and φ contribute to increase the cooperativity of
the model by adding a further bias toward the formation of a
correct native secondary structure. Nonbonded (nb) interactions
between nonconsecutive R-carbons are modeled with Lennard-
Jones 12-10 potentials

rewarding the formation of native interactions (contacts). Native
contacts34 are identified by a cutoff distance Rc ) 6.5 Å, such
that two residues i and j form a native interaction if their distance
Rij in the native state (PDB entry 1UBI) is less than Rc. This
criterion selects 124 native contacts on the 1UBI crystallographic
structure. When two residues are not in native contact (Rij >
Rc), they interact only through the L-J repulsive tail (σ/rij)12,
with σ ) 4.5 Å. Finally, all of the force field coefficients are
proportional to the energy scale ε, such that kh ) 103ε/d0

2 (d0 )

3.8 Å), kθ ) 20ε, kφ
(1)

) ε, and kφ
(3)

) 0.5ε, and forces are
measured in units of fu ) ε Å-1.

Langevin thermostats with friction γ have been employed to
control the temperature in molecular dynamics runs35

where Fi
conf is the sum of internal and external forces acting on

residue i, the random force Wi has zero mean, and the variance
is 〈WR(t)WR′(t′)〉 ) 2γMRTδR,R′δ(t - t′). The multiple histogram
technique36 has been used to obtain the thermodynamic observ-
ables needed to characterize the ubiquitin folding transition.

The umbrella sampling method29 has been applied to extract
from simulations the free-energy barriers that the ubiquitin feels
across the pore during its translocation. A harmonic umbrella
potential

restrained the x-coordinate of the protein center of mass, X )

∑i ) 1
N xi/N, to fluctuate around a chosen value Xk. The enlarged

interval [-l, L + l] (L ) 300 Å, l ) 50 Å) containing the pore
was partitioned into Nb ) 2 × 103 bins of width ∆X ) (L +

2l)/Nb; a set of M ) 200 Xk-centers has been selected to properly
sample the whole channel and the regions near its ends. For
each center Xk, we thermalized the configuration and performed
a run to collect the biased histogram hk

(b)(X) of the coordinate X

under the effect of the potential VU(X - Xk) centered on Xk.
The biased histograms need to be deweighted from the potential
VU(X - Xk) and recombined in order to provide the unbiased
probability distribution P(X) along the whole channel, which is
expressed as the linear superposition

with C as a normalization constant. The weights ck(X), normal-
ized such that ∑k ck(X) ) 1, are determined by a self-consistent
procedure as explained in ref 30. The free-energy G(X) as a

function of X (also termed the potential of mean force) is
obtained from P(X) by inverting the Boltzmann weight G(X) )
-RT ln P(X).

3. Results and Discussion

The folding thermodynamics of the 1UBI structure has been
obtained through folding simulations from random open con-
formations at a T* ) 1.5 in reduced temperature units R/ε,
(equivalent to T ) 670 K). The folding temperature occurs at
T* ) 0.77, corresponding to the experimental denaturation
temperature T ) 338 K;23 this sets the energy scale to the value
ε = 0.88 kcal mol-1, and the units of time and force are tu )

σ(M/120ε)1/2 ∼ 0.25 ps and fu ) ε Å-1 ∼ 6 pN, where the
average amino acid mass amounts to M ∼ 136 Da. The time
step and friction coefficient used in the Langevin dynamics are h

) 0.001tu and γ ) 0.25tu
-1, respectively. The kinetics of the

translocation process was simulated at temperatures of Tref )

198K (reference) and Tph ) 305K (physiological) by performing
different runs in which the protein was threaded into the channel
by the force. At each run, the ubiquitin N-terminus was placed
at the left opening of the channel x ) 0 to facilitate the entrance.
The simulation was run until the protein was fully expelled out
of the right end of the channel, and almost complete refolding
occurred. However, at low forces, ubiquitin may fail to cross
the pore within a large assigned waiting time tw; in this case,
we preferred to stop the run, discard its statistics, and restart a
new trajectory.

The process can be characterized by measuring the average
translocation velocity and translocation time as a function of
the importing force F. Averages were performed over indepen-
dent runs, excluding those in which ubiquitin did not cross the
pore from one edge to the other within tw. The probability of
translocation PTr can be estimated as the number of translocation
successes, within the time tw = 105tu, over the number of total
runs; to be precise, this is the probability for the run not to be
absorbed in a time t < tw because at tw, the run is killed. Figure
2 reports the curves of PTr versus F at physiological Tph and
reference Tref temperatures. At both temperatures, translocation
becomes probable (PTr > 1/2) when the force exceeds a critical
value Fc(Tref) = 1.35fu, Fc(Tph) = 0.72fu, while below these
thresholds, the probability goes rapidly to 0. Instead of the aver-
age translocation velocity V, it is convenient to plot the
dimensionless mobility µ/µ0 ) V/F · (NγM) as a function of the
force F (Figure 3), where µ0 ) 1/(NγM) is the mobility that

Vnb(rij) ) {ε[5(Rij

rij
)12

- 6(Rij

rij
)10] Rij e Rc

10ε

3 ( σ

rij
)12

Rij > Rc

(3)

Mr̈i ) -γMṙi + Fi
conf

+ Wi

VU(X - Xk) )
Kumb

2 ( 1
N

∑
i)1

N

xi - Xk)2

(4)

P(X) ) C ∑
k)1

M

ck(X)e�VU(X-Xk)hk
(b)(X)

Figure 2. Ubiquitin translocation probability across a pore of radius
of Rp ) 4 Å and length of L ) 300 Å as a function of the force (in
units fu ) 6pN) at temperatures of Tref ) 198 K and Tph ) 305 K. Dots
are MD simulation results, and dashed lines indicate the fitting via eq
13 (see below).
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ubiquitin would have in the absence of the channel. The curves
show a nonlinear V-F characteristic, indicating the existence
of a free-energy barrier which the molecule has to overcome to
activate its translocation. The threshold mechanism is generated
by the channel-protein interaction, and the theoretical approach
explaining the results requires the determination of the free-
energy profiles associated with ubiquitin translocation. For
instance, the decrease of the critical force with temperature is
a clear consequence of the lowering of free-energy translocation
barriers with temperature increase. This can be achieved via
umbrella sampling simulations with the umbrella potential (eq
4) as discussed in section 2.

Typical free-energy profiles G(X) in the absence of force
experienced by ubiquitin in different positions inside of the pore
are reported in Figure 4 as a function of the “natural” reaction
coordinate, the center of mass position X. The pore occupies
the region [0,L], and the plateau in the middle indicates that
once the protein is unfolded and well inside of the pore, it can
slide along the axis without free-energy increase. It is worth
remarking that the presence of the plateau is a consequence of
the channel length, which is long enough to fully accommodate
all of the residues of the elongated conformations of ubiquitin.
By reducing the length L, this plateau is expected to shorten

until disappearing below a certain value of L. The major
variation of G(X) occurs at the boundaries of the channel, and
its shape can be fit by a one-dimensional potential

which is a combination of step-like functions g(u) ) [1 -

tanh(u)], suggested by the potential in eq 1, depending on the
tuning parameters {Gs}, {µs}, and {ls}, whose values are listed
in Table 1. One may wonder how the free-energy profiles are
influenced by the parameters Rp, µ, and q in the pore potential
definition (eq 1). Of course, if Rp is increased, the pore becomes
larger, and the translocation is facilitated; then, the free energy
barrier decreases. The role of R is very marginal; in fact, we
checked that results do not change by replacing tanh[Rx(L -

x)] with the step function Θ[x(L - x)]. The role of q is less
trivial than R, although we do not see appreciable variations on
the translocation dynamics passing from q ) 1 (present
simulations) to 2. However, from eq 1, it is clear that changing
q corresponds to making the wall less soft. To some extent,
this is equivalent to a small change in the radius of the channel.
For example, in the limit of q f ∞, the channel is a perfect
hard cylindrical wall with radius Rp. In this case, there is no
energetic contribution of the channel, and the free-energy barrier
is only due to ubiquitin properties. Even if we had not explored
the range of q, we are confident that the scenario that we report
is robust with respect to variation of q. We preferred to work
with low q to avoid as many instabilities as possible in the MD
code. Once the ubiquitin had placed enough residues in the pore
(i.e., CM coordinate X = 100 Å in Figure 4), it could slide

Figure 3. Dimensionless mobility µ/µ0 [µ0 ) 1/(NγM)] measuring
the ratio between protein speed and force applied to ubiquitin as a
function of F (in units of fu). The curves refer to pore radius Rp ) 4 Å
and length L ) 300 Å at temperatures Tref ) 198 K and Tph ) 305 K.
Filled circles indicate the data obtained from MD simulations, and the
dashed line is the corresponding theoretical fit (eq 12). Open circles
are the result of the numerical integration of the one-dimensional
Langevin overdamped equation with a potential Gfit(X) for a further
check on the theory.

Figure 4. Free-energy profiles from umbrella sampling simulations,
with an umbrella potential (eq 4) of Kumb ) 0.5ε, of the ubiquitin
translocation across the pore Vp ) ε, Rp ) 4 Å at temperatures Tref and
Tph.

TABLE 1: Parameter Values of the Fitting Function Gfit(X)
at Temperatures Tref and Tph

s Gs [kcal/mol] µs [Å-2] ls [Å]

Tref ) 198 K
1 33.4ε 2.79 × 10-4 150.8
2 10.5ε 4.90 × 10-4 122.3
3 15.4ε 2.90 × 10-4 88.2

Tph ) 305 K
1 13.4ε 5.90 × 10-4 152.9
2 34.1ε 1.20 × 10-4 130.0
3 8.5ε 3.30 × 10-4 81.6

Gfit(X) ) ∑
s)1

3

Gsg{µs[(X - L/2)2
- ls

2]}

Figure 5. Average translocation time τ (in units of tu ) 0.25 ps) of
ubiquitin as a function of the force F at temperatures T ) 198 and 305
K and Rp ) 4 Å. Symbols indicate simulation results and lines the
corresponding fit by eq 15.
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without further free-energy cost. In the proximity of the channel
right end, the molecule started to be almost spontaneously
expelled, and the results of Figure 3 and Figure 5 suggest a
description based on an effective Smoluchowski equation for
the probability density P(X,t) of the reaction coordinate X

where U(X) ) G(X) - FX, � ) (RT)-1, and D0 and F are the
effective diffusion constant of the protein and pulling force,
respectively. The theory requires the assignment of proper
boundary conditions at the edges of the channel X ) 0 and L.
A meaningful choice is the radiative boundary conditions37,38

for the current

J(0,t) ) -R0P(0,t) and J(L,t) ) RLP(L,t), which explicitly read
as

taking into account the possibility for the protein to be
spontaneously expelled from the channel at rates R0 and RL from
the left and right, respectively.

Since we are interested in those events for which the molecule
occupies the channel for a given time (blockage time), we
consider the survival probability at time t, that is, the probability
that the molecule has not yet escaped the channel

The probability S(t) is related to the distribution of blockage
times ψ(t) via the expression

thus, by a simple differentiation, we obtain

The use of eqs 5 and 7 and of the boundary conditions leads to

where f0(t) and fL(t) are the fluxes at the boundaries whose
explicit expressions are obtained by solving the boundary value
problem with the initial condition P(X,0) ) δ(X - X0). This
initial condition assumes that the translocating molecule is
released exactly at the place X ) X0 inside of the channel. By
definition, the integration of the flux fL(t) over all time provides
the probability of translocation

The average time spent in the channel by the molecule is given
by

The last identity stems from eq 8 and an integration by parts.
Time τ would correspond in the experiments and simulations
to blockage time; then, the average velocity can be estimated
via the formula

A complete solution of eq 5 is needed to make the analytical
expression of V, τ, and ψ(t) explicit. Equation 5 cannot be solved
in general; however, as we show in the Appendix, key quantities
such as PTr and τ can be obtained. These are given by the
formulas

and

respectively. To simplify the notation, we have introduced K0

) R0 exp{-�G(0)} and KL ) RL exp{-�G(L)}

and

Since, in our simulations, the average time is computed only
over the runs for which translocations occurred, that is, PTr(F)
) 1, we need to take the limits K0 f 0 and KL f ∞ in the
above expression to get the quantity directly comparable to the
data

For each value of F, the integration is carried out numerically,
replacing G(x) by its fitting function Gfit(x). Equations 13 and
15 allow the observed translocation phenomenology to be
qualitatively explained at different forces. Moreover, once
parameters D0, K0, and KL have been properly adjusted to fit
the data, they reproduce also quantitatively the behavior of the
corresponding quantities measured in MD simulations. The
agreement between numerical data and theory can be appreciated

∂P

∂t
) D0

∂

∂X{e-�U(X) ∂

∂X
e�U(X)

P} (5)

J(X, t) ) -D0e
-�U(X)

∂x[e
�U(X)

P(X, t)]

{∂Xe�U(X)
P(X, t)|

0
) R0/D0e

�U(0)
P(0, t)

∂Xe�U(X)
P(X, t)|

L

) -RL/D0e
�U(L)

P(L, t)
(6)

S(t) ) ∫0

L
dX P(X, t) (7)

S(t) ) 1 - ∫0

t
dτ ψ(τ)

ψ(t) ) -
dS(t)

dt
(8)

ψ(t) ) R0P(0, t) + RLP(L, t) ) f0(t) + fL(t) (9)

PTr ) RL ∫0

∞
dt P(L, t) (10)

τ ) 〈t〉 ) ∫0

∞
dt tψ(t) ) ∫0

∞
dt S(t) (11)

V =
L

τ
(12)

PTr(F) )
D0KL

D0(K0e
-�FL

+ KL) + K0KLM
+

(F)
(13)

τ(F) )
D0M-

(F) + KLe�FL
M0(F)

D0(K0 + KLe�FL) + K0KLe�FL
M

+
(F)

(14)

M
(

(F) ) ∫0

L
dx e(�[G(x)-Fx]

M0(F) ) ∫0

L
dx e-�[G(x)-Fx] ∫

x

L
dy e�[G(y)-Fy]

τ(F) =
M0(F)

D0
(15)
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in Figures 2 and 3, where the behavior of the simulated
translocation probability and the velocities of ubiquitin as
functions of F are well fitted by eqs 13 and 12, respectively,
with τ from eq 15. To obtain satisfactory fitting curves, the free
energy (Figure 4) has been rescaled by a factor of 0.72 at Tref

) 198 K and a factor of 0.85 at Tph ) 305 K. Such a
renormalization is presumably ascribable to the crude ap-
proximation of considering the ubiquitin translocation as a one-
dimensional process described by a single reaction coordinate,
which, although reasonable, might not be fully appropriate.
Other reaction coordinates are needed to fully characterize the
kinetics.

The analytical expression of PTr(F) can be used to determine
the nontrivial dependence of the critical force on the free-energy
barrier. In fact Fc can be defined as the F value such that the
probability to translocate and that not to translocate are equal,
PTr(Fc) ) 1/2. This leads to the nonlinear equation

where the dependence on the free-energy barrier ∆ ) Gmax -

G(0) is hidden in the function M+(F) previously defined. We
can differentiate the above expression

where, we used the existence of a relationship Fc ) Fc(∆)
between the critical force and the barrier ∆ and the fact that,
by definition, M+ is a function decreasing with F and increasing
with ∆; thus, its derivatives with respect to Fc and ∆ are negative
and positive, respectively. Then, solving for the derivative

we see that dFc/d∆ is positive as the second member is positive.
Thus, even if we cannot make explicit the dependence of Fc on
∆ without performing trivial approximations, we can say that
the positiveness of dFc/d∆ clearly justifies the statement that
an increase in the barrier corresponds to an increase of Fc, in
agreement with the numerical results of Figure 2.

Further information on the translocation process can be gained
by studying the statistics of translocation times. The time
statistics of translocation events is accessible to experiments6,12

in which current drops signal the occupation of the channel by
the passing molecule; for this reason, these times are also
referred to as blockage times. In our simulations, translocation
times can be measured as first arrival times t at the channel end
x ) L of the protein center of mass. Figure 5 shows the average
translocation time τ at temperatures Tref and Tph as a function
of the applied force F. The reduction of τ is not simply
proportional to F but exhibits the behavior predicted by eq 15.
Only in the large force regime does it follow an Arrhenius-like
law

with τ0 being the Kramers’s time in the absence of the field F.
Distributions of times shown in Figure 6 are obtained by
collecting the histograms from MD simulations in about 103

numerical experiments of ubiquitin translocation on regimes of
small and large forces. The distributions are not Gaussian as
they present a moderate degree of skewness; however, the tail
asymmetry becomes less marked as F increases, and in the limit
of very large forces, the Gaussian character is recovered. This
is in agreement with experimental results.10,12 Unfortunately,
the analytical determination of the time distribution requires the
complete Smoluchowski problem to be solved. Since this is not
possible, one has to resort to reasonable approximations. A first
attempt to fit data can be done via the function

which is the distribution of first arrival times to the position L

of biased random walkers starting from the origin in the
assumptions of constant drift V0 ) µ0F, semi-infinite channel
[-∞, L], and absorbing boundaries at x ) -∞ and L. Although
eq 16 provides a reasonable fit to histograms (see Figure 6),
the simple biased random walk results in being a naive

1 )
K0

KL

e-�FcL
+

K0

D0
M

+
(Fc)

0 ) -{�L
K0

KL

e-�FcL
+

K0

D0
|∂M

+

∂Fc
|}dFc

d∆
+

K0

D0

∂M
+

∂∆

dFc

d∆
)

∂M
+

∂∆

�LD0

KL

e-�FcL
+ |∂M

+

∂Fc
|

> 0

τ(F) ∼ τ0 exp(-�FL)

Figure 6. Distributions of translocation times across a channel of length
L ) 300, radius Rp ) 4 Å, and temperature T ) 198 K. The top panel
refers to field F ) 1.38fu, near the critical region. The bottom panel
corresponds to field F ) 3.0fu, well outside of the critical force region.
The dashed line represents the fit via eq 16, with parameters D0 and
µ0. The solid line indicates the semianalytical result obtained from eq
5 in the approximation G(x) = G0 - Fx and the radiative boundary
conditions (eq 6). The inset shows the same data on a semilog scale.

ψ(t) )
L

√4πD0t
3

exp{- (µ0Ft - L)2

4D0t
} (16)

Translocation of Structured Polypeptide Chains J. Phys. Chem. B, Vol. 113, No. 30, 2009 10353

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

I 
R

O
M

A
 L

A
 S

A
PI

E
N

Z
A

 o
n 

Ju
ly

 2
3,

 2
00

9
Pu

bl
is

he
d 

on
 J

ul
y 

2,
 2

00
9 

on
 h

ttp
://

pu
bs

.a
cs

.o
rg

 | 
do

i: 
10

.1
02

1/
jp

90
09

47
f



approximation to explain the complexity of a protein translo-
cation process strongly characterized by free-energy barriers.
Translocation events could be assimilated to the paths of biased
random walks only as long as the process is so fast that the
protein has no time to explore the boundary barriers. The
semilog scale (inset of Figure 6) reveals that at low forces,
the large-time tail predicted by eq 16 deviates more and more
from simulation data.

A better description of ψ(t) is gained by considering eq 5 in
the approximation G(x) = G0 ) const, an assumption rigorous
only in the region of 100 < X < 200 Å, well inside of the pore
(see. Figure 4). In this approximation, the effects of the potential
barriers at the two channel ends can be partially recast in a
proper redefinition of parameters R0 and RL defining the
boundary conditions.

The Smoluchwsky problem, eq 5 in a constant potential and
boundaries in eq 6, can now be fully solved via the technique
of Laplace transformation (see the Appendix and Berezhkovskii
et al.38), and we obtain an analytical expression for the Laplace
transform

of the translocation time distribution ψ(t), with λ ) Z(s)/2D0,
R ) RL (radiation coefficient), V0 ) µ0F, and Z(s) ) (V0

2
+

4D0s)1/2. The antitransformation of the above expression must
be done numerically by standard packages39 and provides a time
distribution that formally reads as

where a(t) is a time-dependent amplitude and the exponential
tail at large times is characterized by the rate Γ, determined by
the first pole of the f̂L(s). Such a pole is obtained by retaining
the negative root s0 of the equation

with the minimal modulus |s0|. The fine-tuning of parameters
D0, V0, and R allows a satisfactory fitting of the bulk of time
distributions and of the tails as well. The comparison between
the simulated distribution and theory is shown in Figure 6 for
a force near the critical value Fc and well beyond it. The
agreement is remarkable also in a semilog plot, showing that
the tails are better reproduced with respect to the simple decay
exp{-tµ0

2F2/(4D0)} predicted by eq 16. Of course, the presence
of a supplementary parameter R offers a greater flexibility in
fitting data.

4. Conclusions

We proposed a simplified model of translocation where a
small globular protein, represented by the ubiquitin, is imported
across a finite size channel by a uniform pulling force acting
inside of the channel only. This paper is an attempt to compare
MD simulations at the coarse-grain level of protein translocation
to its theoretical interpretation by the drift-diffusion Smolu-
chowski equation with radiation boundary conditions. With
respect to previous studies,26 we considered finite length
channels, a simulation setup closer to real translocation processes

occurring in cellular membrane pores and also similar to voltage
experiments on synthetic R-hemolysin channels.6,12

We simulated translocation kinetics via Langevin molecular
dynamics to control the temperature. The analysis of trajectories
has shown that the translocation of structured polypeptide chains
(like proteins) leads to very different results than the translo-
cation of small peptides and unstructured polymers (e.g.,
homopolymers). For proteins, indeed, the process occurs via
three stages, unfolding f translocation f refolding. This
introduces two time scales that interplay to generate the total
blockade time τB of the pore. One is related to delay due to
unfolding/refolding processes occurring at the ends of the
channels, and the other one corresponds to the net translocation
motion. This scale separation can be resolved only if working
with sufficiently long pores. The central point of this work is
to have shown that the phenomenology of a computational
(coarse-grained) model of protein translocation can be described
by the formalism of the one-dimensional driven-diffusion
Smoluchowski equation in the collective variable X (ubiquitin
center of mass) and by employing the free-energy profile G(X)
as an effective potential. The shape of G(X), computed from
umbrella sampling simulations, looks like a bump of large width,
characterized by a plateau in the region well inside of the pore,
while its maximal variation occurs at the boundaries. The plateau
occurs as we choose the pore length of L ) 300 Å, comparable
to the length of the fully stretched ubiquitin conformation, Nd0

= 76 × 3.8 Å.

The driven-diffusion Smoluchowski model for the probability
P(x,t) that ubiquitin has its center of mass X on the position x

at time t is amenable to analytic treatment. We have shown
that upon tuning four parameters plus the free energy barrier at
the entrance of the channel, it accounts for the general behavior
of the observables characterizing the translocation as a function
of the importing force F. This theory reproduces the simulation
results rather well, such as the translocation probability, mobility
of the protein inside of the channel, and average blockade times
and their distribution upon changing F. However, despite the
success, two basic assumptions: (i) the center of mass of a
protein is a reliable collective coordinate to describe translo-
cation pathways and (ii) quasi one-dimensional approximations
have to be carefully verified in future works. This approach,
indeed, is expected to fail when several factors affect the
translocation and more collective coordinates are necessary. In
the case studied, the 1-D theory works pretty well, as we
considered the pore as an ideal object whose only effect is to
confine the protein and prevent its partial refolding inside of
the channel. If the pore, for instance, would be large (or short)
enough to allow the folding of non-negligible regions of native
secondary structure, then a second coordinate Q (protein
nativeness) at least would be necessary to discriminate different
translocation pathways.

Previous interesting computational works (see, e.g., ref 26),
which inspired the present one, limited the use of free-energy
computation to draw qualitative characterization of the trans-
location; we pushed the analysis further. Indeed, the free-energy
landscape in one or a few reaction coordinates turns to be the
unifying element between the low-dimensional statistical de-
scription of translocation and computations or experiments. It
is the result of the complex microscopic interaction of the
passing protein with itself and with the pore, but, in principle,
it contains almost all of the information to describe protein
translocation as a first-passage time problem of a driven-
diffusion stochastic process.

f̂L(s) )
RZ(s)eV0L/2D0

RZ(s) cosh(λL) + (V0R + 2D0s) sinh(λL)

ψ(t) ) a(t)e-Γt

tanh[ L

2D0
√V0

2
+ 4D0s] ) -

V0R + 2D0s

R√V0
2
+ 4D0s
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Mathematical approaches,18,19,37,40 instead, which focus on the
statistical properties (e.g., scaling laws) of translocation, obvi-
ously tend, for the sake of generality, to overlook the real shape
of free-energy profiles by introducing “ad hoc” approximations.
All of these models, although having the advantage of being
analytically or semianalytically solvable, underestimate the
contribution of chain conformational entropy as long as they
limit to consider its simple approximations borrowed from
polymer statistical physics. The approach results arbitrary in
protein-like polymers whose resistance to unfolding introduces
further slowdown to the process and uncertainty on entropy
contributions. In conclusion, our analysis supports driven-
diffusion phenomenological modeling of translocation, providing
the possibility to replace arbitrary phenomenological potentials
with the true free-energy landscapes in few appropriate reaction
coordinates. On the experimental side, our results suggest
increasing the efforts focused on the determination of spatial
distribution of molecules inside of the channel. This, besides
improving our understanding of translocation phenomenology,
would provide a solid ground and benchmarks to both compu-
tational modeling and theoretical explanations.

A more realistic computational model of translocation could
be realized by introducing more microscopic details in the
pore-protein interaction and improving the microscopic de-
scription of the pore structure.

As a conclusive remark, it is interesting to note that both the
mobility and translocation probability feature a clear nonlinear
behavior typical of activated transport phenomena across a
barrier observed in other physical systems (e.g., granulars) in
which interactions and fluctuations requires some amount of
collective behavior for transport to occur.41
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Appendix

In this appendix, we show how to derive the translocation
quantities PTr and τ as a function of F. There is no need to
solve eq 5 in the potential U(x) ) G(x) - Fx. In this respect,
it is useful to introduce the Laplace transformation

that changes the partial differential eq 5 into the ordinary
differential equation

with the boundary in eq 6 and initial condition P(x,t ) 0) )

δ(x - x0). Notice that the initial condition δ(x - x0) implies
that we are looking for a fundamental solution P(x,t|x0,0) whose
physical interpretation is the probability that particles released
in x0 ∈ [0,L] at time t ) 0 reach the point x at time t. For sake
of notation simplicity, we drop out the explicit dependence on
x0; thus, we write P(x,t) instead of P(x,t|x0,0) and P̂(x,s) for its
Laplace transform.

The translocation probability and translocation time are
obtained by the solution of eq 18 for s ) 0 and P̂(x,s ) 0)
(denoted by P̂(x)). Indeed, from eqs 11 and 10, one can write

Moreover, eq 13, in terms of P̂(x), becomes

It is convenient to introduce the new function Y(x) )

exp{�U(x)}P̂(x) and to solve the equation

The theory of Green’s Functions prescribes that a general
solution Y(x) of eq 21, satisfying the boundary conditions Y1′(0)
) RL/D0Y1(0) and Y2′(L) ) RL/D0Y2(L), respectively, is built up
by two independent solutions Y1(x) and Y2(x) of the homoge-
neous equation. The two solutions are

and

which provides the solution of eq 18 for s ) 0, in the form

where Wr(x) ) [P̂1(x)P̂2′(x) - P̂2(x)P̂1′(x)] is the Wronskian. By
taking the limit of x0 f 0 and applying simple algebraic
manipulation on eqs 19 and 20, we derive from P̂(x) eqs 13
and 15, respectively.

To obtain the time distribution, we need to solve eq 5 for
arbitrary free-energy profiles U(x) ) G(x) - Fx and not
vanishing s. This is impossible; thus, we have to resort to the
simplest approximation G(x) ) G0 ) const along the channel
and try to transfer the effect of free-energy barriers on the
boundary conditions. Equation 5 simplifies to

With the radiation boundary conditions in eq 6 that take on the
form P̂′(0) ) (V0 + R0)/D0P̂(0) and P̂′(L) ) (V0 - RL)/D0P̂(L),
we introduce V0 ) µ0F, K0 ) V0 + R0, and KL ) V0 - RL. As
above, two fundamental solutions are needed to obtain the Green
function of this simplified problem; they are

P̂(x, s) ) ∫0

∞
dt e-st

P(x, t) (17)

D0
d
dx{e-�U(x) d

dx
e�U(x)

P̂} - sP̂ ) -δ(x - x0) (18)

τ ) ∫0

∞
dt ∫0

L
dx P(x, t) ) ∫0

L
dx P̂(x) (19)

PTr ) RLP̂(L) (20)

D0
d
dx

{e-�U(x)
Y′(x)} ) -δ(x - x0) (21)

Y1(x) )
D0

R0
e�U(0)

+ ∫0

x
d� e�U(�)

Y2(x) ) -
D0

RL

e�U(L)
- ∫

x

L
d� e�U(�)

P̂(x) ) {-P̂1(x)P̂2(x0)/Wr(x0) 0 < x < x0

-P̂2(x)P̂1(x0)/Wr(x0) x0 < x < L

D0P̂''(x) + µ0FP̂'(x) - sP̂(x) ) -δ(x - x0)

P̂1(x) ) eV0x/2D0{Z(s) cosh(λL) + A sinh(λx)}
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for the x ) 0 boundary and

for x ) L, where λ ) Z(s)/2D0 and Z(s) ) (V0
2
+ 4D0s)1/2. The

Laplace transform of the Green function at the boundary x ) L

provides the flux f̂L(s) ) RLP̂(x ) L)

Actually, we are interested in situations very close to our
simulation setup that corresponds to a condition where R0 ) 0
f K0 ) V0, reflecting boundary (zero current) at x ) 0 and
radiative (RL ) R > 0f KL ) V0 - R) at x ) L. After algebraic
manipulations, we obtain the analytical expression of the flux
corresponding to translocation; then, we get

We need, now, to invert the Laplace Transform of f̂L(s) to
determine the distribution ψ(t) according to eq 9. This can be
done numerically through the algorithm.39 The parameters D0

and R have to be considered as tunable quantities to fit
simulation or experimental data.
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(9) Oukhaled, G.; Mathé, J.; Biance, A. L.; Bacri, L.; Betton, J. M.;
Lairez, D.; Pelta, J.; Auvray, L. Phys. ReV. Lett. 2007, 98, 158101–158104.

(10) Jiali, L.; Gershow, M.; Stein, D.; Brandin, E.; Golovchenko, J. Nat.
Mater. 2003, 2, 611–615.

(11) Yeh, I.-C.; Hammer, G. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
12177–12182.

(12) Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1079–1084.

(13) Lingappa, V. R.; Katz, F. N.; Lodish, H. F.; Blobel, G. J. Biol.
Chem. 1978, 253, 8667–8670.

(14) Römisch, K.; Collie, N.; Soto, N.; Logue, J.; Lindsay, M.; Scheper,
W.; Cheng, C.-H. C. J. Cell Sci. 2003, 116, 2875–2883.

(15) Rapaport, T. Nature 2007, 450, 663–669.
(16) Goloubinoff, P.; De-Los-Rios, P. Trends Biochem. Sci. 2007, 32,

372.
(17) Sung, W.; Park, P. J. Phys. ReV. Lett. 1996, 77, 783–786.
(18) Lubensky, D.; Nelson, D. Biophys. J. 1999, 77, 1824–1838.
(19) Muthukumar, M. Phys. ReV. Lett. 2001, 86, 3188–3191.
(20) Tian, P.; Andricioaei, I. J. Mol. Biol. 2005, 350, 1017–1034.
(21) Tian, P.; Andricioaei, I. Biophys. J. 2006, 90, 2718–2730.
(22) Wells, D.; Abramkina, V.; Aksimentiev, A. J. Chem. Phys. 2007,

127, 125101.
(23) Wintrode, P.; Makhatadze, G.; Privalov, P. Proteins: Struct., Funct.,

Genet 1994, 18, 246–253.
(24) Briggs, M.; Roder, H. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 2017–

2021.
(25) Marianayagam, N.; Jackson, S. Biophys. Chem. 2004, 111, 159–

171.
(26) Huang, L.; Kirmizialtin, S.; Makarov, D. J. Chem. Phys. 2005, 123,

124903.
(27) Matysiak, S.; Montesi, A.; Pasquali, M.; Kolomeisky, A.; Clementi,

C. Phys. ReV. Lett. 2006, 96, 118103/1–118103/4.
(28) Fyta, M.; Melchionna, S.; Succi, S.; Kaxiras, E. Phys. ReV. E 2008,

78, 036704/1–036704/7.
(29) Kumar, S.; Rosenberg, J.; Bouzida, D.; Swendsen, R.; Kollman,

P. J. Comput. Chem. 1992, 13, 1011–1021.
(30) Souaille, M.; Roux, B. Comput. Phys. Commun. 2001, 135, 40–

57.
(31) Risken, H. The Fokker-Planck equation. Methods of solution and

applications, 2nd ed.; Springer Series in Synergetics; Springer: Berlin, New
York, 1989

(32) Redner, S. A guide to first-passage processes; Cambridge University
Press: Cambridge, U.K., 2001.

(33) Clementi, C.; Nymeyer, H.; Onuchic, J. J. Mol. Biol. 2000, 298,
937–953.

(34) Miyazawa, S.; Jernigan, R. J. Mol. Biol. 1996, 256, 623–644.
(35) Schlick, T. Molecular Modeling and Simulation - An Interdisci-

plinary Guide., 2nd ed.; Interdisciplinary applied mathematics mathematical
biology; Springer: New York, 2002.

(36) Ferrenberg, A.; Swendsen, R. Phys. ReV. Lett. 1989, 63, 1195–
1198.

(37) Berezhkovskii, A.; Pustovoit, M.; Bezrukov, S. J. Chem. Phys. 2002,
116, 9952–9956.

(38) Berezhkovskii, A.; Gopich, I. Biophys. J. 2003, 84, 787–793.
(39) Murli, A.; Rizzardi, M. ACM Trans. Math. Software 1990, 16, 158–

168.
(40) Metzler, R.; Klafter, J. Biophys. J. 2003, 85, 2776–2779.
(41) Costantini, G.; Cecconi, F.; Marini-Bettolo-Marconi, U. J. Chem.

Phys. 2006, 125, 204711.

JP900947F

A ) 2K0 - V0

P̂2(x) ) eV0x/2D0{Z(s) cosh[λ(L - x)] + B sinh[λ(L - x)]}

B ) V0 - 2KL
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[V0(K0 + KL) - 2K0KL + 2D0s] sinh(λL)}

f̂L(s) )
RZ(s)eV0L/2D0
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