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Abstract In this paper we present a method to calculate
Casimir Forces for non equilibrium systems with long range
correlations. The origin of the force are the fluctuating fields,
and the modification that the external, macroscopic objects
induce in the spectrum of the fluctuations. The method is first
illustrated with a simple model: a reaction-diffusion non-
equilibrium system with an structure factor that possesses
a characteristic length. The second part of the paper deals
with a granular fluid where correlations are long ranged at
all scales. In the first case the hydrodynamic fluctuations are
confined by two plates, while in the second one the confine-
ment comes from two immobile large and heavy particles. In
both cases Casimir forces are calculated, and their properties
analyzed.

Keywords Non-equilibrium systems · Long range
correlations · Casimir forces · Granular matter

1 Introduction

There are forces in Physics that do not derive from a potential
energy: Coriolis force, centrifugal force, static and dynamic
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frictional forces, just to mention a few. Casimir forces belong
to this class. They were discovered by Casimir in 1948 [1],
by applying Heisenberg’s uncertainty principle to the vac-
uum fluctuations of the Electromagnetic field. Casimir found
that two flat metallic parallel plates attract with a force per
unit area given by F/A = −h̄cπ2/(240x4). This force has
been measured with high precision by Lamoreau [2,3] and
Mohideen and coworkers [4,5]. For a recent review see [6].

More recently, Casimir forces of non-quantal origin, have
been considered (see, e.g. the review [7]). In this case, the
forces do not result from Heisenberg’s principle, but are, for
instance, originated from thermal fluctuations, so that their
amplitude is proportional to kB T , the absolute temperature
times the Boltzmann constant, and not to the Planck constant
times the speed of light h̄c. The fluctuating field, instead
of being the Electromagnetic radiation, can be an hydro-
dynamic field such as density, temperature, concentration,
director vector, etc. When the fluctuating system is confined
between two plates, the fluctuation spectrum is modified by
the associated boundary conditions. As a result both the (free)
energy density and the stress tensor become size dependent.
Therefore, the stress tensor in the region between the two
plates and outside them are different, leading to the appear-
ance of Casimir forces. The unifying feature is the presence
of long spacial correlations G(r) which make that the con-
fined system is effectively affected by the imposed bound-
ary conditions, therefore modifying the value of the (free)
energy density and the stress tensor. The long range cor-
relations manifest in static structure factors S(k), Fourier
Transforms of G(r), that decay in algebraic manner, with
some inverse power of the wave vector k. Such long range
correlations may appear in near critical Equilibrium systems
(e.g. in fluids in the vicinity of a critical point [8–11]), or
from a broken continuum symmetry [12] (like liquid crys-
tals in smectic or nematic phases [13,14]) superfluid films
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[15] colloidal systems [16], etc. For most of these systems
Casimir forces have been derived. The approach to compute
the force is the same as originally proposed by Casimir, that
is compute the size dependent free energy and differentiate
it with respect to distance. Also, the size dependent stress
tensor can be computed directly using the scale invariance
feature of critical fluids [10,17], scale-free non-equilibrium
systems [18], and critical spin models [19].

However, there is also a whole class of systems where long
range correlations are the norm: non-equilibrium systems. We
can group them under two items:

(i) Systems under non equilibrium constraints like spa-
tial gradients [20]: fluids under shear, plane Couette
flow, [21,22], Rayleigh–Benard cell under a tempera-
ture gradient [23–25], or systems under concentration
gradients [26], where the structure factor is S(k) ∼
1/(k2 + k2

0), being k0 the inverse of a characteristic
length in the system.

(ii) Systems without detailed balance. For instance, it has
been shown [27–29] that systems described by the
Langevin equation with conservative dynamics and
non-conservative noise have long range spatial and
temporal correlations. Analogously, non-equilibrium
concentration fluctuations in reaction diffusion
systems can be long ranged under certain conditions
[30] and granular systems, where the collisional
dissipation and the energy injection break the detailed
balance property and hence develop long range corre-
lations [31,32]. These two systems will be described in
this paper. Long range correlations caused by absence
of detailed balance are present in other non equilib-
rium systems like kinetic growth models [33,34], traf-
fic flows [35,36], anisotropic diffusion [37], Lattice
gases [38,39], inelastic Maxwell molecules [40,41]
among others.

2 Casimir forces in nonequilibrium systems

As an example of how a Casimir force arises in a non-
equilibrium system with long range correlations, we con-
sider the simple case of a reaction-diffusion system in three
dimensions [42], where the fluctuating density n around the
homogeneous reference density n0 obeys the equation

∂φ

∂t
= ∇ · (D∇φ + ξ1) − λφ + ξ2, (1)

where φ = n − n0 is the fluctuating field, D is the diffusion
coefficient, and λ > 0 is the relaxation rate. The terms ξ1
and ξ2 describe fluctuations in the diffusive flux and in the
reaction rate, corresponding to conservative and non-

conservative noises, respectively. They are assumed to have
white noise spectrum

〈ξ1i (r, t)ξ1k(r′, t ′)〉 = Γ1δi,kδ(r − r′)δ(t − t ′),

〈ξ2(r, t)ξ2(r′, t ′)〉 = Γ2δ(r − r′)δ(t − t ′).
(2)

The solution of Eq. (1) predicts that, after an initial transient,
the density φ is statistically homogeneous and stationary so
that in Fourier space we have:

〈φk〉 = 0, 〈φkφq〉 = V S(k)δk,−q, (3)

where the symbol 〈·〉 represents the average over the two
noises ξ1 and ξ2. The structure factor S(k) is given by (see
e.g. Chap. (8.3) of [30]):

S(k) = Γ1k2 + Γ2

2(Dk2 + λ)
= Γ1

2D
+ Γ/2D

k2 + k2
0

, (4)

with Γ = Γ2 −Γ1λ/D and k0 = √
λ/D. The corresponding

real space density–density correlation, which is obtained as
the Fourier transform of S(k), reads

G(r) = Γ1

2D
δ(r) + Γ

2D

e−k0r

r
. (5)

The second contribution, stemming from the k-dependent
term in (4), represents fluctuations with a correlation length
that depends on the reaction parameters, λ and D, and there-
fore, are of macroscopic size. In particular, the system
described by Eq. (1) has a critical point at λ = 0 and near
it the correlation length diverges. If the reaction satisfies
the fluctuation–dissipation theorem [30,42,43] then Γ1 =
2kB T D and Γ2 = 2kB T λ, where T is the temperature,
implying that Γ vanishes along with the macroscopic correla-
tions. On the contrary, in non-equilibrium systems which vio-
late the fluctuation–dissipation theorem, Γ does not vanish
and macroscopic correlations are present. The δ-term of G(r)
in Eq. (4), coming from Γ1/2D, describes the microscopic
self-correlation of the particles that a mesoscopic model,
valid for larger length scales, cannot resolve. These corre-
lations are present both in equilibrium and non-equilibrium
and as it will become manifest in the next paragraphs they
do not contribute to the Casimir forces. Therefore, they will
be eliminated henceforth. This corresponds to subtracting
the asymptotic value of S for large values of k. Hereafter,
we will consider the macroscopic part (or, equivalently, the
non-equilibrium part) of the structure factor S∗(k) = S(k)−
limk→∞ S(k) = Γ/[2D(k2 +k2

0)]. This is equivalent to sup-
press the vectorial (conserved) noise ξ 1 and keep only a scalar
(non-conserved) noise ξ with an intensity Γ .

We study now the effect of confining the system between
two plates, parallel and infinite in the y and z-directions,
located at x = 0 and x = L , and calculate if the confinement
of the fluctuating field produce a Casimir force between the
plates surrounded by a fluid described by Eq. (1). The force
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derives from the pressure, that we will assume depend on the
local density p(n), exerted by the particles over the plates. To
proceed, we consider the system in a volume Lx × L y × Lz ,
periodic in all directions. In this volume we place two plates
at distance L with non flux boundary conditions at them,
as natural for a reacting system. The total volume V results
divided into two regions: Region I in between the plates of
volume L × L y × Lz , and Region II outside the plates of
volume (Lx − L) × L y × Lz . The limit Lx , L y, Lz → ∞
will eventually be taken.

In order to perform the analysis in the two regions let us
consider a case of a general volume V = X ×L y ×Lz , where
X = L for Region I and X = Lx − L for Region II. The
density field is expanded, taking into account the non flux
boundary conditions on the x-direction, as

φ(r, t) = V −1
∑

kx

∑

ky

∑

kz

φk(t) cos(kx x)eiky yeikz z, (6)

where kx = πnx/X , ky = 2πny/L y , kz = 2πnz/Lz , nx =
0, 1, 2, . . . and ny, nz = · · · ,−1, 0, 1, . . .. The noise ξ is
expanded in a similar way with

〈ξk(t)ξq(t ′)〉 = γkx V Γ δ̂k,qδ(t − t ′), (7)

where δ̂k,q = δkx ,qx δky ,−qy δkz ,−qz is a modified 3D Kro-
necker delta. Moreover the factor γkx (γkx = 1/2 if kx = 0
and γkx = 1 otherwise) appears because of the non-flux
boundary condition in the x-direction. Replacing these
expansions in (1) it is found that

〈φk〉 = 0, 〈φkφq〉 = γkx δ̂k,qV S∗(k), (8)

with the same structure factor S∗(k) as in the homogeneous
case. Finally, the density field fluctuations in real space are
given by:

〈φ(r)〉 = 0,

〈φ(r)2〉 = Γ

2Dk2
0

V −1
∑

q

′ 1

q2 + 1
cos(qx k0x)2,

(9)

where q = k/k0 and the prime in the sum means that the
term qx = 0 has a factor 1/2.

The sum in Eq. (9) contains an ultraviolet divergence
(q → ∞). Therefore, in order to perform the summation
a regularization prescription is needed. The divergence is
unphysical because it comes from assuming that the meso-
scopic model (1) remains valid up to infinitely large wavevec-
tors. Therefore, we introduce a regularizing kernel in Eq. (9)
of the form 1/(1 + ε2q2), that equals 1 for ε → 0, limit that
will be taken at the end of the calculations. The choice of
a rational function instead of an exponential one is made to
keep the calculations as simple as possible, but its form is
immaterial. The technique of a regularizing kernel is equiv-
alent to imposing a cutoff in the q-vectors of the order of
qc ∼ ε−1 or to the zeta regularization [44].
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Fig. 1 Density fluctuations, calculated from Eq. (10) versus the scaled
variable k0x . The cutoff value is ε = 0.01, and the plates are at a
scaled distance of k0 L = 0.5. The vertical scale has arbitrary units
and the asymptotic value of the density fluctuations, Eq. (13) has been
subtracted. As seen, the density fluctuations between the plates (Region
I) differs from the value outside the plates (Region II). The jump at the
plates (that will produce the Casimir force) is shown in the inset

Next, we take the limit L y, Lz → ∞ allowing us to
replace the sums on qy and qz by integrals that can be carried
out, with the result:

〈φ(r)2〉 = Γ

8π DX

1

1 − ε2

×
∑

qx

′
log

(
1 + ε2q2

x

ε2(1 + q2
x )

)
cos(qx k0x)2. (10)

The sets of qx -vectors entering in this sum are different
for Regions I and II, and therefore the density fluctuations.
In Region I, the allowed qx vectors are quantized as: qx =
πnx/(k0 L), while in Region II they form a continuum in the
limit Lx → ∞. Figure 1 shows the density fluctuations (10)
in the x-direction when the plates are located at x = 0 and
k0L = 1/2, ε = 0.01 and Lx → ∞. The difference in qx -
vectors leads to a jump of 〈φ2〉 at the plates, shown in the
inset.

As shown in Fig. 1, the density fluctuations in a confined
system depend on the position but also on the system size,
and therefore are different in the region in between the plates
and the region outside them. If the pressure is a function
of the local density field p(n), these differences in the
density fluctuations create an unbalance of the pressure at
both sides of each plate (see inset of Fig. 1), and conse-
quently a net force. Note that when including the regular-
izing kernel into the sum (9) it turns out that a constant
term in S(k) leads to a size independent contribution to 〈φ2〉
and therefore to the pressure. In consequence, the equilib-
rium part of the structure factor in Eq. (4) does not con-
tribute to the Casimir forces, allowing to eliminate it form the
calculations.
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To calculate the force, we expand the local pressure around
the reference density n0, and take the statistical average, find-
ing that

〈p(x)〉 
 p(n0) + 1

2

∂2 p

∂n2

∣∣∣∣
n0

〈φ(x)2〉, (11)

where higher order terms in the field have been neglected.
The net force acting on the plate located at x = L is the
difference between the pressure inside p(x → L−) and the
pressure outside p(x → L+). These values are calculated
from Eq.(10), replacing the value of x by L (implying that
cos(qx k0L) = 1) and using the appropriate set of qx vectors.
In the outer part of the plates, region II, the qx vectors form
a continuum and the sum is replaced by an integral:

〈φ2〉I I = Γ

8π DX

1

1 − ε2

∫
dqx log

(
1 + ε2q2

x

ε2(1 + q2
x )

)
, (12)

with the result:

〈φ2〉I I = Γ

4DX

1

ε(1 + ε)
(13)

that diverges in the limit ε → 0 as O(ε−1). The pressure in
the inner region, written as

〈φ2〉I = Γ

8π DX

1

1 − ε2

∑

qx

′
log

(
1 + ε2q2

x

ε2(1 + q2
x )

)
, (14)

with qx forming a discrete set, qx = πnx/(k0 L), can be per-
formed with the help of Eq. (1.431,2) of [45]. It also shows
a divergence as O(ε−1) with the same prefactor of Eq. (13).
Therefore, in the net force between the plates by unit area,
obtained as the pressure difference, both divergent contribu-
tions cancel. The result for the force is finite and in the limit
of a vanishing cutoff ε, is simply

F/A = 1

2

∂2 p

∂n2 lim
ε→0

[
〈φ2〉I − 〈φ2〉I I

]
,

= F0(1 − log(2 sinh l)/ l), (15)

where l = k0 Lx and F0 = Γ k0(∂
2 p/∂n2)/(16π D). Let

us note that the final expression of the Casimir force, is a
universal function of the reduced distance, l = k0 Lx . More-
over, there is no dependence on the cutoff length, as the two
divergences in the cutoff, one stemming from the discrete
sum and another from the integral, exactly cancel each other.
The regularizing kernel, a technique well known in the field
of Casimir forces [46], has allowed us to obtain a finite result
as a difference of two diverging quantities.

The analysis of the Casimir force, Eq. (15) can be per-
formed in the limits of far plates (l � 1) or near ones (l � 1).
In the first case, (l � 1), implies that the distance Lx � k−1

0
and therefore the plates are outside the correlation length, k−1

0
(see Eq. 4). Then, one expects a very fast decay of the Casimir
forces. In the opposite limit (l � 1), when the plates are well
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Fig. 2 Logarithm of the dimensionless force (Eq. 15) plotted as a solid
line, versus the dimensionless distance l = k0 L . Two different regimes
are observed: for short distances, l � 1 (dotted lines) and long ones,
l � 1 (dashed line)

inside the correlation length, the force is much stronger. The
expression for these forces are

F far/A = F0
e−2l

l
, Fnear/A = −F0

log l

l
. (16)

The expression of Fnear is only valid for distances larger that
any microscopic cutoff, otherwise the description based on
continuum differential equations (1) becomes meaningless.
Therefore no real divergence of the force is obtained for small
distances.

In Fig. 2 we plot the exact force Eq. (15) as a function of
the dimensionless distance l, together with the far and near
plate approximations.

3 Casimir forces in granular fluids

In this section we will apply the concepts developed in Sect. 2
to a granular fluid in two dimensions. We will derive an
effective Casimir force between two large immobile intruders
immersed in a sea of small inelastic particles. This non van-
ishing force may explain some of the numerous segregation
phenomena observed in granular mixtures [47–52]

We consider the driven granular model in [32,53]. Grains
are hard particles of diameter d and mass m and their
collisions are characterized by a constant normal restitution
coefficient α. To achieve a stationary state, energy is supplied
into the system by random forces acting on all particles. The
random forces Fi are modeled as a white noise of intensity Γ :
〈Fi (t)Fk(t ′)〉 = mΓ δikδ(t − t ′). The macroscopic equations
that describe this inelastic fluid are the usual Navier Stokes
fluid equations for the density (n), velocity (u) and temper-
ature (T ) fields, supplemented with the terms that account

123



Casimir forces in granular and other non equilibrium systems

for the energy dissipation plus the random forces. They read
[32]:

∂t n + ∇ · (nu) = 0

∂t u + u · ∇u = − 1

ρ
∇ · �

∂t T + u · ∇T = − 2

dn
(∇ · J + � : ∇u) − γ + m2Γ 2,

(17)

where J is the heat flux and � is the stress tensor. The quan-
tity γ accounts for the collisional energy loss per unit time,
given, in mean field approximation by: γ = 2γ0ωT , being
γ0 = (1 − α2)/(4) and ω ∝ √

T the collision frequency.
The term m2Γ 2 is obtained averaging the kinetic energy per
particle gained by the random collisions. These two contri-
butions make the temperature a kinetic variable rather than
a slow one. Still, it can be considered a slow variable for
small inelasticities. Further analysis of the temperature equa-
tion shows that for a homogeneous system, the temperature
reaches a stationary value determined by the balance of the
last two terms: γ = m2Γ 2. It can be shown that this station-
ary state is stable [32].

The set of hydrodynamic equations described above is not
complete [32]. They miss the random terms coming from two
sources:
(i) fluctuations of the random forces that inject energy at
random times, and whose average value is given by Γ . Fol-
lowing the literature, we will call these terms external, and
they contribute on the momentum and temperature equations.
Their amplitudes are related with the intensity of the random
forces and are of order O(k0), where k is the wavevector, and
therefore are the analogous to the term ξ2 in Eq. (1).
(ii) internal fluctuations (Langevin type) coming from the
discrete nature of the particles that form the granular fluid.
The intensity of these Langevin fluctuations can be related
with the transport coefficients of the fluid via an extension to
non-equilibrium of the Fluctuation–Dissipation theorem. As
usual in fluctuating hydrodynamics, they are of order O(k2),
like ξ1 in Eq. (1) [25].

The homogeneous stationary state reached by this fluid
is characterized by long range correlations between any two
hydrodynamic fields A, B, of the form G AB(r) ∝ 1/r in
3-dimensions and G AB(r) ∝ − ln(r) in 2-dimensions. In
Fourier space the static structure factors are long ranged in
all the k range. Their expression at small k are, after sub-
tracting the k → ∞ plateau: SAB(k) = S0

AB/k2 where the
coefficients S0

AB depend on density, noise intensity and dis-
sipation coefficient α. Explicit expressions for them can be
found in [32]. These long range correlations lead to the renor-
malization of the energy density and collision frequency due
to the fluctuations at low wave-vectors.

R

II III

D

1 2

Fig. 3 Sketch of the configuration in the granular system. Two immo-
bile intruders, 1 and 2, of diameter D are placed at a distance R. They are
surrounded by fluid of small inelastic particles (not shown), whose fluc-
tuations leads to the Casimir force. In the approximations of this paper,
only fluctuations that fit in regions I or II are allowed. The allowed
wave-numbers are 2πn/(R − D) and 2πn/(L − R − D), respectively

We consider now a system where, in addition to the small
grains described as a granular fluid, two inelastic impenetra-
ble and immobile large hard disks (the intruders) of diameter
D are placed, separated at a distance R (see Fig. 3). The
objective is to see if the confinement of the fluctuations, pro-
duced by these intruders, produce a Casimir force on them.
The coefficient of restitution α is the same for all types of
collisions. These two immobile disks play the role of the flat
plates in Sect. 2, limiting the allowed wave-vectors of the
hydrodynamic fields as will be discussed below.

To describe the Casimir force originated from the fluctu-
ating hydrodynamic fields acting on the intruders we use an
approach similar to Sect. 2, where the pressure is renormal-
ized everywhere due to fluctuations that are computed using
fluctuating hydrodynamics. In this case, the force over the
intruders is produced by the pressure tensor, which is given
at position r:

p∗(r) = p(n(r), T (r)) I + m n(r) u(r) u(r), (18)

where n and T , and u are the instantaneous fluctuating den-
sity, temperature, and velocity fields and I the identity tensor,
respectively. Moreover, the hydrostatic pressure p(n, T ) =
T H(n) is the usual thermodynamic pressure for hard disks
with H(n) = n(1 + φ2/8)/(1 − φ)2, and φ = πnd2/4 [54].
As the intruders are immobile, u vanishes at their surface, so
the contribution of the convective term in p∗ vanishes and it
becomes a scalar. This would not be the case if the intruders
were allowed to move.

In analogy with Eq. (11), we linearize the hydrodynamic
fields (n, T, u) around the stationary values, (n0, T0, 0), and
expand the pressure up to second order in the fluctuations δn
and δT . Its statistical average over the random noise is

〈p∗〉 = p0 + H1〈δT δn〉 + T0 H2〈δn2〉, (19)

where p0 = p(n0, T0) and the coefficients H are derivatives
of the pressure: H1 = d H/dn|n0 , H2 = 1

2 d2 H/dn2|n0 . In
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Fourier space the density-density and density-temperature
fluctuations transforms into structure factors:

〈p∗〉 = p0 + V −1
∑

k

[
H1 SnT (k) + T0 H2 Snn(k)

]
. (20)

The dominant contribution to the pressure comes from the
region at small k, where they show a power law dependence
SAB(k) = S0

AB k−2 described before. We then obtain:

〈p∗〉 = p0 + V −1
[

H1 S0
nT + T0 H2 S0

nn

]∑

k

1

k2 . (21)

Let us note that for the granular geometry there are not two
space-independent regions, as it happened in the case studied
in Sect. 2 where the infinite plates divided the space in three
independent regions (or two if periodic boundary conditions
were considered). Still the hydrodynamic fluctuations must
vanish at the surface of the intruders, so that, in between the
two intruders they have wave-vectors equal to 2πn/(R − D)

being n an integer. Therefore as a first approximation we
can suppose that the fluctuations in between the obstacles
are restricted to have wave-vectors as in the region labeled
I in Fig. 3, and outside them as in the region II. In detail,
we perform the k-sum only over the k-vectors allowed by
the geometrical constraints. In a rectangular box of size a ×
b, the x-component of the k vectors is 2πnx/a and the y
component is 2πny/b. It is at this point where the difference
between regions I and II appears: a = R − D in region I and
a = L − R − D in region II, while b = D in both regions.
By treating the regions as independent, we overestimate the
pressure difference and hence the Casimir force, but obtain
a first numerical approximation. Finally, this system owns
a natural ultraviolet cutoff, given by kc = 2π/d0, where
d0 = max(d, l0), and l0 is the mean free path of the small
particles. Beyond this cutoff the hydrodynamic description
is no longer valid. It is equivalent to including a regularizing
kernel with ε 
 k−1

c .
The prefactor in the sum (21), C ≡ H1 S0

nT + T0 H2 S0
nn

is dominated by the density–temperature fluctuations which
are negative [55], as the collisional dissipation increases (so
temperature decreases) with increasing density. The factor C
turns positive for densities close to the close packing (n >

0.73d−2), where the density–density fluctuations are more
important. The fact that C < 0 implies that fluctuations pro-
duce a decrease of the local pressure. In the gap between the
intruders (region I according to Fig. 3) the number of possi-
ble k modes of low k is smaller than outside (region II). The
net effect is that the pressure is lower outside than inside,
leading to an effective repulsive force between the intruders.
Furthermore, C is proportional to the temperature, so is the
Casimir force.

In the limit of small k, with structure factors going as
k−2, the pressure (20) can be analyzed asymptotically in the
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Fig. 4 Dimensionless Casimir force between the immobile intruders
as a function of the distance R. Solid lines are the theoretical predictions
derived in this paper, for two system sizes: L = 80 (upper line), and
L = 60 (lower line). Simulation results are plotted as open triangles
for L = 80 and solid circles for L = 60

cases a � b (for particles at large distances) and a � b (for
particles at short distances)

〈p∗〉 =
{

p0 + C a/b ; a � b � d0

p0 + C b/a ; b � a � d0.
(22)

Note that these asymptotic expressions for the renormalized
pressure do not depend on the cutoff distance, as long as
a and b are much larger than it. Finally, the effective force
on the particle 2 is the difference of the forces at the left
and the right of the particle F2 = D

[〈p∗
I 〉 − 〈p∗

II〉
]
. A neg-

ative value of C gives rise to a long range linear repulsive
force and a short range attractive force, at distances smaller
than D. The opposite is obtained when C is positive. Note
that in this estimate the force depends on the system size.
This fact is related to the structure of the fluctuations, that
become larger for small wave-vectors. Therefore, increasing
the system size, while keeping R fixed, the fluctuations in
region II become larger, decreasing even more the pressure
in this region. However, as mentioned, at long distances this
approximation is not completely valid.

The Casimir force is more accurately computed by using
the full expression of the structure factors [32], rather than the
k−2 part, valid for small k. The results are shown in Fig. 4 as
solid lines plotted in dimensionless units. The intruders have
a diameter D = 8d, the density equals n = 0.366d−2 and
dissipation is α = 0.8. The force for two different systems
sizes are plotted, for L = 80d (upper line) and L = 60d
(lower line). This figure confirms the existence of a non-
vanishing long-range force, extending for distances much
larger than the particle diameters, d and D. The Casimir force
shows a linear behavior in agreement with Eq. (22) (vanishing
at R = L/2, due to periodic boundary conditions). At shorter
distances, the force deviates from the linear expression (22),
due to the corrections to the 1/k2 form of the structure factor.
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In order to test the validity of the Casimir force obtained,
we have performed numerical simulations of the granular
system. Details of the computer simulations, specially how
to implement the random collisions, are given in [56]. In the
simulations we choose as basic units d, m, and Γ . These
units define the time unit as t0 = (md2/Γ )1/3 and energy
unit as e0 = (md2Γ 2)1/3. Given the density, restitution
coefficient and noise intensity mentioned above, the station-
ary temperature can be computed using mean field models
giving T0 = 1.84 e0, and the collision frequency is ν0 =
3.03 t−1

0 . This temperature T0 is used to make the abscissa
units non-dimensional. However, hydrodynamic fluctuations
determine a stationary temperature higher than T0 that
depends on the system size [32]. For L = 60 d, T = 2.43 e0

and for L = 80 d, T = 2.46 e0. For every configuration, sim-
ulations were run for about 5 × 106 collisions per particle.
In order to calculate the force, we measured the component
of the total momentum transferred from the gas to intruders
1 and 2 along the line, parallel to the x-axis, joining their
centers, Pix (i = 1, 2) as an average over 100 collisions
per particle. This procedure gives the “instantaneous” value
of the fluctuating force as F12 = 〈P2x − P1x 〉/2τ , whose
time-average finally leads to the net effective force, F .

The simulated force is plotted in Fig. 4 for L = 60d
(solid circles) and L = 80d (open triangles). As seen, there is
qualitative agreement between theoretical and simulation
results concerning the sign of the force and its magnitude,
specially for intermediate distances. For large distances,
however, our theory does not predict the saturation of the
force observed for R > 20d. There are several possible
sources for this discrepancy. The most important one is that
hydrodynamic correlations between regions I and II are not
independent. In fact, due to its long range nature, any fluctu-
ation generated outside regions I and II will contribute to the
pressure calculation in Eq. (21), reducing the pressure differ-
ence. Moreover, the presence of the fixed intruders breaks the
Galilean invariance and may modify the structure factors at
very short wavelengths, introducing a finite correlation dis-
tance equivalent to k0 in the structure factors, that will look
like Eq. (4). Finally, but probably less important, there are
geometrical factors that arise from considering the regions I
and II as rectangular instead of those bounded by circles.

The simulations also confirm the origin of the forces in
long range correlations: in the elastic case, recovered when
α = 1 together with Γ = 0, the force vanishes. In this case
long range correlations are absent, so only the term p0 sur-
vives in (21). This term does not produce a force as it cancels
at both sides of the particle. Moreover, we calculated the y
component of the force for α < 1, which was compatible
with zero to numerical accuracy.

Non hydrodynamic scales, i.e. particle separation of order
of d or smaller, are accessible for computer simulations. In
this case, the force between the particles show an oscillatory
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Fig. 5 Simulated force between the intruders for short distances, show-
ing the typical oscillations of the depletion forces. Casimir theory, based
in a continuum description of the fluid, cannot describe these short spa-
tial scales

behavior plotted in Fig. 5. This force, much stronger that
the Casimir one, is equivalent to the depletion forces appear-
ing in elastic fluids [57,58], which are explained by entropic
arguments based on equilibrium statistical mechanics. Other
recent works [59,60] confirm that depletion forces are present
in granular mixtures.

4 Conclusions

Casimir forces, as shown in this paper, are present for non-
equilibrium systems, and can be calculated via the structure
factors. The method presented here clarifies the role of the
long range correlations, and their influence over the range
of the force. Besides, in comparison with other methods
that compute the size dependent stress tensor, this method
is applicable to systems with no scale invariance (that is,
with a finite correlation length). It has been illustrated for
two physical systems and two geometries. The first one is a
reaction-diffusion system described by a single scalar field
whose correlation extend over a finite range characterized
by k−1

0 . Two flat plates embedded in the system experience
Casimir forces with the same range k−1

0 as the correlation
length. For distances larger that k−1

0 the force decays expo-
nentially.

A second application is to segregation in a binary granular
fluid. The mixture is composed by two types of particles: one
of them is much larger and heavier than the other, so they can
be treated as immobile particles. In this case the correlations
are long ranged with no characteristic decay length. Again, a
non-vanishing Casimir force is obtained and their properties
are analyzed, showing also to be long ranged.

The theory presented here show that three ingredients are
needed in order to have a Casimir-fluctuating force:
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(i) presence of long range correlations between the
fluctuating fields,

(ii) confinement of fluctuations due to the presence of
macroscopic objects (plates, spheres, etc),

(iii) an equation of state which is a nonlinear function of the
fluctuating fields.

These ingredients are ubiquitous in non-equilibrium matter,
in particular in granular materials.
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