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Fingering in slow combustion
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Abstract

We report numerical simulations of the structure of advancing burning fronts under conditions
where the dominating transport mechanisms is the di*usion of oxygen and heat. The model we
study describes the interplay between two di*usive -elds: one which accounts for the destabiliz-
ing mechanism leading to the production of a large surface area and the other for a stabilizing
mechanism. The typical length scale associated with the observed -ngering instability turns out to
be a combination of the di*usion lengths associated with the two competing processes. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most interesting aspects of non-equilibrium processes is their ability
to generate complex behavior and produce an endless variety of shapes, due to the
presence of dynamical instabilities determined by the coupling between thermodynamic
and transport properties. Recently, there has been a surge of interest on the pattern
formation occurring in a variety of growth phenomena such as solidi-cation processes,
viscous -ngering, electrochemical deposition, formation of river networks, di*usion
limited aggregation, dielectric breakdown and >ame propagation [1,2]. In many of these
processes the convection is negligible and the growth is controlled by di*usion. The
classical example is represented by the di*usion of latent heat released when a liquid
crystallizes. The velocity of the advancing solid–liquid interface depends on the rate at
which the latent heat is di*used away. For many of these phenomena thermodynamics
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and hydrodynamics have provided a satisfactory framework and one can now relate the
typical properties such as the velocity of the front, the length of the patterns to well
studied quantities such as surface tension, chemical potential di*erences, temperature
gradients [3,4].
The majority of the existing theoretical models employed in the study of >ame

propagation represent a coarse grained picture, are deterministic and disregard the
nucleation of the growing phase. In the present paper, we will discuss a lattice model
to simulate the dynamics of a propagating >ame front in the absence of convection;
the study has been motivated by a recent experiment performed by Zik et al. [5,6]
with a two-dimensional apparatus. They used a thin rectangular chamber containing
a sheet of paper and a hot wire at one end. Due to the limited amount of oxygen
present in the space between the paper and the top of the cell the onset of convection
is prevented and the rate of the burning process is governed by the oxygen di*usion
towards the >ame front. Under these conditions a -ngering pattern can be observed.
This situation is di*erent from the more common case where convection is at work
and >ames propagate as a straight front. However, it stimulates interesting questions
about the connection with the -ngering instability of the combustion process and those
related to dendritic growth and similar phenomena. In the combustion problem we
cannot invoke the tools employed in the study of ordinary non-equilibrium phase tran-
sitions. The classical work of Mullins and Sekerka [7] demonstrated that a solid front
advancing into the undercooled melt of its liquid undergoes a dynamic instability due
to the competition between two di*erent forces: the destabilizing action of the heat
di*usion, which favors the formation of large surface areas, and the stabilizing ten-
dency of the interfacial tension to minimize the surface area. What plays the role of
the surface tension in a >ame propagation problem? We shall show that the minimal
mechanisms leading to the appearance of such a behavior can be accounted for by a
simple lattice model in which two di*usive -elds and a reactive -eld, proposed on
a purely phenomenological basis, interact and give rise to a rich variety of patterns
which can explain the observed experimental behavior.
The present paper is organized as follows: in Section 2 we introduce and motivate

the model, in Section 3 we present the results of the simulations of the lattice model
for various choices of the control parameters, in Section 4 we consider the continuum
model version of the same problem and comment the similarities and the di*erences
between the two approaches, -nally in Section 5 we draw the conclusions.

2. De�nition of a minimal model of �ame propagation

Although, it is well known that a complete description of a combustion process
may involve up to few dozens of chemical reactions [8], we shall con-ne ourselves to
discuss a minimal model which contains only a limited number of dynamical variables,
but has the ability of predicting the occurrence of the interfacial instabilities, that one
observes in some experiments involving burning fronts. To illustrate our model of slow
combustion we start by introducing the relevant -elds, i.e., constitutive elements, and
their evolution rules. Our point is that the salient features of the burning process can
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be described only by three basic -elds: the -rst representing the presence of oxygen,
the second that of combustible and the third the heat released by the reaction.
Let us brie>y recall the phenomenon which has inspired our work. The experiment of

Ref. [5] consists of a plane sheet of paper ignited uniformly from one side. The burning
reaction proceeds slowly because the air supply is scarce and oxygen has to be driven
by di*usion towards the front. In fact, turbulent motions are prevented by the restricted
geometry of the experimental apparatus. This situation is not observed frequently in
nature, because in this case the air circulation, caused by the heat production determines
a turbulent mixing of the reactants, however it might be relevant in some peculiar cases
such as >ames propagating in narrow gaps between con-ning walls. As stated before
our minimal description of the reaction requires three -elds. Two of these have reactive
character, namely the oxygen and the combustible, and due to the ignition process go
from an unstable state to an adsorbing state; on the other hand, only the oxygen can
be transported by di*usion. The third -eld is the heat released at a burning site and is
purely di*usive.
To account for the spatial structure of the system we assign to each site of a

two-dimensional square lattice, labelled by i, three dynamical variables Ai; Ci and Hi
to represent, respectively, the oxygen concentration (Ai), the presence of combustible
Ci, taking on the values 0 or 1, to represent the fact that it can be unburned or burned,
and Hi the heat amount.
The evolution consists of the following steps:

(1) a site i is chosen randomly.
(2) if both the local heat and oxygen variables Hi and Ai are above some -xed thresh-

olds (Th and TO) the discrete variable Ci will change its state (0 → 1) in an
irreversible fashion, i.e., the site lights up.

(3) A certain quantity of heat is released by the reaction and some oxygen is consumed
as represented by the following scheme:

C′
i = Ci + 1 ;

H ′
i = Hi +KH ;

A′i = Ai −KA :

(4) The oxygen molecules di*use towards the reaction zone, while the heat di*use
away from there. The two processes occur at di*erent rates.

This model is inspired to earlier work, where we gave a microscopic description
of a system undergoing a -rst-order phase transition with emission of latent heat [9].
However, three main di*erences occur with respect to the solidi-cation problem:

(a) in solidi-cation the analogue of the material -eld may undergo either the liquid
to solid transformation or the reverse.

(b) The oxygen -eld can only be consumed but never produced.
(c) There is no surface energy cost between neighboring sites belonging to di*erent

states.
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The absence of detailed balance, implied by (a) and (b) is a consequence of the fact
that an adsorbing burned state always propagates irreversibly into the unstable phase.
To summarize the present model is a combination of two reactive–di*usive -elds (A

and H) with a purely reactive -eld (C). The burning sites represent sinks for A and
sources for H . Let us analyze in some detail what are the stabilizing and destabilizing
mechanisms.

• The ignition at a site i, cannot start unless a suLcient amount of thermal energy
(heat) is present. This re>ects the sensitivity of the typical chemical reactions to the
temperature. In the spirit of providing a minimal description of the burning process
we deliberately chose a simple threshold mechanism, instead of the usual Arrhenius
thermally activated mechanism.

• Heat is released by combustion and is di*used. If the associated thermal di*usion
length is suLciently short the result will be that of a stabilizing force similar to a
surface tension, because only sites close to a site which is releasing heat can light
up.

• If the oxygen supply is not present at a given spot, it must be transported there by
di*usion. Thus the need for fresh oxygen tends to favor the formation of a large
surface area, i.e., a burning site will be surrounded preferentially by unburned sites.

The balance between these two competing forces leads to a dynamical instability of
the propagation front between the burned and unburned material, whose characteristics
will change according to the experimental conditions.

3. Results

We performed simulation runs of the reactive–di*usive model described above in the
xy plane, using a 512× 512 lattice. In the initial con-guration the sites are unburned
(C =0) and cold (H =0), and the oxygen concentration is uniform (A= A0). To start
the combustion a thin strip (x¡x0) at the left border of the domain is prepared in the
“hot” state (H =1). In our simulations we -xed the oxygen concentration threshold at
TO=1; the release of heat and the oxygen consumption are assumed to be KH=KA=1.
The combustion process was followed up to N Monte Carlo steps (MCS), until a well
de-ned regime was attained. The di*usion mechanism for the heat and oxygen -elds
was simulated via a random exchange between a site and its nearest neighbors; the
two di*erent di*usive time scales were controlled by iterating independently, for each
MCS, the related attempt frequencies. The resulting frequencies of attempt (per MCS)
will be indicated in as fh and fo, respectively. To present the numerical results all
lengths will be measured in lattice spacing units and the non-dimensional time will be
expressed in MCS.
The structures developed in the combustion process strongly depend on the di*usion

rate of the oxygen -eld. In Fig. 1a, b we show, at the instant t = 8000, the patterns
which arise for two di*erent values of the frequency fo, having -xed fh = 0:2; the
oxygen concentration is A0 = 0:75 and the heat threshold is Th=0:30. Fig. 1a (fo=1)
shows the typical cellular structure which characterizes the di*usion limited growth of
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Fig. 1. The combustion -eld at t=8000 MCS. In both images the initial oxygen concentration is A0 = 0:75,
and the frequency of attempt for the heat -elds is fh = 0:2. The frequency of attempt for the oxygen -eld
is fo = 1 (upper graph) and fo = 0:1 (lower graph).
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a stable phase into a metastable one. We can observe, for example, the competitive
dynamics between adjacent cells, and the tip splitting mechanism characteristic of these
regimes. Similar structures are observed in the directional solidi-cation of binary alloys
beyond the onset of the Mullins–Sekerka instability. The characteristic length of the
pattern is selected through the competition of the stabilizing e*ect of the surface tension
and the necessity to develop a large interface area to reject (or to draw) a conserved
quantity. Both these phenomena can be described through natural length scales (the
capillary length d0 and the di*usion length ld, respectively), and the wavelength of
the pattern emerges as � ∼ √

d0ld. Our model does not account for an interface energy
cost, nevertheless a stabilizing e*ect is still present, as the ignition is prevented when
the local heat -eld is below the threshold Th. However, the heat released at a burning
site is dissipated through a di*usion mechanism, in such a way that too fragmented
structures are disfavored when either Th is high, or the thermal di*usion length is low.
Hence, we expect that, as the di*usion length of the oxygen -eld decreases, (that means
to reduce the frequency fo) the combustion pattern should develop thinner structures,
and eventually assume a dendritic morphology. This is the situation depicted in Fig. 1b
(fo=0:1). We observe that the wavelength of the pattern has been strongly decreased,
and the side-branching activity is indicative of the local nature of the di*usion -eld.
Notice that the concentration of oxygen is initially -xed at a value below the thresh-

old TO, and to sustain the combustion some oxygen must be drawn towards the inter-
face. Then, a compact front would be slowed down with the growth rate decaying as
t−1=2. Instead, a cellular or dendritic structure can develop at constant growth rate if
the burnt sites left behind the advancing front cover an area fraction equal to the initial
oxygen concentration. This is precisely the situation shown in Fig. 2, where the “mass”
of the combusted sites is represented versus time. The straight lines refer (from top to
down) to the dendritic and cellular growth addressed in Fig. 1a, b: we observe that
the combustion front advances at constant growth rate. For comparison we also show a
curve representative of compact growth conditions (fo=1, Th=0:45, A0 =0:60). In the
latter case we observe a typical di*usion-limited behavior, with the combustion front
advancing as ∼ t�: the deviation of the best -t value �=0:53 from the pure di*usional
value �= 0:5 can be attributed to a residual porosity of the combusted phase.
We observed that the morphology of the combusted phase is strongly a*ected by the

length scale of the oxygen -eld. The latter in turn depends on the frequency of attempts
fo, which is the microscopic counterpart of the macroscopic di*usion coeLcient D. To
elucidate this point we show in Fig. 3 the oxygen concentration along the growth
direction, at t = 8000. The two curves refer to the same sets of data employed in
Fig. 1a, b, and the oxygen -eld is averaged over the y direction. We note that the
width of the transition zone from the low concentration area (behind the combustion
front) to the high concentration sites is much larger for cellular growth (fo=0:8) than
for dendritic growth (fo = 0:1).
Fig. 4 shows the di*usion length Lo of the oxygen -eld versus fo. The two curves

refer (from top to bottom) to Th = 0:4 and 0.3. Lo has been estimated as the length
required for the transition from 20% to 90% of the concentration at in-nity. Notice
that a larger value of Th re>ects on a lower velocity of the process, and we recover
the well known result that the di*usion length diminishes as the growth rate increases.
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Fig. 2. The mass of the combusted sites represented versus time. The straight lines refer to the dendritic
(a) and cellular (b) growth addressed in Fig. 1. The lower curve (c) is representative of compact (di*usion
limited) growth conditions, obtained with A0 = 0:60, fo = 1, fh = 0:2 and Th = 0:45.

Fig. 3. The pro-le of the oxygen -eld for the dendritic (a) and cellular growth (b) addressed in Fig. 1.
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Fig. 4. The di*usion length of the oxygen -eld versus the frequency of attempt fo. The two curves were
obtained with (a) Th = 0:4 and (b) 0.3.

The above considerations suggest that a morphological phase diagram could be drawn
in a Th; fo plane, where regions characterized by a large growth rate or low oxygen
di*usivity should correspond to dendritic growth, whereas cellular patterns are likely
to be found at large values of Th and fo. This kind of diagram is shown in Fig. 5, for
an initial oxygen concentration A0 = 0:75.
Recently, Grant and coworkers [10,11] studied the nucleation problem in slow com-

bustion by a di*erent method, i.e., modeling the process by a di*erential equation of
the reactive–di*usive type for the temperature -eld type coupled to a purely reactive
equation describing the consumption of the reactants. In their approach the limiting
mechanism provided by a newtonian cooling due to a heat reservoir kept a -xed tem-
perature T0. Probably such a mechanism is not suLcient to produce a front instability
of the kind of that observed in experiments of Olami et al. [5]. We also notice that
the ignition process of reference contains an Arrhenius factor [11], while in the present
model we employed a -xed threshold.

4. Description by means of a continuum model

An interesting question is whether the same behavior observed in a lattice simulation
survives also when we model the system by a continuum approach and if it is true
which are the di*erences.
Reaction–di*usion models based on continuous partial di*erential equations had

many applications in recent years in describing the formation of non equilibrium inter-
facial patterns such as alloy solidi-cation, viscous -ngering. A particularly well known
model of growth kinetics is the so called Phase -eld [12], where two -elds are
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Fig. 5. The morphological phase diagram for the pattern of the combustion -eld in the Th; fo plane.

employed to describe the solidi-cation of an undercooled melt. One of the two -elds
is purely di*usive, while the other is an ordering -eld. Their interplay gives raise
under suitable condition to complex patterns such as dendrites, cellular phases etc.
An analogous description is possible also for the combustion problem as we illustrate
hereafter.
The combustible -eld has a purely reactive behavior, which may be represented in

the simplest form as

@C
@t

= F[a1(A− TO) + a2(C − C2)] : (1)

The dynamic force which drives the system towards the stable burnt state (C = 1)
increases with increasing local temperature and oxygen concentration; the prefactor F
is set to zero (and the reaction is prevented) when either the temperature or the oxygen
-eld are below the threshold level.
The heat and oxygen -elds follow a reactive–di*usive dynamics, described by

@H
@t

= DH∇2H + (KH)
@C
@t
; (2)

@A
@t

= DA∇2A− (KA)
@C
@t
: (3)

This set of di*erential equations can reproduce the rich phenomenology of the burning
process, i.e., the -ngering instability, the cellular regime as well as the transition to
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Fig. 6. Cellular and dendritic growth with the continuum model. We chose DH=0:01, DA=10, KH=KA=1,
TO = 0:5, a1 = 2:5, a2 = 1. Cellular growth was obtained with an oxygen concentration at in-nity A0 = 1,
and F = 0:2, while for dendrites we have A0 = 0:65, F = 0:8.

dendritic growth. As a general trend we notice that the shorter the di*usion length
of the A -eld, the stronger is the side branching activity of the burned structures.
This corresponds to the onset of dendritic growth regime. On the other hand, it is
clear from the comparison between the discrete and the continuous model that going
from the -rst to the second one looses the granularity typical of the lattice version.
Such a granularity is due to the existence of pieces of combustible which did not -nd
the suLcient conditions to burn; we believe that they represent a real e*ect under
conditions of low oxygen concentration.
In order to illustrate the method we show in Fig. 6 the pattern of the combustion

-eld obtained with DH=0:01, DA=10, KH=KA=1, TO=0:5, Th=0:01, a1=2:5, a2=1.
The two pictures refer to di*erent values of the initial oxygen concentration; A0 = 1
(cells) and A0=0:65 (dendrites). As usual, dendritic growth requires a strongly localized
di*usion -eld; this is achieved forcing a dynamics of the reactive -eld (F=0:8) faster
than that for cellular growth (F = 0:2).

5. Conclusions

In the present paper, we have discussed a new lattice model which describes the
formation and the advancing of combustion front in the absence on convection. With
respect to existing approaches to the problem we adopted a microscopic point of view,
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in the sense that we have not assumed from the start a coarse grained di*erential equa-
tion. Instead we have assumed a set of stochastic evolution rules for the microscopic
variables Ai; Hi; Ci representing, respectively, the local values of the oxygen, the heat
and the combustible, (a) a local rule for the Ci variable, (b) two di*usive rules for
Ai and Ci plus source and sink terms, respectively. The numerical simulations carried
out in two dimensions at various di*usion rates display the trapping phenomenon of
unburned combustible, and a complex morphology of the interfacial patterns which has
allowed us to construct a phase diagram of the phenomenon. We have also compared
our results with a continuous version of the same model and found fairly good agree-
ment as far as the large scales are concerned and di*erences with respect to the small
scales.
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